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Blend of organic acids improves
gut morphology and affects
inflammation response in
piglets after weaning
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and Guillermo Ramis2

1Trouw Nutrition, Department Innovation, Amersfoort, Netherlands, 2Department of Animal
Production, Universidad de Murcia, Murcia, Spain, 3Instituto de Inmunologı́a Clı́nica y Enfermedades
Infecciosas, Málaga, Spain, 4Department of Anatomy and Comparative Pathology and Toxicology,
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Weaning is a stressful period in a piglet’s life, when many morphological and

functional changes occur in the gastrointestinal tract. Examples are an alteration

of the barrier function and an increase in production of cytokines, suggesting the

immune system of the GIT is activated after weaning. The goal of this study was to

evaluate the effect of a commercially available feed additive based on short and

medium chain fatty acids on supporting intestinal health and reduce inflammation in

the intestine of post-weaning piglets. Seventy piglets were divided over 2 treatments,

a control diet and a blend of short and medium chain fatty acids, including butyrate.

On day 0, 15, 30 and 45 after weaning blood samples and intestinal tissue samples

were collected from sacrificed piglets. Blood and tissue samples were analysed for

cytokine gene expression, and tissue samples from jejunumand ileumwere analysed

on morphology and gene expression of tight junctions. Results show that the use of

a blend of short and medium chain fatty acids, including butyrates, improved

intestinal morphology, measured by villous length and v/c ratio, reduced

expression of tight junction proteins and influenced cytokine production in the

intestine, implicating that the use of organic acids as feed additives potentially can

reduce damage caused by weaning to the intestinal barrier and due to the higher

absorption capacity of the villi potentially improve nutrient absorption.
KEYWORDS
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1 Introduction

The intestinal structure is essential for health and performance of all animals. The

epithelial lining in the intestine has an important role in integrity and body defense locally

(Eckmann, 1995; Pitman and Blumberg, 2000). It creates a physical barrier, preventing

toxic components and pathogens from entering the intestinal mucosa and systemic
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circulation. At the same time, gastrointestinal tract (GIT) is

responsible for the uptake of nutrients. The nutritional

ingredients can interact with the microbiota and with the host

mucosa (Niewold, 2015).

Weaning is a stressful period which in nature occurs between 10

to 12 weeks of age in a gradual matter, around the time the GIT

matures. In professional pig farming weaning occurs between three

to four weeks of age (Worobec et al., 1999), and it can cause many

morphological and functional changes in the GIT (Moeser et al.,

2007b; Wijtten et al., 2011). Villi modifications (Wiese et al., 2003)

including a decrease in villous height, occur within a minimum of

approximately three days after weaning (van Beers-Schreurs et al.,

1998; Vente-Spreeuwenberg et al., 2003; Wang et al., 2011). Villous

atrophy is mainly caused by increased programmed cell death and

decreased rate of cell renewal (van der Peet-Schwering et al., 2007).

Furthermore a high cytokine production has been reported,

suggesting the activation of the GIT immune system immediately

after weaning (Pié et al., 2004; de Groot et al., 2021).

Another negative effect of weaning is a failure of the intestinal

epithelial barrier characterized by increased permeability, on which

the age of weaning has a negative effect (Smith et al., 2010).

Epithelial cells lining the gastrointestinal tract represent the main

barrier between the lumen and outside. The quality of this barrier is

primarily regulated by tight junctions (TJs), a combination of

different proteins interlocking the epithelial cells strongly to each

other (Turner, 2009; Marchiando et al., 2010a). Tight junctions

regulate the permeability of the intestinal barrier and are composed

of intracellular and apical intercellular membrane proteins e.g.,

zonulin, occludin, and claudins (Turner, 2009).

In the past, high animal productivity and efficiency were

obtained using antimicrobial strategies such as the use of

antibiotic growth promoters (AGPs), pharmaceutical levels of

zinc oxide (ZnO) or a high use of preventive antibiotics. Health

concerns have driven worldwide regulatory restrictions, promoting

the limited use of antimicrobials. To support optimal animal health,

productivity and efficiency without using antimicrobials, nutrition

has an important role beyond solely supplying nutrients and energy.

Acidifiers or products based on organic acids (OA) can be an

alternative of choice to replace antibiotics in pig diets after weaning.

A large number of studies have shown that OA, both short chain

fatty acids (SCFA) and medium chain fatty acids (MCFA) are

beneficial in enhancing growth performance and nutrient

digestibility, as well as modulating intestinal microbiota in pigs

(Zentek et al., 2011). This study aimed to analyse the effect of a

blend of organic acids on intestinal morphology and intestinal

cytokine production in weaned piglets.
2 Materials and methods

2.1 Animals, housing, and
experimental design

This study was performed at a high health farm with 72 piglets

(Large White) weaned at 22 ± 3 days of age with an average body

weight (BW) of 5.51 ± 1.22 kg. A completely randomized design
Frontiers in Animal Science 02
was used after weaning where the piglets were randomly allotted to

