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Introduction: The study aimed to assess yeast-based additives' effects, as

monensin alternatives, on rumen fermentation parameters, greenhouse gas

emissions, and ruminal kinetics of ruminant diets using an in vitro system.

Three experiments were conducted, each individually evaluating escalating

levels of three yeast-based additives.

Methods: Three experiments were designed: Experiment 1 evaluated prebiotic

blend 1—yeast culture [Saccharomyces cerevisiae (Scer)], beta-glucans,

fructooligosaccharides, galactooligosaccharides, and mannanoligosaccharides;

Experiment 2 investigated prebiotic blend 2—beta-glucan fractions and

mannanoligosaccharides from Scer; Experiment 3 examined yeast cells—

hydrolyzed, inactivated, and spray-dried yeast (Scer) cells. Uniform

experimental design and procedures were employed across the three

experiments. Each experiment had six treatments: monensin (Rumensin®, 25

mg/kg DM) as positive control, and yeast additive levels (0, 533, 1,067, 1,600, and

2,133 mg/kg on DM basis) added to ruminant diets (60% corn silage and 40%

concentrate). An in vitro gas production (GP) system with 50 AnkomRF bottles

assessed total GP (at 24 and 48 hours), kinetics, fermentation profiles, methane

(CH4), and carbon dioxide (CO2) concentrations. Comparison with monensin

utilized Dunnett’s test (5%). Yeast additive levels were analyzed for linear and

quadratic responses.

Results: In Experiment 1, the 1,600 mg/kg yeast additive had lower

concentrations of propionate, isobutyrate, valerate, and branched-chain

volatile fatty acids (BCVFAs), and a higher acetate concentration and acetate-
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to-propionate ratio than monensin. In Experiment 2, the 1,600 mg/kg yeast

additive led to lower total VFA and isovalerate concentrations than monensin.

Additionally, compared to the 1,067 mg/kg yeast additive, monensin showed

lower isovalerate concentration and higher NH3-N concentration. In Experiment

3, the 533 mg/kg yeast additive resulted in lower valerate and BCVFA

concentrations, and higher CH4 and CO2 concentrations than monensin.

Monensin had lower total VFA, butyrate, and acetate-to-propionate ratio, and

higher propionate concentration compared to the 2,133 mg/kg yeast additive.

Discussion: Collectively, these findings suggest yeast-based additives could be

monensin alternatives, enhancing animal nutrient utilization efficiency and

contributing to improved livestock sustainability.
KEYWORDS

greenhouse gases, methane, monensin, prebiotics, ruminant nutrition
Introduction

Nutrition plays an essential role in the productivity and

sustainability of beef and dairy production systems (Montes et al.,

2013; Honan et al., 2021). The utilization of feed additives is one of

the most widely used nutritional strategies in ruminant nutrition to

enhance productivity (Azzaz et al., 2015). These additives modify

the ruminal fermentation process to improve feed fermentation,

increase host energy supply, reduce enteric methane (CH4)

production, and, consequently, enhance animal feed utilization

(Jia et al., 2018; Vyas et al., 2018). In this regard, the ionophore

monensin has been used for decades in ruminant nutrition and its

effects to improve animal feed efficiency is well documented in the

literature (Tedeschi et al., 2003; Azzaz et al., 2015). Monensin

improves rumen fermentation efficiency by increasing propionate

production at the expense of acetate, resulting in a decrease of

substrates [i.e., hydrogen (H2) and carbon dioxide (CO2)] for CH4

production (Rook, 2005; Benedeti et al., 2018). Furthermore, the use

of monensin also inhibits the growth of lactic acid-producing

bacteria, thus decreasing the acidosis risk (Ipharraguerre and

Clark, 2003). However, there is a concern that the use of

antimicrobials in animal feed might leave residues in animal

products, which in turn leads to some bacterial strains becoming

resistant to said antimicrobials (Vikram et al., 2017). Thus, due to

government regulations and public concern, since January 2006, the

European Union has suspended the use of antibiotic ionophores in

animal feed. Therefore, there is an ongoing search for alternative

additives with similar efficacy to ionophores, such as yeast-

based products.

