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and the bovine preovulatory
follicular fluid metabolome
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Jessica L. Klabnik1†, Rebecca R. Payton1, F. Neal Schrick1,
Shawn R. Campagna2 and J. Lannett Edwards1*

1Department of Animal Science, The University of Tennessee Institute of Agriculture and AgResearch,
Knoxville, TN, United States, 2Department of Chemistry, University of Tennessee Knoxville, Knoxville,
TN, United States
Introduction: A higher estrus-associated temperature (HEAT) is a hallmark

feature in sexually active females; however, its functional importance is

unclear. Our objective was to examine the relationship between HEAT and the

preovulatory follicular fluid metabolome. It was hypothesized that HEAT is

functionally important as it affects fertility-related components in the

preovulatory follicle.

Methods: Estrus was synchronized in non-lactating Jersey cows. A

Thermochron iButton temperature data logger was affixed to blank controlled

internal drug release (CIDR) devices and intravaginally inserted after CIDR device

removal. The follicular fluid was aspirated 14.9 h + 3.3 h after an animal first stood

to bemounted. Regressionmodels were performed usingmetabolite abundance

and HEAT variables. Best-fit models were determined using backward manual

selection (p < 0.05).

Results: A total of 86 metabolites were identified in cow follicular fluid samples.

The vaginal temperature at first mount and when it was expressed as a change

from baseline was positively related to the abundance of four metabolites (i.e.,

taurine, sn-glycerol 3-phosphate, glycine, and cysteine) and negatively related to

one metabolite (i.e., serine). The vaginal temperature at the first standing mount

was related to the differential abundance of two metabolites (i.e., jasmonate and

N-carbamoyl-L-aspartate). Three metabolites were related to the maximum

vaginal temperature ( i .e . , N-carbamoyl-L-aspartate, uraci l , and

glycodeoxycholate). When expressed as a change from baseline, the maximum

vaginal temperature was related to the differential abundances of uracil, uric acid,

and 6-phospho-D-gluconate. The time taken to reach maximum vaginal

temperature was related to N-carbamoyl-L-aspartate, glycodeoxycholate,

jasmonate, and tricarballylic acid. Pertaining to the combination of HEAT and its

duration, the area under the curve associated with the time between the first

increase in vaginal temperature and themaximum vaginal temperature was related

to 6-phospho-D-gluconate, sulfolactate, guanidoacetic acid, and aspartate. The

area under the curve associated with the time between the initial vaginal

temperature increase and up to 10 h after a cow first stood to be mounted or
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when a cow’s temperature returned to baseline was related to the differential

abundances of uracil, sn-glycerol 3-phosphate, methionine sulfoxide, and

taurodeoxycholate.

Discussion: Our findings support the notion that HEAT is related to changes in

the preovulatory follicular fluid metabolites involved in energy metabolism,

thermoregulation, and oxidative stress management.
KEYWORDS

estrus, vaginal temperature, HEAT, metabolome, follicular fluid, preovulatory
follicle, bovine
1 Introduction

Although the basis of fertility in cattle is multifaceted, events

occurring at or around estrus are essential for reproductive success.

Estrus signifies the major endocrine transition in which the

preovulatory follicle prepares for ovulation. To this end, the

estradiol-induced gonadotropin-releasing hormone (GnRH)—

luteinizing hormone (LH) surge (Stumpf et al., 1991) sets the stage

for ovulation 24 h to 30 h thereafter (Malhi et al., 2005; Saumande and

Humblot, 2005; Ginther et al., 2013). The mural granulosa undergoes

luteinization (i.e., the beginnings of corpus luteum formation) and the

oocyte contained within the preovulatory follicle undergoes meiotic

resumption and progression to metaphase II (Smith et al., 1994;

Duggavathi and Murphy, 2009).

Increasing estradiol levels during the follicular phase of the estrous

cycle underlie much of the behavioral changes leading up to and during

estrus (Lyimo et al., 2000). Female cattle approaching estrus become

restless, may walk up to four times more than those not exhibiting

estrus, and interact with others forming sexually active groups (Kiddy,

1977; Diskin and Sreenan, 2000; Sveberg et al., 2013). Other secondary

signs of estrus activity include, but are not limited to, chin-resting, head

butting, and vulva sniffing (Kerbrat and Disenhaus, 2004). The most

definitive sign of estrus, however, is the willingness of a female to stand

to be mounted by another cow. Interestingly, several studies report a

positive relationship between the level of activity in an estrual female

and the probability of pregnancy outcome (López-Gatius et al., 2005;

Madureira et al., 2015; Madureira et al., 2019; Tippenhauer et al., 2023).