8 pens (0.61m×1.22m), 9 animals per pen, and pens were divided

over two treatments. Pigs had access to one drinker (ad lib) and one

feeder with 4 spaces per pen.
2.2 Diets

A two-phase pelleted experimental diet was used (Table 1),

without additional additives and pharmaceutical levels of zinc

oxide. Dietary treatments consisted of a control diet and a

treatment diet (control (cont) diet + 0.2% Presan®-FX (PFX)), a

feed additive based on a blend of short chain fatty acids (sorbic,

benzoic and butyric acid) and medium chain fatty acids (capric C8,

caprylic C10 and lauric acid C12). The feed additive used in the

present experiment was provided by Selko® B.V., The Netherlands

and the commercially advised inclusion rate was followed.
2.3 Clinical observations and
sample collection

Individual BW was recorded at 18 hr after weaning (day 0),

days 15, 30, and 45, and average daily gain was calculated. At day 0,

10 control animals were sacrificed to obtain blood from the vena
TABLE 1 Composition of the experimental diets.

Item
Phase 1
day 0-14

Phase 2
Day 15-45

Ingredients, %

Barley 29.98 25.00

Wheat 24.00 26.89

Corn 17.17 19.50

Soybean Meal 47 crude protein 6.00 16.83

Ca carbonate 0.45 0.61

Monocalcium phosphate 0.75 0.78

Soybean oil 3.50 3.67

Intestinal swine mucose hydrolyzate 2.50 0.00

Milkpowder 5.00 0.00

Fysal MP1 0.30 0.30

Salt 0.30 0.44

L-Valine (96.5%) 0.050 0.025

DL-Methionine (99%) 0.175 0.175

L-Lysine HCl (98%) 0.542 0.525

L-Threonine (98%) 0.258 0.250

L-Tryptophan (98%) 0.033 0.008

Protein concentrate2 6.00 2.00

(Continued)
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jugular and intestinal tissue samples. Blood samples were collected

into Ethylenediaminetetraacetic (EDTA) tubes. Subsequently,

piglets were randomly selected for euthanasia, by intravenous

injection with an overdose of tiobarbital IV, at day 15 (cont

n=10, PFX n=10), day 30 (cont n=7, PFX n=11) and day 45

(cont n=9, PFX n=13) with the same procedure as day 0.

Peripheral blood mononuclear cells (PBMCs) were isolated by

ficoll Histopaque gradient and preserved in RNAlater (Life

Technologies, USA) at -80°C after 24 hours of refrigeration at

8°C. Serum and plasma were isolated from whole blood by

centrifugation (251 relative centrifugal force, 10 min at room

temperature) and preserved at -80°C up to analysis. Tissue

samples were obtained from the ileum, jejunum and colon by 3

cm-long gut sections, and divided in two subsamples, one (20 mg)

was preserved in RNAlater (Life Technologies, USA) and one was

fixed in 10% buffered formaldehyde.
Frontiers in Animal Science 03
2.4 Sample analysis

Ten randomly selected well-oriented intact villi and crypts were

measured per piglet and tissue. The villous height (tip to villous-

crypt junction) and crypt depth (from villous-crypt junction to the

base of villous) were analysed using the ZEISS Efficient Navigation

software (Carl Zeiss, Oberkochen, Germany).

Gene expression for cytokines Interleukin (IL)-1a, IL-1b, IL-6,
IL-8, IL-10, IL-12p35, IL-12p40, Tumor Necrosis Factor (TNF)-a,
Interferon (IFN)-a, IFN-g and Transforming Growth Factor

(TGF)-b was analysed using relative quantification, with primers

previously described in the literature (Table 2). Intestinal gene

expression of tight junction proteins was studied by doing relative

quantification for calprotectin, occludin, zonulin 1 and claudin 1

(Table 2). Total RNA was isolated from tissues by means of Micro

RNeasy kit (Qiagen, USA) and DNAc was synthetized using the

Geneamp RNA PCR Core Kit (Life Technology, USA). In addition

to RNA extracted from tissues as mentioned above, total RNA was

isolated from PBMCs. The samples were normalized using the

average Ct for glyceraldehyde-3-phosphatedehydrogenase

(GAPDH), cyclophilin and b-Actin (Table 2). Data were

expressed as fold change, normalized to the lowest value (which

was assigned a value 1).
2.5 Statistical analysis

Data were analysed using the MIXED procedure of SAS

(version 9.4, SAS Institute; Cary, USA). The model included the

fixed effects of treatment. Animal was the experimental unit for

body weight and blood and tissue analyses. Statistical significance

and tendency were considered at P < 0.05 and 0.05 < P <

0.10, respectively.

Principal component analysis (PCA, with multidimensional

scaling and orthogonal transformation for rotation) and partial

least squares regression (PLS) were used to analyse multivariates.