Yeast-based prebiotics are used with the aim of increasing the

rumen’s beneficial bacterial population (Chaucheyras-Durand et al.,

2012). In addition, these additives can potentially improve rumen

fermentation and animal performance by improving feed
02
degradation and nutrient use by microorganisms without

threatening human health (Jia et al., 2018). Furthermore, yeasts do

not play an antibiotic role, but provide favorable conditions for the

better development of specific bacterial groups. Moreover, yeasts act

as oxygen sinks, which favor strictly anaerobic bacteria, such as

cellulolytic bacteria (McGinn et al., 2004). In addition, yeast cell walls

are composed of polysaccharides, which can interact with bacteria,

binding to them and preventing the attachment of harmful

microorganisms to the animal gastrointestinal tract (Kogan and

Kocher, 2007; Herrera, 2012). Therefore, these natural additives

have the potential to be a more secure replacement for monensin

when used to improve ruminal fermentation. Indeed, research has

demonstrated that yeast-based additives can enhance feed

digestibility and nutrient utilization in beef cattle (Batista et al., 2022).

Natural bioactive molecules, such as oligosaccharides and beta-

glucans, have also demonstrated the potential to be used in animal

nutrition due to their antioxidant, immunostimulant, antibacterial,

and metabolic regulatory activities (Krüger and van der Werf, 2018;

Li et al., 2018). Thus, these molecules could be used as monensin

alternatives to improve ruminal fermentation patterns. Indeed,

researchers observed that beta-glucans can improve fiber

digestibility and increase volatile fatty acid (VFA) production by

modulating rumen fermentation (Grove et al., 2006). However, the

additives used in combination with these molecules, with and

without yeast cultures, have not been evaluated and compared

with monensin; therefore, the ideal dosages of these additives are

not well established in ruminant nutrition. Thus, this study aimed

to evaluate the effects of yeast-based additives, as alternatives to

monensin, on rumen fermentation parameters and ruminal kinetics

of ruminant diets using in vitro systems. Our hypothesis was that

yeast-based additives would enhance nutrient utilization and could

potentially serve as a suitable alternative to monensin, acting as

beneficial modulators of ruminal fermentation.
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Materials and methods

Experimental designs and chemical analysis

We conducted three experiments, aiming that each would serve as

an evaluation of three yeast-based additives. The experiments were as

follows: experiment 1, prebiotic blend 1—yeast culture [Saccharomyces

cerevisiae (Scer)], beta-glucans, fructooligosaccharides,

galactooligosaccharides, and mannanoligosaccharides (Golf®;

Yessinergy LTDA, Campinas, SP, Brazil). This blend consisted of a

mixture of a minimum of 210 g/kg of glucomannans, 150 g/kg of beta-

glucans, 120 g/kg of fructooligosaccharides, 72 g/kg of

galactooligosaccharides, and 60 g/kg of mannanoligosaccharides.

Experiment 2, prebiotic blend 2—beta-glucan fractions and

mannanoligosaccharides from Scer (GlucanMos®; Yessinergy

LTDA). This blend consisted of a mixture of a minimum of 440 g/

kg of glucomannans, 240 g/kg of beta-glucans, and 140 g/kg of

mannanoligosaccharides. Experiment 3, yeast cells—hydrolyzed,

inactivated, and spray-dried yeast (Scer) cells (BioHydro®; Yessinergy

LTDA). The experimental design and procedures were identical across

the three experiments. Thus, six treatments were evaluated within each

experiment, with a monensin-based additive being used as the positive

control [Rumensin®, 25 mg/kg dry matter (DM)] and 0, 533, 1,067,

1,600, and 2,133 mg/kg (DM basis) of yeast additive being included in

the finishing beef diets. The experimental diets consisted of a

composition of 60% corn silage and 40% concentrate (DM basis),

formulated to fulfill the recommended nutrient requirements for beef

cattle (Valadares Filho et al., 2016). The ingredients and chemical

composition of the basal diet are presented in Table 1.

For all experiments, a 25-bottle automated in vitro gas

production (GP) system (ANKOM Technology, Macedon, NY,

USA) was utilized. The system was equipped with wireless

pressure sensors, which were connected to a computer to evaluate

the ruminal fermentation pattern of the tested ingredients. The

treatments were evaluated through three 48-hour fermentation

incubations to assess the in vitro GP profiles and ruminal

fermentation parameters. Within each incubation, the treatments
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were individually incubated in 250-mL bottles, which were

randomly arranged in the incubator. Therefore, each fermentation

batch consisted of three replicates for each treatment, along with

three blanks (consisting only of rumen/mineral/buffer solution),

resulting in a total of 63 observations.