Increased body temperature is another hallmark feature of

estrus-active females, even under thermoneutral environmental

conditions (Piccione et al., 2003; Sakatani et al., 2016). Higher

estrus-associated temperatures (HEAT) may range from 0.3°C to

1.3°C or greater above the baseline (Redden et al., 1993; Kyle et al.,

1998; Piccione et al., 2003; Fisher et al., 2008; Suthar et al., 2011;

Randi et al., 2018). An estrus-related increase in body temperature

is short in duration (5 h to 18 h; Redden et al., 1993; Kyle et al., 1998;

Sakatani et al., 2016); it typically occurs around the LH surge and

persists for several hours thereafter (Fisher et al., 2008; Miura et al.,
02
2017). In addition to being an informative indicator of estrus

(Redden et al., 1993; Sakatani et al., 2016), varying levels of

HEAT may be functionally relevant.

In support of HEAT’s functional impact on fertility important

events specific to the cumulus–oocyte complex, an acute, but short

episode of exposure at 41°C for 4 h to 6 h in vitro, induces germinal

vesicle breakdown earlier than in thermoneutral controls (Edwards

et al., 2005; Hooper et al., 2015) without compromising embryo

development after fertilization (Rowinski et al., 2021). In terms of

impacts on other preovulatory follicle components, two transcripts

(i.e., calreticulin and serpin family F member 2) in granulosa cells

have been shown by others to potentiate ovulation (Tsafriri et al.,

1989; Tokuhiro et al., 2015). These transcripts were upregulated by

vary ing degrees o f hyper thermia occurr ing a f t e r a

pharmacologically induced LH surge (Klabnik et al., 2022).

Calreticulin can enhance the binding of bradykinin to its receptor

(reviewed in Bedard et al., 2005). Interestingly, higher bradykinin

levels were noted in the preovulatory follicular fluid of the same

cows exhibiting varying levels of hyperthermia, from which the

granulosa samples (Klabnik et al., 2022) were collected (Rispoli

et al., 2019). Bradykinin has been shown to potentiate follicular

rupture in other species (Yoshimura et al., 1988; Hellberg

et al., 1991).

Follicular fluid provides the necessary substrates for follicle

growth and progression, oocyte developmental competence, and

subsequent embryo viability (Leroy et al., 2011; Sirard, 2011). The

differences in follicular fluid metabolome profiles have recently

been associated with fertility, follicle maturity, or follicle

progression after the onset of estrus (Read et al., 2021; Read et al.,

2022; Hessock et al., 2023). Although changes in milk, serum, and

urine metabolome profiles have been noted in cattle experiencing

elevated body temperature resulting from chronic heat stress (Liao

et al., 2018; Yue et al., 2020), it remains unclear whether an acute

episode of HEAT is associated with changes in the follicular fluid

metabolome of the preovulatory follicle. Thus, the objective of this

study was to examine the relationship between HEAT and the

preovulatory follicular fluid metabolome.
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2 Materials and methods

2.1 Animals and synchronization protocol

Animal use during this study occurred during the month of May.

Institutional animal care and use approval at the University of

Tennessee, Knoxville, TN, USA, was obtained before the onset of

this study. Non-lactating Jersey cows located at a University of

Tennessee AgResearch and Education Center grazed the same

fescue-based pasture and were provided ad libitum access to

minerals (Burkmann Nutrition; Danville, KY, USA). Cows ranged in

age from 2.5 years to 7.7 years (5.1 years ± 1.4 years), weighed between

365.6 kg and 585.1 kg (508.3 kg ± 61.6 kg), and had a body condition

score ranging from 2.5 to 3.5 (3.1 ± 0.4). Toward the synchronization of

a first wave dominant–preovulatory follicle (Figure 1), GnRH was

administered (Cystorelin®; 100 µg; i.m.; Boehringer Ingelheim;

Ingelheim am Rhein, Germany) and a controlled internal drug

release (CIDR) device was placed intravaginally (1.38 g progesterone;

Eazi-Breed CIDR; Zoetis Animal Health, Kalamazoo, MI, USA). Nine

days later, the CIDR device was removed and prostaglandin F2a
(PGF2a; 12.5 mg of dinoprost tromethamine/mL Lutalyse®
HighCon; Zoetis Animal Health, Kalamazoo, MI, USA) was

administered. GnRH was administered 48 hours after PGF2a (when

progesterone levels were < 1 ng/mL; Supplementary Figure 1) and a

new CIDR device was inserted. PGF2a was administered 7 days later,

after CIDR device removal. The cattle were visually monitored for

behavioral signs of estrus; this took place every 4 h after PGF2a
administration and continued until a cow displayed estrus activity (~

31 h after PGF2a). Thereafter, cows were continually monitored by a

team of individuals trained in the visual observation of estrus activity.

The onset of estrus was defined as the first time a cow was observed to

stand to be mounted by another. Of the 16 cows used for this study, 14

exhibited estrus (87.5%).
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2.2 Vaginal and ambient temperature data

Cows’ vaginal temperature was recorded using a Thermochron

iButton™ 1922L data logger (Embedded Data Systems,

Lawrenceburg, KY, USA) affixed to a blank CIDR device (i.e.,

containing no progesterone) consistent with the method

described by Burdick et al. (2012). Cows’ vaginal temperature was

recorded every 3 min (0.5°C resolution), beginning 12 h after PGF2a
administration and continuing until iButton removal, which

occurred immediately before preovulatory follicle aspiration.