The PCA was applied to a dataset including the variables tight

junction protein mRNA gene expression and mRNA gene

expression of 11 cytokines in jejunum and ileum for 3 different

timepoints with time as nesting effects. The PLS analysis was set to

assess: (1) variance of tight junction protein mRNA gene expression

in jejunum and ileum explained by time and mRNA gene

expression of 11 cytokines in jejunum and ileum.
3 Results

3.1 Growth performance

PFX treatment increased BW of piglets on day 30 and 45 after

weaning (P < 0.05; Table 3). Piglets had an average feed intake of

18.52 ± 2.3 kg per pen. Two animals died over the experiment,

showing no digestive or respiratory related lesions at necropsy.
TABLE 1 Continued

Item
Phase 1
day 0-14

Phase 2
Day 15-45

TN Trouwmix 30 premix3 3.00 3.00

Calculated content4, %

Dry matter 89.60 89.17

Net energy, kcal 2,559 2,549

SID lysine 1.15 1.17

SID methionine 0.405 0.406

SID methionine + cysteine 0.686 0.705

SID tryptophan 0.241 0.230

SID threonine 0.750 0.761

Crude protein 16.67 17.72

Crude fiber 2.98 3.14

Ash 4.72 4.74

Neutral detergent fiber 11.3 11.7

Sodium 0.24 0.22

Chloride 0.45 0.44

Calcium 0.55 0.59

Phosphorus 0.55 0.55

Copper, mg/kg (as SO4) 150 150

Manganese, mg/kg (as MnO) 50 50

Zinc, mg/kg (as ZnO) 105 105
1blend of free and buffered organic acids; 2gluten meal, extruded soybean meal, potato protein;
3Vitamin and mineral premix provided the following per kilogram of diet: vitamin A, 15,000
IU; vitamin D, 2000 IU; vitamin E, 100 IU; 30 mg of vitamin B12; vitamin K, 2 mg; D-
pantothenic acid 15 mg as calcium pantothenate; 30 mg of nicotinic acid; choline, 150 mg as
betaine hydrochloride; Mn, 50 mg as manganese oxide; Zn, 105 mg as zinc oxide; Fe, 100 mg
as iron sulphate; Cu, 120 mg as copper sulphate; I, 1.5 mg as potassium iodide; Se, 0.42 mg as
sodium selenite; 6-phytase 1500 FTU. 4Nutrient levels are calculated. SID means standardized
ileal digestible.
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3.2 Intestinal histomorphometry

The length of villi and V/C ratio in ileal tissue was higher on day

15 for PFX compared to control (P < 0.05). On day 30 in jejunal tissue

the villous length tended (P < 0.10) to be higher in PFX compared to

control. In ileal tissue the both the villous length as well as the V/C

ratio tended to be higher in PFX treatment (P < 0.10). On day 45 a

higher villous length in ileal tissue (P < 0.05) was observed for PFX

compared to control (Figure 1).

On day 15 and 30, the gene expression of occludin in jejunal and

ileal tissue was lower in PFX compared to control, as well as a lower

gene expression of claudin in the ileum (P < 0.05). On day 45, a
Frontiers in Animal Science 04
lower gene expression of occludin (P < 0.05) in ileal tissue for PFX

compared to control was observed (Figure 2).
3.3 Cytokine gene expression in tissues

On day 15 in jejunum, a higher gene expression was observed

for IFN-a and TGF-b, with IFN-g and IL-10 being lower in gene

expression in PFX compared to control (P < 0.05). The expression

of IL-1a and IL-8 tended to be higher for PFX compared to control

(P < 0.01). In ileum tissue on day 15, expression of IL-1a, IL-6, IL-
12p40 and TGF-b was increased and IFN-g expression was lower in
TABLE 2 Primers of the cytokines IFN-a, IFN-g, IL-1a, IL-1b, IL-6, IL-8, IL-10, IL-12p35, IL-12p40, TNF-a and TGF-b and primers of glyceraldehyde-3-
phosphatedehydrogenase (GAPDH), cyclophilin and b-actin and primers for tight junctions occludin (OCL), zonulin 1 (ZO1), claudin (CLAU) and
Calprotectin (CAL).

Gene Primer forward (5’ → 3’) Primer reverse (5’ → 3’) References

IL-1a 5´- GTGCTCAAAACGAAGACGAACC-3´ 5’-CATATTGCCATGCTTTTCCCAGAA-3´ (Verpoest et al., 2017)

IL-1b 5´-AACGTGCAGTCTATGGAGT-3´ 5’-GAACACCACTTCTCTCTTCA-3´ (Borca et al., 2008)

IL-6 5’-CTGGCAGAAAACAACCTGAACC-3´ 5’-TGATTCTCATCAAGCAGGTCTCC-3´ (Borca et al., 2008)

IL-8 5´- GCTCTCTGTGAGGCTGCAGTTC-3´ 5’-AAGGTGTGGAATGCGTATTTATGC-3´ (Bracarense et al., 2012)

IL-10 5’-TGAGAACAGCTGCATCCACTTC-3’ 5’-TCTGGTCCTTCGTTTGAAAGAAA-3’ (Royaee et al., 2004)

IL-12p35 5’-AGTTCCAGGCCATGAATGCA-3’ 5’-TGGCACAGTCTCACTGTTGA-3’ (Moue et al., 2008)

IL-12p40 5’-TTTCAGACCCGACGAACTCT-3’ 5’-CATTGGGGTACCAGTCCAAC-3’ (Kim et al., 2010)