All ingredients utilized in these studies were finely ground using

a 1-mm screen (Wiley mill; Thomson Scientific Inc.) to ensure

consistency in all incubations and analyses. Subsequently, the

samples underwent analysis for dry matter (method G-003/1), ash

(method M-001/1), crude protein (method N-001/1), and ether

extraction (EE; method G-005/1), following the procedures outlined

by Detmann et al. (2012). The organic matter (OM) content was

calculated as the difference between the DM and ash contents. For

the neutral detergent fiber (NDF) analysis, the samples were treated

with thermostable alpha-amylase, omitting sodium sulfite, in

accordance with the method described by Van Soest et al. (1991),

and adapted for use with the Ankom200 Fiber Analyzer

(ANKOM Technology).
Ruminal fluid collection and buffer
solution preparation

The rumen fluid was collected from three Nellore steers with

rumen cannulas (with an average body weight of 640 kg) for this

study. The steers were maintained on a total mixed diet comprising

60% corn silage and 40% concentrate, which consisted of ground

corn grain, citrus pulp pellet, soybean meal, and a mineral mixture.

The rumen fluid samples were collected 2 hours after feeding, with

each animal contributing 2,000 mL. The collected rumen fluid was

promptly filtered through four layers of cheesecloth, transferred

into prewarmed (39°C) thermal bottles, and immediately

transported to the laboratory (Yáñez-Ruiz et al., 2016).

The buffer mineral solutions for all experiments were prepared

following the method outlined by Menke and Steingass (1988). The

buffer solution was maintained at a constant temperature of 39°C in

a water bath and continuously purged with nitrogen gas (N2) for 30

minutes. Resazurin was employed as a color indicator to monitor

the pH and oxidation–reduction potential, ensuring proper

saturation of the buffer with N2. The rumen fluid was mixed with

the buffer solution in a volumetric ratio of 1: 2 (rumen fluid: buffer)

under anaerobic conditions, accomplished by flushing with N2

within a water bath maintained at 39°C.
In vitro gas production

For the kinetics of gas production, VFA, and ammonia-nitrogen

(NH3-N) measurements, the bottle valves of the ANKOMRF gas

production system were adjusted to allow venting. Each 250-mL

bottle was filled with 0.5 g of the respective diet, and deionized water

was added to hydrate the samples and prevent particle dispersion.

Subsequently, the bottles were inoculated with 75 mL of rumen/

buffer solution, while ensuring continuous flushing of the headspace
TABLE 1 Ingredients and chemical composition of the basal diet.

Item1 Proportion

Ingredients (g/kg)

Corn silage 600

Dry ground corn 280

Soybean meal 120

Chemical composition

Dry matter (g/kg) 915

Organic matter (g/kg DM) 946

Crude protein (g/kg DM) 170

Ether extract (g/kg DM) 12.8

Neutral detergent fiber (g/kg DM) 164
DM, dry matter.
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with N2. Once inoculated, the bottles were sealed and placed in an

air-ventilated shaker incubator (EI-450T; ENGCO, Piracicaba, SP,

Brazil) operating at a controlled temperature of 39°C and at an

agitation speed of 83 rpm. A data acquisition software (gas pressure

monitor; ANKOM Technology) was configured to record the

cumulative pressure every 5 minutes, with data recorded at 60-

minute intervals for a duration of 48 hours. The valves were

programmed to automatically release gas when the pressure

reached 3.4 kPa, as described by Tagliapietra et al. (2011).

The cumulative gas pressures at 24 hours and 48 hours were

converted into milliliters (mL) using the conversion method

described by Tagliapietra et al. (2011), as shown below:

GP(mL) =
Pc
Po

� �
� Vo; (1)

where Pc represents the cumulative pressure change (kPa) in

the headspace of the bottle; Vo denotes the volume of the bottle’s

headspace (545 mL); and Po represents the atmospheric pressure

recorded by the equipment at the commencement of

the measurement.