During the time when estrus expression was induced, the ambient

temperature and humidity were recorded onsite (hourly) using the

HOBO U23 Pro v2 data logger (Onset Computer Corporation,

Bourne, MA, USA). Data for the ambient temperature and

humidity from the start of the pre-synchronization protocol to

PGF2a administration to induce estrus were collected at a local

meteorological station and averaged every 2 h. The temperature

humidity index (THI) was calculated in accordance with the

method described by Abbott et al. (2018).
2.3 Ovarian ultrasound and follicular
fluid aspiration

The largest follicle diameter (> 7 mm) was recorded at GnRH,

PGF2a, first mount, and follicle aspiration using an IBEX EVO® II

ultrasound and eL7 linear probe (E.I. Medical Imaging, Loveland,

CO, USA; Figure 1). The neat follicular fluid was successfully

collected from the preovulatory follicles of 13 out of the 14 estrus

cows through ultrasound-guided transvaginal aspiration (18-g

needle; Rispoli et al., 2019; Hessock et al., 2023) using a Samsung

HM70A ultrasound and CFA-9 convex probe 14.9 h± 3.3 h after a

cow was first observed to stand to be mounted by another cow.
FIGURE 1

Study schematic depicting synchronization scheme and data collected at each of the different time points relative to when follicle aspiration
occurred. GnRH, gonadotropin-releasing hormone; CIDR, controlled internal drug release; PGF2a, prostaglandin F2a; E2, estradiol; P4, progesterone;
FF, follicular fluid.
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2.4 Serum and follicular fluid
hormone assays

The blood samples were collected from the coccygeal vein/

artery (Figure 1) and processed in accordance with Hessock et al.

(2023) . Serum estradiol (E2) was evaluated using a

radioimmunoassay (Kirby et al., 1997), with intra- and inter-assay

coefficients of variation (CVs) of 3.6% and 6.7%, respectively. The

sensitivity of the serum estradiol assay was 1.03 pg/mL. The

follicular fluid E2 was analyzed using the DetectX® Serum 17b-
Estradiol ELISA Kit (Arbor Assays, Ann Arbor, MI, USA; the

sensitivity was 2.21 pg/mL). The intra- and inter-assay CVs for

the follicular fluid E2 were 1.7% and 7.3%, respectively. The serum

and follicular fluid progesterone (P4) concentrations were measured

using ImmuChem™Double Antibody Radioimmunoassay Kit (MP

Biomedicals, LLC, Orangeburg, NY, USA). The intra- and inter-

assay CVs for serum P4 were 8.0% and 4.2%, respectively; whereas

the follicular fluid progesterone intra- and inter-assay CVs were

4.4% and 5.7%, respectively. The sensitivity of the progesterone

assays was 0.11 ng/mL.
2.5 HEAT data—pertinent variables
of interest

Vaginal temperature, recorded every 3 min, was averaged every

30 min. The HEAT variables of interest are defined in Table 1 and

highlighted in Figure 2. A baseline temperature was calculated for

each cow. The baseline temperature was defined as the average

vaginal temperature of those recorded between the first

temperature, which was taken 12 h after PGF2a, and those

recorded over the next 20 h. An increase in vaginal temperature

related to HEAT was defined as the first time when the vaginal
Frontiers in Animal Science 04
temperature was 0.3°C higher than baseline, with the increase

persisting for 3 h or more (Clapper et al., 1990). Cow vaginal

temperature when first observed to stand to be mounted by another

cow was noted as first mount. The maximum HEAT vaginal

temperature was denoted as VTmax. Both the first mount and

VTmax temperature, when expressed as a change from baseline,

were also considered. The time to VTmax was the number of hours

from the first mount to VTmax. The area under the different

portions of the HEAT curves (AUC1: time when vaginal

temperature first increased to Vmax; AUC2: time when the

vaginal temperature first increased up to 10 h after estrus onset

or when the vaginal temperature returned to baseline) was

calculated for each cow, in accordance with Pruessner et al.

(2003), using the trapezoid formula with the baseline temperature

as a lower limit.
2.6 Metabolome profiling of follicular fluid

Ultra-high-performance liquid chromatography–high

resolution mass spectrometry (UHPLC-HRMS) was performed at

the University of Tennessee Knoxville Biological and Small

Molecule Mass Spectrometry Core Facility [Research Resource

Identifier (RRID):SCR_021368], as previously described by Horn

et al. (2022). In brief, metabolites were extracted from 50 µL of each

follicular fluid sample (n = 13) with a solution of 20: 40: 40 water/

methanol/acetonitrile with 0.1 M formic acid. The metabolites were

then separated on a Synergi Hydro RP, 2.5 mm, 100 mm × 2.0 mm

column (Phenomenex, Torrance, CA, USA). The solvents for the

mobile phase to elute metabolites were (A) 97: 3 methanol to water

with 11 mM tributylamine and 15 mM acetic acid and (B) 100%

methanol. The solvent gradient from 0 min to 5 min was (A) 100%

and (B) 0%; from 5 min to 13 min, it was (A) 80% and (B) 20%;

from 13 min to 15.5 min, it was (A) 45% and (B) 55%; from
TABLE 1 Higher estrus-associated temperature (HEAT) variables of interest.