IFN-a 5’-CCCCTGTGCCTGGGAGAT-3’ 5’-AGGTTTCTGGAGGAAGAGAAGGA-3’ (Moue et al., 2008)

IFN-g 5’-TGGTAGCTCTGGGAAACTGAATG-3’ 5’-GGCTTTGCGCTGGATCTG-3’ (Royaee et al., 2004)

TNF-a 5’-ACTCGGAACCTCATGGACAG-3’ 5’-AGGGGTGAGTCAGTGTGACC-3’ (Gabler et al., 2008)

TGF-b 5’-CACGTGGAGCTATACCAGAA-3’ 5’-TCCGGTGACATCAAAGGACA-3’ (Moue et al., 2008)

b-actin 5´-CTACGTCGCCCTGGACTTC-3´ 5´-GATGCCGCAGGATTCCAT-3´ (Skovgaard et al., 2009)

Cyclophilin 5´-TGCTTTCACAGAATAATTCCAGGATTTA-3´ 5´-GACTTGCCACCAGTGCCATTA-3´ (Duvigneau et al., 2005)

GAPDH 5´-ACATGGCCTCCAAGGAGTAAGA-3´ 5´-GATCGAGTTGGGGCTGTGACT-3´ (Duvigneau et al., 2005)

CAL 5’-AATTACCACGCCATCTACGC-3’ 5’ -TGATGTCCAGCTCTTTGAACC-3’ (Ramis et al., 2022)

OCL 5’-TTGCTGTGAAAACTCGAAGC-3’ 5’-CCACTCTCTCCGCATAGTCC-3’ (Ramis et al., 2022)

ZO1 5’-CACAGATGCCACAGATGACAG-3’ 5’-AGTGATAGCGAACCATGTGC-3’ (Ramis et al., 2022)

CLAU 5’-ACCCCAGTCAATGCCAGATA-3’ 5’-GGCGAAGGTTTTGGATAGG-3’ (Ramis et al., 2022)
TABLE 3 Effect of treatment PFX on zootechnical performance parameters at days 15, 30, and 45 after weaning.

Parameter Control PFX SEM1 p-value

Body weight, kg

Day 0 5.23 5.59 0.172 0.135

Day 15 8.21 9.73 0.588 0.076

Day 30 12.3 14.5 0.665 0.025

Day 45 17.9 22.5 1.44 0.035

Average daily gain, g/d

Day 0-15 154 217 319 0.171

Day 0-30 250 287 135 0.059

Day 0-45 295 362 241 0.066
1Standard error of the mean.
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PFX compared to control (P < 0.05). In colon tissue, expression of

IL-1a and TGF-b tended to be higher in PFX compared to control

(P < 0.10). In PBMC on day 15, a significant higher expression of

IFN-a, IL-12p35 and IL-12p40 was shown in PFX compared to

control (P < 0.05). Furthermore, a tendency for higher expression

were shown Il-6 in PFX treatment compared to control

(P < 0.10; Figure 3).

On day 30, a tendency was observed for a lower expression

(P < 0.10) expression of IFN-g in the jejunum of piglets receiving

PFX. In the ileum PFX tended to lower the expression of IL-6

(P < 0.10). In colon tissue the expression of TNF-a was higher in

PFX treatment compared to control (P < 0.05), while IL-1a gene

expression tended to be lower (P < 0.10). In PBMC, a lower

expression for IFN-a and a higher expression for IL-12p35 was

observed for PFX compared to control (P < 0.05).

On day 45, lower IFN-a, IFN-g, IL-1a and TGF-b expression in

the jejunum (P < 0.05) was observed, and a tendency for a higher

expression of IL-6 (P < 0.10). In the ileum IL-10 and Il-12p40

expression tended to be higher (P < 0.10). In colon tissue a lower

IL-8, IL-10, IL-12p40 and TGF-b expression (P < 0.05) and a

tendency (P < 0.10) for a lower IFN-a and TNF-a expression for

PFX compared to control was observed on day 45. Furthermore, in

PBMC, IFN-g and TNF-a expression was higher (P < 0.05) in PFX
Frontiers in Animal Science 05
compared to control, with a tendency for a higher expression of

IL-1a.
3.4 Principal component analysis

Principle component analysis (PCA) of gene expression of tight

junction proteins and cytokines in jejunum and ileum tissue

revealed a total variance of 70.6% explained by 2 factors of 36.6%

and 34.0%, respectively (Figure 4). Based on the plot of scores and

eigen vectors, Factor 1 (x axis), consisting of occludin, zonulin-1

and claudin in jejunum tissue and occludin in ileum, grouped

together with IFN-g, IL-12p35, IL-12p40, TNF-a, IL-10 and IL-6 in

jejunum tissue. Within Principal Component Factor 2 (y axis), tight

junction protein abundance of zonulin-1, claudin and occludin in

ileum tissue, and zonulin-1 and occludin in jejunum tissue appear

to be more central in the scatter plot. Cytokines IL-1a, IL-1b and

IL-8 in jejunum and IL-1a and IL-1b in ileum tissue are more

extreme, explaining more of the variance.