The final GP volumes in the bottles were adjusted to account for

the contribution of the inoculum by subtracting the final GP value

obtained from the blank bottles. To obtain the total GP over time,

the cumulative pressure values were adjusted using the dual-pool

model proposed by Schofield et al. (1994):

Vt =
V1

1 + e2+4� K1�(L−Time)f g

� �
; (2)

where Vt represents the gas volume produced up to the specific

time (mL); V1 and V2 denote the maximum gas volumes achieved

from the complete digestion of each pool (mL); K1 and K2 represent

the specific rates of digestion for each pool (h–1); and L signifies the

lag time (h). The metabolizable energy (ME) was calculated

following the method described by Menke and Steingass (1988),

with the lipid content disregarded (Grings et al., 2005). The ME

calculation is as follows:

ME(MJ=kg DM) = 2:20 + (0:1357� GP200) + (0:0057� GP); (3)

where GP200 (mL/200 mg of DM incubated) represents the gas

production measured at 48 hours. The pH of the solution was

measured using an Accumet™ AP61 pH meter (Fisher Scientific,

Atlanta, GA) at the initiation and conclusion of each 48-hour

incubation period.

The in vitro OM digestibility (IVOMD) was determined using

the method described by Menke and Steingass (1988), which is

expressed as follows:

IVOMD(g=kg DM) = 31:55 + 0:8343� GP200; (4)

where GP200 represents the net gas production (mL/200 mg

DM) measured at 24 hours and 48 hours. At the end of the

fermentation batch for each experiment, the bottles were removed

from the incubator and were cooled in an ice bath for 15 minutes, to

stop the fermentation process. The pH of each bottle was measured

(portable pH meter, model TEC-7; Tecnal, Ourinhos, SP, Brazil)

and the content of the bottle was filtered through two layers of
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gauze. The solid content (residue) was weighed and dried at 60°C in

an oven with mechanical air circulation and then weighed to

determine the NDF. Subsamples of 10 mL from each bottle’s

filtered content were added in Falcon tubes (15 mL) containing

0.2 mL of a 50% (v/v; volume to volume) sulfuric acid (H2SO4)

solution, and centrifugated (4°C, 15 minutes, 1,000 g; centrifuge

Avanti JXN-26, Beckman Coulter, Nyon, Switzerland). The

supernatant was transferred to Eppendorf Tubes® (2 mL), which

were centrifugated (4°C, 30 minutes, 20,000 g; Sorvall ST 8R,

Thermo Fisher Scientific, Germany) for the determination of

NH3-N and VFA concentrations.
Enteric carbon dioxide and
methane production

For enteric CO2 and CH4 data, the AnkomRF system bottle

valves were set to be closed. All other procedures and designs were

the same as those used in the total GP essay. After the inoculation

process, the bottles were sealed and placed in an air-ventilated

shaker incubator set at a temperature of 39°C. On completion of

each fermentation batch, which lasted for 48 hours, the production

of CO2 and CH4 from the headspace was quantified using a gas

chromatograph (Nexis GC-2030; Shimadzu) equipped with a GS-

CarbonPLOT column (Agilent Technologies, Santa Clara, CA,

USA). The carrier gas used was helium (999.9 mL/L). The enteric

CH4 and CO2 production from the bottles was adjusted for the

contribution of the inoculum by subtracting the final gas

production obtained from the blank bottles. The pH of the

solution was measured at the beginning and end of each 48-hour

incubation using an Accumet AP61 pH meter.
Statistical analysis

In this study, we carried out two statistical comparisons: in the

first, we conducted a quantitative analysis (regression) of yeast

additive levels (0, 533, 1,067, 1,600, and 2,133 mg/kg) to assess the

potential linear and quadratic behaviors resulting from increasing

these additives; and, in the second, we conducted a qualitative

analysis, comparing each additive level against monensin (positive

control) to examine the effects of yeast additives relative to

the ionophore.