HEAT variables Definition Range Mean SEM

Baseline1 Average vaginal temperature of those recorded between the first temperature, which was taken 12 h after
PGF2a, and those recorded over the next 20 h

38.0°C to
38.8°C

38.4 0.05

First mount
Cow vaginal temperature when first observed to stand to be mounted by another cow

38.1°C to
39.1°C

38.6 0.1

Change (baseline to
first mount) Change in vaginal temperature: first mount minus the baseline

−0.5°C to
0.5°C

0.1 0.07

VTMax Maximum HEAT vaginal temperature
38.5°C to
40.1°C

39.3 0.1

Change (baseline to
VTMax) Change in vaginal temperature: VTMax minus the baseline

0.2°C to
1.5°C

0.8 0.1

Time to VTMax

Number of hours from first mount to VTMax

0.5 h to 6.0
h

3.0 0.7

AUC1 Area under the curve: time when vaginal temperature first increased* to VTMax 4.5 to 147.1 45.8 12.0

AUC2 Area under the curve: time when vaginal temperature first increased up to 10 h after estrus onset or when
vaginal temperature returned to baseline

53.8 to
209.9

127.9 11.6
frontie
1Data used to calculate the HEAT variables of interest but were not used as an independent variable in the statistical analysis.
*The time when the vaginal temperature increased was defined as the first time when the vaginal temperature was 0.3°C higher than the baseline temperature, with this increased temperature
observed for 3 or more hours thereafter (Clapper et al., 1990).
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15.5 min to19 min, it was (A) 5% and (B) 95%; and from 19 min to

25 min, it was (A) 100% and (B) 0%, with a flow rate of 0.2 mL per

min. The mass spectrometry was performed using an Exactive™

Plus Orbitrap™ mass spectrometer (Thermo Fisher Scientific,

Waltham, MA, USA) fitted with an electrospray ionization probe

operating in negative mode. The scan range was 72000 m/z to 1,000

m/z, with a resolution of 140,000 and an acquisition gain control of

3 × 106 (Greene et al., 2020).

The files generated by HRMS in the Xcalibur® (RAW) format

were converted to an open-source mzML format (msconvert;

ProteoWizard package) and then processed using the

Metabolomic Analysis and Visualization Engine (MAVEN; mzroll

software, Princeton University) for an untargeted analysis of the

full-scan LC-MS data. A group algorithm for non-linear retention

time alignment was used to pick peaks, integrate intensities, and

visualize extracted ion chromatograms. The metabolites were

identified based on peak shape, signal-to-noise ratio, and

retention time. The MAVEN preprocessed peak data were used

for further statistical analysis.
2.7 Statistical analyses

The analyses were conducted using R Studio (version

2023.3.0.386; RStudio Team 2020, Boston, MA, USA). Data were

checked for normality using the Shapiro–Wilk test and log-

transformed when necessary. The outliers identified using the

interquartile range (IQR) method were removed. Supplementary

Table 1 denotes the metabolites that were log-transformed or had

outliers removed for statistical analyses. To examine the

relationship between the different features of HEAT (independent
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variable of interest, e.g., VTMax and other HEAT variables defined