The most opposing components in Factor 1 (x axis) are IL-10 in

jejunum, grouped with occludin, claudin, IL-12p40, IFN-g and

TNF-a in jejunum, contrasted against IL-6, IL-12p35, IL-12p40

and zonulin-1 in the ileum. In Factor 2 (y axis), IL-1a in jejunum
B

A

FIGURE 1

Effect of treatment PFX on intestinal histomorphometry in jejunum (A) and ileum (B) measurements in tissue of piglets at days 15, 30, and 45 after
weaning, V/C means the ratio between villous length and crypt depth. Bars represent group mean, and whiskers depict standard deviation from the
mean. (*) denotes significant difference (P < 0.05) and (·) denotes tendency (P < 0.10) of piglets receiving PFX compared to control.
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and ileum grouped with occludin in jejunum and ileum and IL-10

in jejunum, contrasted against a group consisting of IL-8 in jejunum

and ileum, IL-1b jejunum and ileum and IFN-a in ileum.
3.5 Partial least squares regression

Partial Least Square analysis of expression of tight junction

proteins and cytokine gene expression in jejunum and ileum tissue

conducted reveals that occludin expression in jejunum and ileum

accounts for the highest percentage of the variability in the 6

responses model (Figure 5). Tight junction protein expression is

explained primarily by time, and by IL-10 in jejunum (x axis as

Factor 1) and by IL-6 and IFN-a in jejunum (y axis as Factor 2),

which are then organized as the scores in 4 concentric circles

(clouds; Figure 5).

Immune parameter responses also partly explain tight junction

gene expression variance and appear clustered by time, tissue, or the

combination thereof. More specifically, IL-12p35 in jejunum

clusters with occludin, zonulin-1 in jejunum and occludin and

claudin in ileum, together with time 0 (1-day after weaning). IL-1a
and IL-12p40 in jejunum cluster with claudin in jejunum.
4 Discussion

Weaning is a stressful period in a piglet’s life which has been

reported to impair the intestinal architecture and function, leading
Frontiers in Animal Science 06
to gut-associated disorders and diarrhea (Wijtten et al., 2011; Hu

et al., 2013; McLamb et al., 2013). Low feed intake immediately after

weaning could be attributed as the main responsibility for gut

morphological alterations such as villous atrophy (Wiese et al.,

2003), resulting in a lower absorption of nutrients and reduced

energy available for growth.

In the current study, the use of a blend of short and medium

chain fatty acids, including butyrate, increased body weights of

piglets on day 30 and 45 after weaning, and improved intestinal

morphology, measured by villous length and v/c ratio, on day 15, 30

and 45. The villous height has a important effect on the intestinal

structure, and may be reduced to 75% compared to pre-weaning

structures within 24 h of weaning at 21 days of age (Hampson,

1986). Damage to the intestinal integrity of morphology has been

reported after weaning, where the most serious damage to the

intestinal barrier occurred from day 3 to 5 after weaning (Mei and

Xu, 2005; Xiao et al., 2014). The intestinal mucosa is able to repair

itself rapidly after damage (Sangild et al., 2000), with Hu et al.

(2013) suggesting that villous height and crypt depth returned to

pre-weaning values on day 14 after weaning. Studies can show an

increase in cell proliferation to repair the damaged intestinal

epithelium and others show a decrease in cell proliferation due to

changes in cell expressions (Steeb et al., 1995; Yang et al., 2013).

These divergent results may be due to the differences in the time of

sample collection. Due to the lack of pre-weaning data on intestinal

morphology in current study, it is not possible to show the effects of

weaning on these parameters. However, data demonstrates that the

use of the acid blend increased villous length in jejunum and ileum,
B

A

FIGURE 2

Effects of treatment PFX on tight junction protein expression (calprotectin, Occludin, Zonulin 1 (ZO-1) and Claudin) in tissues of piglets at days 15,
30, and 45 after weaning. Gene expression data is reported as fold change from PFX samples using the control as reference. Bars represent relative
difference in upregulation or downregulation of gene expression of tight junction proteins; whiskers depict standard deviation from the mean.
(*) denotes significant difference (P < 0.05) in jejunum (A) and ileum (B) of piglets receiving PFX compared to control.
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along with an improved v/c ratio in the ileum, implying a potential

increased nutrient absorption capacity of the GIT. It needs be taken

in account that weaning is known to change the intestinal

morphology, caused by the changes in feed intake pattern and a

decrease in intake after weaning (Pluske et al., 1997; Moeser et al.

2007a), effects that are not studied separately in current study. The

potential increased villous length could be caused by an increase in

feed intake, however further research is needed to prove

this hypothesis.