All collected results underwent tests for residual normality and

homogeneity of variance (Davis and Stephens, 1989). Data from all

experiments were collected and analyzed using a randomized block

design, employing mixed models that accounted for additives as

fixed factors and incubation as a random factor. The average values

obtained from the bottles within each incubation served as the

experimental units. The non-linear (NLIN) procedure of SAS 9.4

software was utilized to estimate the fermentation rate and gas pool

size. Subsequently, the parameters of the non-linear functions were

compared through linear regression analysis, with differences

considered statistically significant at a level of p ≤ 0.05 and

trending when 0.05< p ≤ 0.10. All other variables were analyzed
frontiersin.org
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using the PROC MIXED function in SAS (SAS Institute, Cary,

2013). Analysis of variance was conducted, and in cases of

significance, the Dunnett’s test (at 5% significance level) was

employed to compare the yeast additives with the positive control

(monensin). The levels of the yeast additives were examined for

linear and quadratic responses using the following model:

Yijk = B0 + B1Xi + B2X
2
i + Pj + Ak + eijk; (5)

where Yijk represents the response variable obtained from the

ith level of the yeast additive in the diet of the jth incubation and the

kth experimental unit. The indices i, j, and k denote the levels of

inclusion of the yeast additive, the random factor of incubation, and

the random factor of bottle, respectively. The regression parameters

of the model are denoted as B0, B1, and B2. The Xi represents the

effect of the ith level of the fixed quantitative factor (inclusion of the

yeast additive), Pj represents the effect of the level of the random

factor incubation, Ak represents the effect of the level of the random

factor bottle, and eijkl represents the residual error, assumed to

follow a normal distribution (0, s2).
Results

Experiment 1: prebiotic blend 1

The effects of additive inclusion and monensin on ruminal

fermentation variables in GP systems are presented in Table 2 and

Figure 1. In comparing the yeast additive with monensin, we found

that there was no difference in the production levels of total GP (at

24 hours and 48 hours), ME, IVOMD, CH4, and CO2, and in the

final pH. In addition, the concentrations of total VFAs and butyrate

did not differ among treatments (p > 0.10). The 1,600 mg/kg (DM

basis) of yeast additive included had lower concentrations of

propionate (p = 0.02), isobutyrate (p = 0.05), valerate (p = 0.01),

and BCVFAs (p = 0.05) and a higher acetate concentration (p =

0.05), acetate-to-propionate ratio (p = 0.02) than monensin.

Monensin also had a higher acetate (p = 0.02) and lower

isovalerate concentration (p = 0.02) than the treatment without

the additives. The 1,067 mg/kg of yeast included also tended to have

a lower NH3-N concentration than monensin (p = 0.07). Monensin

diets had a lower lag time and degradation rate of the second pool

than all levels of the yeast additive (p< 0.05).

Regarding levels regression, ME (trend, p = 0.06), CH4

production (p = 0.05), acetate (p< 0.01), propionate (p = 0.01),

isovalerate (p = 0.01), isobutyrate (p< 0.01), valerate (p< 0.01), and

BCVFA (p< 0.01) concentrations, and the acetate-to-propionate

ratio (p = 0.02) responded quadratically. The 1,600 mg/kg (DM

basis) of yeast additive included had the lowest concentrations of

propionate, isovalerate, isobutyrate, valerate, and BCVFAs and the

highest acetate concentration and acetate-to-propionate ratio. In

addition, the 1,067 mg/kg (DM basis) of yeast additive included had

the lowest CH4 concentration and ME. The remaining variables

were not affected by additive inclusion (p > 0.05).
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Experiment 2: prebiotic blend 2

The effects of additive inclusion and monensin on ruminal

fermentation variables in GP systems are presented in Table 3 and

Figure 2. In comparing the yeast additive with monensin, we found

that the latter had lower total VFA (trend, p = 0.08), isovalerate (p =

0.03), and maximum gas volume of the first pool (trend, p = 0.08)

concentrations than the 1,600 mg/kg (DM basis) of the yeast

additive included. In addition, monensin had a lower isovalerate

concentration (p = 0.04) and higher NH3-N (p< 0.01) and

maximum gas volume of the second pool (trend, p = 0.08)

concentrations than the 1,067 mg/kg (DM basis) of yeast additive

included. The 2,133 mg/kg (DM basis) of yeast additive included

had a lower NH3-N concentration (trend, p = 0.06) and lag time (p

= 0.03), and higher concentrations of butyrate (p = 0.06), isovalerate

(p = 0.08), and maximum gas volume of the first pool (p = 0.04)

than monensin. Monensin had higher degradation rates in the first

and second pools than all levels of the yeast additive (p< 0.05).