and listed in Table 1) with metabolite abundance (dependent

variable), hierarchical linear regression models were performed

using a backward stepwise approach to derive the best-fit models

for each metabolite. The cow and other related independent

variables used to derive the best-fit models were utilized as

covariates [i.e., variables that may affect response variables but

were not of direct interest in our study; these included cow age,

weight, body condition score (BCS), proestrus length, serum

estradiol and progesterone, follicular fluid E2-to-P4 ratio, follicle

size, and THI]. The covariates were included in the model only if

they were deemed significant in an initial simple linear regression (p

< 0.1). The final models included the HEAT variables of interest

(significant if p-value ≤ 0.05) and the covariates significant at a p-

value < 0.05.
3 Results

3.1 Proestrus length, follicle size, and
ambient conditions

The time from PGF2a to the first observed standing mount (i.e.,

proestrus length) was 43.1 h ± 8.4 h (range 31.1 h–63.9 h). The

preovulatory follicle size at aspiration was 16.2 mm ± 1.3 mm

(range 12.9 mm–18.5 mm). At the time of follicle aspiration, serum

progesterone and estradiol were 0.13 ng/mL ± 0.02 ng/mL (range

0.1 ng/mL–0.37 ng/mL) and 4.42 pg/mL ± 0.74 pg/mL (range 1.03

pg/mL–9.14 pg/mL), respectively. The ambient temperature,

relative humidity, and the THI from the start of the pre-

synchronization protocol through to the time of the final
FIGURE 2

Representative image of the different HEAT variables of interest used to examine the relationship between HEAT and the preovulatory follicular fluid
metabolome. The baseline is the average vaginal temperature of those recorded between the first temperature, which was taken 12 h after PGF2a,
and those recorded over the next 20 h, which was well before HEAT-related increases. A HEAT-related vaginal temperature increase was defined as
the time that the vaginal temperature was 0.3°C higher than the baseline, with this increased temperature observed for 3 or more hours thereafter
(Clapper et al., 1990). First mount: the vaginal temperature when the cow was first observed to stand to be mounted by another cow; △ baseline to
1M: the vaginal temperature at first mount minus the baseline; VTMax: the maximum HEAT vaginal temperature; △ baseline to VTMax: the maximum
vaginal temperature minus the baseline; time to VTMax: hours from first mount to VTMax; AUC1: area under the curve—time when the vaginal
temperature first increased to VTMax; AUC2: area under the curve—time when the vaginal temperature first increased up to 10 h after estrus onset or
when the vaginal temperature returned to the baseline; △=change; *AUC2 includes AUC1 area and remaining solid gray shaded area.
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follicular fluid aspiration are shown in Figure 3. The estrus-

associated vaginal temperature curves for each individual cow (n

= 13) are shown in Figure 4.
3.2 Preovulatory follicular fluid metabolites

Eighty-six metabolites were identified in the preovulatory

follicular fluid aspirates collected 14.9 h ± 3.3 h after the onset of

estrus (Supplementary Table 1). Identified metabolites primarily

included amino acids, glucose metabolism and tricarboxylic acid

(TCA) cycle derivatives, and nucleosides. The abundances of 17 out

of 86 metabolites (19.8%) were related to different aspects of HEAT.
3.3 Follicular fluid metabolites related
to HEAT

The vaginal temperature at first standing mount, when

expressed as a change from baseline, was associated with the

differential abundance of five metabolites. Four of the five

metabolites had a positive relationship with the vaginal

temperature change from baseline to first mount (i.e., taurine, sn-

glycerol 3-phosphate, glycine, and cysteine), and one metabolite,

serine, had a negative relationship (Figure 5; Supplementary

Table 2). The vaginal temperature at first standing mount was

related to the differential abundance of two metabolites. Jasmonate

was negatively related to it, and N-carbamoyl-L-aspartate was

positively related to it (Figure 6; Supplementary Table 3).

The abundances of three follicular fluidmetabolites at 14.9 h ± 3.3 h

after the onset of estrus were related toVTMax:N-carbamoyl-L-aspartate

was positively related to it, whereas uracil and glycodeoxycholate were

negatively related to it (Figure 7; Supplementary Table 4). When VTMax

was expressed as a change from baseline, uric acid and 6-phospho-D-

gluconate were positively related to it, whereas uracil was negatively

related to it (Figure 8; Supplementary Table 5).
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To examine the relationship between HEAT duration and the

preovulatory follicular fluid metabolome, time to VTMax was used as

an independent variable. Time to VTMax was positively associated

with the abundance of N-carbamoyl-L-aspartate but negatively

related to the abundances of glycodeoxycholate, jasmonate, and

tricarballylic acid (Figure 9; Supplementary Table 6).

Combining HEAT level with duration, AUC1 and AUC2 were

tested as independent variables of interest. Sulfolactate, 6-phospho-

D-gluconate, and aspartate levels were positively related to AUC1,

whereas guanidoacetic acid abundance was negatively related to

AUC1 (Figure 10; Supplementary Table 7). In contrast, AUC2 was

positively associated with the abundance of methionine sulfoxide,

taurodeoxycholate, and sn-glycerol 3-phosphate but negatively

related to uracil abundance (Figure 11; Supplementary Table 8).
3.4 Metabolites relating to multiple
HEAT variables

Of the 17 metabolites (35.3%) significantly related to different

aspects of HEAT, 6 were related to two or more HEAT variables

(Figure 12). Uracil and N-carbamoyl-L-aspartate were related to

three HEAT variables (uracil: VTMax, vaginal temperature change

from baseline to VTMax, and AUC2; N-carbamoyl-L-aspartate: first

mount, VTMax, and time to VTMax; Figure 12). The abundances of

jasmonate, glycodeoxycholate, 6-phospho-D-gluconate, and sn-

glycerol 3-phosphate were related to two HEAT variables

(Figure 12). Jasmonate was related to both vaginal temperature at

first standing mount and time to VTMax. Glycodeoxycholate was

related to both VTMax and time to VTMax. Neither AUC1 nor AUC2

were related to any common differentially abundant metabolites;

however, 6-phospho-D-gluconate was differentially abundant in

analyses of AUC1 and temperature change from baseline to

VTMax, while sn-glycerol 3-phosphate abundance was related to

AUC2 and temperature change from baseline to first standing

mount (Figure 12).
A B

FIGURE 3

(A) The ambient temperature, relative humidity, and temperature humidity index (THI) collected from a local meteorological station from the start of
pre-synchronization protocol to the PGF2a administration to induce estrus. The weather data were averaged every 2 hours. The black dotted line
represents the end of the meteorological data and the beginning of the hourly onsite environmental data. (B) The hourly ambient temperature,
relative humidity, and temperature humidity index (THI) from PGF2a administration to induce estrus (day 1—17:30) to after final follicle aspiration (day
5—11:30). The red stars denote the time each animal first stood to be mounted. The blue line represents the THI threshold (77) for non-lactating
dairy cattle (Ouellet et al., 2021). The THI was calculated as per Abbott et al. (2018).
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4 Discussion