Several nutritional strategies have been adopted to improve gut

health and maximize the production of weaned pigs (Lallès et al., 2004;

Domeneghini et al., 2006; Liu et al., 2018) with different aims. One of

them is to improve nutrient digestion and absorption, as well as

optimizing intestinal integrity of weaned pigs and potentially alleviate

the detrimental effects of weaning on GIT barrier integrity (Modina

et al., 2019). The use of organic acids, which are broadly distributed in

nature as elements of plant or animal tissue, is one of those nutritional

strategies. Organic acids are also produced by the microbial

fermentation of carbohydrates, predominantly in the large intestine of

pigs. If used as animal feed supplements, with the right doses, they can

contribute to improved growth performance and reduced colonization

of pathogens in the intestine (Partanen and Mroz, 1999). Important to

mention is that free acids are easily absorbed early on in the

gastrointestinal tract, therefor certain protection mechanisms are used

such as encapsulation or coatings to assure the target point of release is

reached. The product used in this study contains butyric acids in the
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form of salts by binding them to sodium and calcium. Another example

is the use of alkyl esters in MCFAs, which can reach lower parts of the

gastrointestinal tract than free MCFAs or triglycerides because they

need a different pH or a different enzyme activity to be broken down

(Hedemann et al., 2003; Pereira et al., 2023).

In commercial practice, piglets are weaned early, which means

that their intestine has limited digestive and absorption capacities,

mainly caused by insufficient production of hydrochloric acid,

pancreatic enzymes and therefore the sudden changes in the

consistency and intake of feed is a major challenge (Cranwell,

1985). Therefore organic acids are frequently used after weaning

in piglets (Suiryanrayna and Ramana, 2015). Besides the effect in

the feed, there is direct or indirect action of organic acids on the

mucosa of the GIT, mostly on the mucosa of the large intestine

(Sakata, 1987; Sakata et al., 1995). Similar to current study, Long

et al. (2018) observed an increase in villous height and the ratio of

villous height to crypt depth in the jejunum and ileum in piglets fed

PFX after weaning. Increased villous height in butyrate-

supplemented weaned pigs have been observed in previous

studies (Piva et al., 2002; Kotunia et al., 2004; Shen et al., 2009;

Tonel et al., 2010). Mroz et al. (2000) reported that pigs fed with

sodium butyrate showed proliferation of ileal microvilli cells as well

as increases in the length of the microvilli, resulting in higher villous

height, which is consistent with the effect in the present research.

Another example of a nutritional strategy is the use of other

types of organic acids, being MCFAs, as they can improve growth
B

C

A

FIGURE 3

Effects of treatment PFX on cytokine expression in intestinal tissue and PBMC of piglets at days 15, 30, and 45 after weaning. Gene expression data is
reported as fold change from PFX samples using the control as reference. Bars represent relative difference in upregulation or downregulation of
gene expression cytokines; whiskers depict standard deviation from the mean. (*) denotes significant difference (P < 0.05) and (·) denotes tendency
(P < 0.10) on day 15 (A), day 30 (B) and day 45 (C) of piglets receiving PFX compared to control.
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performance in weaned piglets (Zentek et al., 2011) and have broad-

spectrum antibacterial effects (Marounek et al., 2012). Previous

studies have shown that a blend of MCFA and SCFA can be utilized

by enterocytes as energy sources and can attenuate the negative

effects of weaning on villous length and crypt depth in pigs (Lee

et al., 2007), as well as improve growth performance (Zentek et al.,

2011; Han et al., 2018; Li et al., 2018; Long et al., 2018). The effect of

using a mixture of acids (as the blend used in this study) is generally

better than that of a single acid due to synergism and their

dissociation properties at different locations within the digestive

tract (Huang et al., 2015). Fumaric acid, lactic acid, capric acid and

caprylic acids didn’t prove to have an effect on the morphometry of

jejunum in piglets (Ferrara et al., 2017). In the same study an

increasing number of potential effector cells (principally CD3+

cytotoxic T lymphocytes) was found. Similar analyses were not

performed in current study.

Similar to intestinal morphology results in current study,

improvements in intestinal morphology were observed in piglets

after a gastric infusion of SCFA (acetic, propionic and butyric

acids). Coinciding with this reported intestinal morphology

improvement, the SCFA infusion also increased the relative

mRNA expression of claudin-1 in the jejunum, and occludin and
Frontiers in Animal Science 08
claudin-1 in the duodenum and ileum (Diao et al., 2019). The

positive effect on TJ protein expression was demonstrated by in

vitro studies on Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2)

cultured in increasing doses of butyrate (Ma et al., 2012),

reconfirmed in vivo with a general upregulation of occludin after

butyrate administration, mainly in the small intestine. The same

authors, however, observed that butyrate caused a down-regulation

of claudin-1 in the small intestine of weaned pigs (Grilli et al., 2016).

SCFA and especially butyrate and propionate are known to regulate

cellular function and regulate the immune response by acting as

histone deacetylase (HDAC) inhibitor (Zou et al., 2021). This has

been shown by reducing cytokine production and NO after

treatment with a HDAC inhibitor (Chang et al., 2014), similar

results have been found in this study. Furthermore, the current

study demonstrated a downregulation of gene expression of claudin

1 and occludin in the ileum and jejunum of piglets receiving a blend

of SCFA and MCFA, including butyrate, while an improved

intestinal morphology is observed at the same tissue locations.

Some differences could be explained by a direct and indirect effect

of organic acids on the expression of tight junctions and the gut

barrier integrity. For example caprylic (C8), capric (C10), and lauric

(C12) acids have been investigated as enhancers of drug absorption
FIGURE 4

Principal component analysis for tight junction protein1 gene expression and cytokine2 gene expression in jejunum (J) and ileum (I) tissue. Data
combines piglets at day 1 after weaning (n= 9), at 15 days after weaning (n= 10), at 30 days after weaning (n = 18) and at 45 days after weaning (n = 21)
for both control as treatment group. 1mRNA expression (log2) of tight junction protein occludin (OCLD), claudin (CLAU) and zonulin-1 (ZON1). 2mRNA
expression (log2) of 11 cytokines: interleukin IL-1a (IL1a), IL-1b (IL1b), IL-6 (IL6), IL-8 (IL8), IL-10 (IL10), IL-12p35 (IL12a), IL-12p40 (IL12b), tumor necrosis
factor alpha (TNFa), interferon alpha and gamma (IFNa and IFNg), transforming growth factor beta (TGFb).
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via the TJ pathway (Lindmark et al., 1995; Suzuki, 2020). This

mechanism requires further study. In Caco-2 cells, C10 and C12

enhance TJ permeability by activating protein kinase C (PKC) and

MLCK. The C10 effect also involves phospholipase C activation and

ZO-1 redistribution. In current study no analyses were done in

colon tissue, nor was the design of the study adequate to analyse

effect of individual type of acids, therefore further study

is necessary.

The GIT is acting as a large and important barrier between

external environment and the organism. The permeability of the

intestinal barrier is regulated by tight junctions (TJ), structures that

are composed of membrane proteins such as Zona occludens (ZO),

occludin and claudins (Edelblum and Turner, 2009; Groschwitz and

Hogan, 2009; Turner, 2009; Marchiando et al., 2010b). These

membrane proteins regulate the permeability of the epithelium

through the “gate function”, selecting the epithelial ions and

modulating pore size. Wang et al. (2016) found the mRNA

abundances of occludin as well as occludin and ZO-1 protein in

the jejunum and ileum decreased 3 and 5 days after weaning,

indicating an impairment of the intestinal barrier. Similarly, Hu
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et al. (2013) and Xiao et al. (2014), demonstrated that TJ protein

levels were decreased on day 3 and/or day 7 after weaning. Another

example of disruption of intestinal cell tight junction proteins is the

stress of heat and oxidative damage, resulting in increased

permeability to luminal endotoxins (Zuhl et al., 2014). Wang

et al. (2016) found lower abundances of different jejunal TJ

proteins of weaned piglets than those in suckling piglets at 21

days of age.

The cytokine expression and its effects on the TJ barrier can

result in immune activation and tissue inflammation, and

subsequently important in the initiation and/or development of

several intestinal and systemic diseases (Turner, 2009). Other

growth factors might play a role in protection and maintenance

of TJ integrity (Capaldo and Nusrat, 2009), such as interferon-g
(Bruewer et al., 2005), TNF-a (Ma et al., 2005; Schulzke et al., 2006;

Mankertz et al., 2009), IL-1b (Dinarello, 1994; Al-Sadi and Ma,

2007; Al-Sadi et al., 2009), IL-6 (Suzuki et al, 2011). Its expression

can impair or disrupt the TJ regulation, thereby increasing

permeability, while IL-10 opposes the cellular functions induced

by TNF-a and IFN-g (Kucharzik et al., 2001; Sun et al., 2008),
FIGURE 5

Partial least square regression (PLS) and two extracted factors for variance of tight junction protein1 gene expression in jejunum and ileum explained
by time (time 0 = day 1 after weaning, time 1 = day 15 after weaning, time 2 = day 30 after weaning, time 3 = day 45 after weaning), mRNA
expression of 11 immune biomarkers2 from jejunum and ileum. Data combines piglets at day 1 after weaning (n = 9), at 15 days after weaning
(n = 20), at 30 days after weaning (n = 18) and at 45 days after weaning (n = 21). 1mRNA expression (log2) of tight junction proteins occludin (OCLD),
claudin (CLAU) and zonulin-1 (ZON1). 2mRNA expression (log2) of 11 cytokines: interleukin IL-1a (IL1a), IL-1b (IL1b), IL-6 (IL6), IL-8 (IL8), IL-10 (IL10),
IL-12p35 (IL12a), IL-12p40 (IL12b), tumor necrosis factor alpha (TNFa), interferon alpha and gamma (IFNa and IFNg), transforming growth factor beta
(TGFb) for jejunum and ileum.
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suggesting that IL-10 has a role in the protection of the intestinal

barrier, similarly for TGF-ß (Howe et al., 2005). Interestingly, the

current study demonstrated in piglets fed with PFX a

downregulation of IFN-g in jejunum tissue, during day 15, 30 and

45, a cytokine that is known to impair or disrupt the TJ regulation.