The novel findings described in this study highlight the

relationship of varying levels of HEAT with the abundance of

multiple metabolites in the preovulatory follicle fluid (19.8% of 86

total) ~ 14 h after the onset of estrus. Interestingly, the majority of
Frontiers in Animal Science 07
affected metabolites were positively related to HEAT (11/17; 65%).

This finding is especially interesting because intra-follicular changes

in the preovulatory follicle in the final hours leading up to the LH

surge are important for promoting oocyte competence for embryo

development (Atkins et al., 2013; Jinks et al., 2013) and impacting

cumulus–oocyte complex metabolism (Read et al., 2021; Moorey
A B
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FIGURE 4

(A–M) Estrus-associated vaginal temperatures for the 13 estrus cows whereby follicular fluid was collected from the preovulatory follicle are
presented relative to the time that they first stood to be mounted (hour 0) in order of greatest (A) to least (M) VTMax. The blue line represents an
individual animal’s baseline temperature, which was calculated by averaging the vaginal temperature of those recorded between the first
temperature, which was taken 12 h after PGF2a, and those over the next 20 h. The red dot depicts VTMax, and the dotted line represents the first time
an animal stood to be mounted. The graphs have been truncated for clarity and depict only the first 20 h before estrus and through preovulatory
follicle aspiration. (N, O) Representative vaginal temperature graphs of the cows that did not exhibit estrus and did not exhibit a higher estrus-
associated vaginal temperature. These animals were not included in the analysis and are displayed for reference only. Data are not shown for the
one cow where follicular fluid was not successfully collected.
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FIGURE 5

(A–E) Partial regression plots for the final model for each metabolite related to the change in vaginal temperature from the baseline to first mount.
The plots depict the relationship between the vaginal temperature change from the baseline to first mount and metabolite abundance while
adjusting for additional variables included in the final model.
A B

FIGURE 6

(A, B) Partial regression plots for the final model for each metabolite related to the vaginal temperature at first standing mount. The plots depict the
relationship between vaginal temperature at first standing mount and metabolite abundance while adjusting for the additional variables included in
the final model.
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A B
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FIGURE 7

(A–C) Partial regression plots for the final model for each metabolite related to maximum vaginal temperature (VTMax). The plots depict the
relationship between VTMax and metabolite abundance while adjusting for additional variables included in the final model.
A B

C

FIGURE 8

(A–C) Partial regression plots for the final model for each metabolite related to the vaginal temperature change from the baseline to the maximum
vaginal temperature (VTMax). The plots depict the relationship between vaginal temperature change from the baseline to VTMax and metabolite
abundance while adjusting for additional variables included in the final model.
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et al., 2022; Read et al., 2022) in addition to affecting subsequent

luteal function (Perry et al., 2005) and pregnancy outcome (Lamb

et al., 2001; Perry et al., 2005; Atkins et al., 2013).

Regardless of species, sex, or reproductive status, heightened

levels of activity for as few as 45 min to 1 hour increase body

temperature (Murray and Yeates, 1967; Vajrabukka and Thwaites,

1984; Gleeson, 1998). Estrus-induced or not, resultant increases in

body temperature are likely a by-product of increased metabolic

activity, increased blood flow, and or muscle strain due to elevated

activity (Gleeson, 1998). Higher estrus-associated temperatures in

our study fell within a range reported by others (Lewis and

Newman, 1984; Redden et al., 1993; Kyle et al., 1998; Fisher et al.,

2008), with one cow exceeding 40°C. Although the THI during the

final week of our study approached the upper limit of

thermoneutral conditions (77 THI for non-lactating Holsteins;

Ouellet et al., 2021), the varying levels of HEAT likely reflect

those attributable to changes in estrus activity. Increases in

vaginal temperature were most notable after a cow first stood to

be mounted, which is not surprising when using non-lactating

Jersey cows, as they are more thermotolerant (Seath and Miller,

1947; Harris et al., 1960; Muller and Botha, 1993; Lim et al., 2021).

In addition, the calculated baseline body temperature for each

individual cow fell within the range of normal body temperatures

for cattle not experiencing heat stress (Gaalaas, 1945). It is also

important to note that estrus onset occurred in the majority of cows

when the ambient conditions were thermoneutral.
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Although instances of chronic elevations in body temperature

because of disease or heat stress are detrimental to reproductive

success, short-term acute increases in temperature may in fact be

beneficial. At the cellular level, Hoshino (2018) demonstrated that

increased oocyte intracellular temperature during maturation may

be an indicator of oocyte quality and developmental competence.

Fallon (1962) reported rectal temperatures ranging from 98.8°F to

105°F in dairy cows undergoing artificial insemination (AI) the

morning (a.m.) after estrus was first observed the preceding

afternoon (p.m.). In this otherwise synchronized set of females,

cows with rectal temperatures ranging from 101.7°F to 105.0°F had

higher fertility (73.5%) than those with lower rectal temperatures

(98.8°F to 101.6°F). Fallon speculated that cows with a lower rectal

temperature may have been out of estrus or were too close to

ovulation when AI was performed. However, because the pregnancy

outcomes (60.2%) in the cows with a lower rectal temperature were

similar to those in other reported cow groupings observed in estrus

and bred at different times, it is also plausible that HEAT was

functionally relevant and impactful. The positive benefits of

elevated body temperature are not limited to dairy cattle.

Recently, our laboratory reported that a higher rectal temperature

at AI in beef cattle subjected to a fixed-time AI protocol was related

to a higher likelihood of pregnancy (Liles et al., 2022).

Nonetheless, for HEAT-related changes to be related to estrus

activity, Laitano et al. (2010) reported that whole-body heat stress-

induced oxidative stress in humans. When hyperthermia was
A B

DC

FIGURE 9

(A–D) Partial regression plots for the final model for each metabolite related to time from first temperature increase to maximum vaginal
temperature (VTMax). The plots depict the relationship between the time from the first temperature increase to VTMax and metabolite abundance
while adjusting for additional variables included in the final model.
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combined with moderate-intensity exercise, however, a parallel

increase in antioxidant defense compensated for hyperthermia-

induced oxidative stress. Laitano et al. (2010) further speculated

that elevated body temperature in combination with exercise likely

enhances antioxidant defense by avoiding redox imbalance, thereby

preventing cellular damage. Antioxidants are essential components

within mammals, as they maintain oxidative homeostasis within the

body (Mulla et al., 2018). Glutathione, an important antioxidant, is

a major component of animal cells (Wu et al., 2004) and has

properties that have been deemed essential to successful

reproduction through maintaining reactive oxygen species levels

(ROS; De Matos et al., 1997; Edwards et al., 2001; Zuelke

et al., 2003).

Pertaining to our study, HEAT was positively related to

different glutathione precursors (cysteine and glycine).

Interestingly, cysteine alleviates the negative consequences of

prolonged exposure of bovine oocytes to elevated temperature

through the stimulation of glutathione production (De Matos

et al., 1996; Luberda, 2005; Nabenishi et al., 2012). Glutathione

levels fluctuate throughout the estrous cycle, with the highest

concentrations at or around meiotic maturation (Sutovsky and

Schatten, 1997; Brad et al., 2003; Zuelke et al., 2003). Not only is

glutathione involved in events related to meiotic maturation and

subsequent development, but its levels have also been linked to

thermal responses. When a glutathione inhibitor was administered,

the thermotolerance of various cell types decreased (Mitchell et al.,
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1983; Russo et al., 1984; Harris et al., 1991). Given that cold stress

depletes glutathione levels and the inhibition of glutathione results

in decreased thermotolerance, metabolite abundance changes

associated with HEATs are more likely the result of a

combination of activity-induced elevations in temperature.

Serine was the only metabolite that had a negative association

with vaginal temperature at the onset of estrus when expressed as a

change from the baseline. This metabolite is a non-essential amino

acid that serves as a precursor for numerous molecules, including

glutathione, taurine, and cysteine (Kalhan and Hanson, 2012).

Turathum et al. (2021) suggested that oxidative stress is managed

during oocyte maturation through the utilization of serine for

glutathione synthesis within the developing oocyte. In mice,

serine uptake within the oocyte reaches its maximum during the

latter stages of metaphase I and then rapidly decreases once the

oocyte reaches metaphase II (Zhang et al., 2020). Given its role in

mediating ROS accumulation in the maturing oocyte and that

elevated temperatures are known to promote ROS production, in

retrospect, it is not surprising that HEAT may be negatively related

to se r ine abundance in the fo l l i cu l a r flu id o f the

preovulatory follicle.

The increased bioavailability of other metabolites highlights

other potential HEAT-related consequences on intrafollicular

metabolism important to support oocyte maturation and

maintain oxidative balance. The amino acid taurine was positively

associated with the vaginal temperature at estrus onset when
A B

DC

FIGURE 10

(A–D) Partial regression plots for the final model for each metabolite related to the area under the curve from the first increase to the maximum
vaginal temperature (AUC1). The plots depict the relationship between AUC1 and metabolite abundance while adjusting for additional variables
included in the final model.
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expressed as a change from the baseline. Taurine is present in many

mammalian tissues and is involved in numerous cellular functions.