This higher level of IFN-g is coinciding with a lower level of IL-10 in
jejunum on day 15, showing their interrelation. Furthermore TGF-

ß expression has been increased in jejunum and ileum tissue on day

15 and 30, a cytokine with protective or promotive effects on

intestinal barrier function. Interestingly, at the same time at day

15 and 30 a lower expression of occludin and claudin-1 is observed

at the same timepoints in jejunum and ileum tissue.

Correlation analysis in current study demonstrated a clustering

of tight junction gene expression in jejunum tissue with cytokines

expression IFN-g, IL-12p35, IL-12p40, TNF-a, IL-10 and IL-6 in

jejunum tissue, while expression in ileum tissue clustered with IL-

1a and IL-1b in jejunum and ileum tissue. IL-10, an anti-

inflammatory cytokine and mentioned as a cytokine that opposes

the cellular functions induced by TNF-a and IFN-g seems one of the

most contrasting cytokines and explaining most of the variation in

the regression analyses. A possible explanation of the lower

expression of tight junction genes in PFX could be explained by

the effect of IL-10 in reducing the inflammation by opposing TNF-a

and IFN-g, thereby causing less damage to the tight junction

proteins and lower gene expression of these proteins. However,

this hypothesis needs more investigation. A clear limitation in this

study is the lack of functional analysis before weaning to compare

before and after, and also a shorter timeframe in post-weaning

analysis. By day 15 the intestine could have recovered from the

damage and differences can be more difficult to notice.

In post-weaning piglets, using a feed additive based on different

types of organic acids can improve intestinal morphology,

measured by villous length and v/c ratio, reduced expression of

tight junction proteins and influenced cytokine production in the

intestine, implicating these components can potentially reduce

damage caused by weaning to the intestinal barrier and due to

the higher absorption capacity of the villi potentially improve

nutrient absorption. Further research is needed to confirm

these findings.
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Pereira, E., Fernandes, J.-M., Gonçalves, R., Pinheiro, A. C., Duarte, M. S., Alves, M.
M., et al. (2023). Evaluating the in vitro digestion of lipids rich in medium-chain fatty
acids (MCFAs) using dynamic and static protocols. Food Chem. 406, 135080.
doi: 10.1016/j.foodchem.2022.135080
frontiersin.org

https://doi.org/10.1096/fj.04-3260com
https://doi.org/10.1016/j.bbamem.2008.08.027
https://doi.org/10.1016/j.bbamem.2008.08.027
https://doi.org/10.1073/pnas.1322269111
https://doi.org/10.1079/BJN19850113
https://doi.org/10.1093/jas/skab065
https://doi.org/10.1186/s12263-019-0626-x
https://doi.org/10.14670/HH-21.273
https://doi.org/10.1016/j.jim.2005.06.021
https://doi.org/10.1016/S0966-842X(00)88894-0
https://doi.org/10.1016/j.coph.2009.06.022
https://doi.org/10.1016/j.coph.2009.06.022
https://doi.org/10.1111/jpn.12490
https://doi.org/10.1016/j.jnutbio.2006.11.014
https://doi.org/10.2527/jas.2015-9787
https://doi.org/10.1016/j.jaci.2009.05.038
https://doi.org/10.1016/S0034-5288(18)30482-X
https://doi.org/10.1016/j.livsci.2018.08.013
https://doi.org/10.1046/j.1439-0396.2003.00405.x
https://doi.org/10.1016/S0002-9440(10)61243-6
https://doi.org/10.1016/S0002-9440(10)61243-6
https://doi.org/10.2527/jas.2012-5796
https://doi.org/10.3945/jn.115.217406
https://doi.org/10.1016/j.jnutbio.2009.01.019
https://doi.org/10.1016/j.jnutbio.2009.01.019
https://doi.org/10.1046/j.1365-2249.1998.00481.x
https://doi.org/10.1051/animres:2004018
https://doi.org/10.1111/j.1439-0396.2007.00684.x
https://doi.org/10.1093/jas/sky197
https://doi.org/10.1016/j.aninu.2018.01.007
https://doi.org/10.1016/j.anifeedsci.2017.08.018
https://doi.org/10.1152/ajpgi.00412.2004
https://doi.org/10.2527/jas.50965
https://doi.org/10.1007/s00441-009-0751-8
https://doi.org/10.1007/s00441-009-0751-8
https://doi.org/10.1146/annurev.pathol.4.110807.092135
https://doi.org/10.1146/annurev.pathol.4.110807.092135
https://doi.org/10.1083/jcb.200902153
https://doi.org/10.17221/433/2011-CJFS
https://doi.org/10.1371/journal.pone.0059838
https://doi.org/10.1079/bjn20041302
https://doi.org/10.3390/ani9121045
https://doi.org/10.1152/ajpgi.00197.2006
https://doi.org/10.1152/ajpgi.00304.2006
https://doi.org/10.1016/j.bbagen.2007.11.006
https://doi.org/10.2527/2000.78102622x
https://doi.org/10.3920/978-90-8686-792-9
https://doi.org/10.1079/095442299108728884
https://doi.org/10.1016/j.foodchem.2022.135080
https://doi.org/10.3389/fanim.2024.1308514
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


de Groot et al. 10.3389/fanim.2024.1308514
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