Specifically, it is a cytoprotective molecule with antioxidant

properties that is also thought to be involved in the

thermoregulatory process (Schaffer and Kim, 2018; Page et al.,

2019). Toward this end, when humans engaged in intense

exercise, the oral administration of taurine resulted in increased

exercise endurance and temperature regulation in hotter

environments (Page et al., 2019). While the impacts of taurine

supplementation before the LH surge and during oocyte maturation

are not clear, it is interesting to note that taurine positively impacts

bovine embryo development under thermoneutral conditions

(Dumoulin et al., 1992; Takahashi and Kanagawa, 1998).

The generation of heat is a natural and normal byproduct of

cellular function and processes (Holtzclaw, 2001). In our study,

during times of elevated body temperature, three pyrimidines (i.e.,

cytidine, uridine, and uracil) that have been implicated to play a role

in body temperature increases (Cradock et al., 1986; Peters et al.,

1987b) were detected in preovulatory follicular fluid. One of these

metabolites (uracil) was HEAT-related. Notably, the administration

of uracil’s precursor, uridine, has been shown to induce

hyperthermia in rabbits, mice, and humans (Cradock et al., 1986;

Peters et al., 1987b). Because uridine’s effect on body temperature is

delayed, it has been postulated that uridine’s catabolites may be

responsible for the induction of hyperthermia (Peters et al., 1987a;

Peters et al., 1987b). The administration of uracil to rabbits

increased their body temperature by 0.3°C (Peters et al., 1987b).
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The uracil levels in the follicular fluid collected ~ 14 h after estrus

onset were negatively related to the vaginal temperature at first

mount when expressed as change from the baseline, maximum

vaginal temperature change from the baseline (VTMax), and AUC2,

representing a combination of temperature increase and duration.

These findings, while still unclear, are the first that we are aware of

that associate pyrimidine metabolites with HEAT.

In instances of HEAT, it is not surprising for thermoregulatory

and other processes to be impacted as the body strives for

homeostasis during bouts of hyperthermia (reviewed by Godyń

et al., 2019). The change in vaginal temperature at VTMax was also

positively related to follicular fluid uric acid levels. Although the

significance of these findings in estrus-active females remains

unclear, it is interesting to note that increases in exercise intensity

in both horses and humans increase plasma uric acid levels (Green

and Fraser, 1988; Räsänen et al., 1996). In humans, uric acid may in

certain instances act as an antioxidant through its reduction of

exercise-induced oxidative stress (Waring et al., 2003).

Regardless of related or contributive factors, the consequences

of elevated body temperature are largely systemic in nature (Finch,

1986; Hahn, 1999). Whether HEAT-related differences in

metabolite abundance in the follicular fluid of the preovulatory

follicle ~14 h after estrus onset are reflective of changes occurring in

the circulation or altered function of cells comprising the

preovulatory follicle (i.e., granulosa and or cumulus–oocyte

complex) remains unclear. Toward having a potential impact or a

putative role, granulosa cells, which are contributors to follicular
A B

DC

FIGURE 11

(A–D) Partial regression plots for the final model for each metabolite related to area under the curve from the first temperature increase to 10 h
post-estrus onset, or the completion of the temperature curve (AUC2). The plots depict the relationship between AUC2 and metabolite abundance
while adjusting for additional variables included in the final model.
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fluid components, have been shown to increase metabolism and

amino acid production approximately 6 h after the LH surge

(Gilbert et al., 2011).

To our knowledge, this is the first study to investigate the

relationship between estrus-induced changes in body temperature

and preovulatory follicular fluid metabolites. The significant

outcomes related to temperature changes at or around the time of

estrus onset are suggestive of a functional relevance of HEAT in

driving the preparatory mechanisms involved in thermoregulation,

energy metabolism, and oxidative stress management, and, in turn,

possibly impacting oocyte competence and other preovulatory

follicle components.

Although outside the scope of this study, it is interesting to note

that the best-fit models derived to assess the impact of different

aspects of HEAT on follicular fluid metabolomes included, in some

instances, covariates related to estradiol and follicle size (see

Supplementary Tables 4–6). We are only aware of one other

study examining follicular fluid metabolomics in estrual cattle

(Hessock et al., 2023), but its authors did not relate their findings

to hormone levels or follicle size. In non-estrual cows, metabolites

in preovulatory follicular fluid have been reported (Bender et al.,

2010; Read et al., 2021; Read et al., 2022). Although estradiol

concentration and follicle diameter have been found to be related

to a number of follicular fluid metabolites (Read et al., 2021; Read

et al., 2022), these findings do not overlap with those in this study.

This is not entirely unexpected due to the dynamic changes
Frontiers in Animal Science 13
occurring in the follicle around estrus and the inherent impact of

those changes on systemic hormones.
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name denotes the number of HEAT variables to which the metabolite was significantly related. △=change; *AUC2 includes AUC1 area and remaining
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