Finally, the treatment without additives had higher concentrations

of butyrate (p = 0.01), isovalerate (p< 0.01), isobutyrate (p = 0.04),

valerate (p = 0.04), and BCVFAs (p = 0.05) and a lower acetate

concentration (p< 0.01) than monensin. There was no difference in

the remaining variables among the treatments (p > 0.10).

For levels of regression, the final pH (p = 0.01), CH4 (trend, p =

0.06), acetate (p< 0.01), butyrate (p< 0.01) isovalerate (trend, p =

0.09), and NH3-N (trend, p = 0.07) concentrations responded

quadratically. The 1,067 mg/kg (DM basis) of yeast additive

included had the lowest final pH, CH4, butyrate, and NH3-N

concentrations. In addition, the 533 mg/kg (DM basis) of yeast

additive included had the lowest isovalerate concentration and

highest acetate concentration. The maximum gas volume of the

first pool linearly increased (p = 0.04), and the degradation rate of

the second pool linearly decreased (p = 0.02) with the inclusion of

the yeast additives. The remaining variables were not affected by

additive inclusion (p > 0.05).
Experiment 3: prebiotic blend 3

The effects of additive inclusion and monensin on ruminal

fermentation variables in GP systems are presented in Table 4 and

Figure 3. In comparing the yeast additive with monensin, we found

that there was no difference in the total GP (at 24 hours and 48

hours), ME, IVOMD, and NH3-N concentrations among the

treatments (p > 0.10). The 533 mg/kg (DM basis) of yeast

additive included had lower concentrations of valerate (p = 0.02)

and BCVFAs (p< 0.05), and higher CH4 (p = 0.03) and CO2 (p<

0.01) concentrations than monensin. The 1,067 mg/kg (DM basis)

of yeast additive included had a lower propionate concentration

(trend, p = 0.09) and a higher CO2 (p< 0.01) concentration and

acetate-to-propionate ratio (trend, p = 0.07) than monensin. In

addition, monensin tended to have lower CO2 production than the

1,600 mg/kg (DM basis) of yeast additive included (p = 0.09).
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Monensin also had lower total VFA (trend, p = 0.10), butyrate

(trend, p = 0.08), and isovalerate (trend, p = 0.07) concentrations, in

addition to a higher acetate-to-propionate ratio (p = 0.01), and

propionate concentration (p< 0.01) than the 2,133 mg/kg (DM

basis) of yeast additive included. Monensin also had a higher acetate

concentration (p< 0.01) and acetate-to-propionate ratio (p = 0.01),

and lower butyrate (p = 0.01), isovalerate (p< 0.01), isobutyrate (p<

0.01), BCVFA (p = 0.04), and valerate (p = 0.04) concentrations

than the treatment without additives. Finally, all the yeast additive

treatments had a higher maximum gas volume in the first pool and

lower lag time, degradation rate, and maximum gas volume in the

second pool than monensin (p< 0.05).

Regarding additive levels, the inclusion of the yeast additive

linearly decreased the propionate concentration (p< 0.01) and

linearly increased the acetate-to-propionate ratio (p< 0.01). In

addition, the CH4 (trend, p = 0.06), CO2 (p< 0.01), acetate (p<

0.01), butyrate (p = 0.05), isovalerate (p< 0.01), isobutyrate (p<

0.01), valerate (p< 0.01), BCVFA (p< 0.01), and NH3-N (p = 0.05)
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concentrations responded quadratically. The 533 mg/kg (DM basis)

of yeast additive included had the lowest butyrate, isovalerate,

isobutyrate, valerate, and BCVFA concentrations, and the highest

CH4, CO2, and acetate concentrations. The remaining variables

were not affected by additive inclusion (p > 0.05).
Discussion

Experiment 1: prebiotic blend 1

Monensin is a common additive used in ruminant nutrition,

known for its documented efficacy in enhancing rumen

fermentation and feed efficiency (Tedeschi et al., 2003; Azzaz

et al., 2015). However, there is a concern about the potential

effects of antibiotic ionophores on the resistance of certain

pathogenic bacteria (Vikram et al., 2017). On the other hand, the

yeast additives might be applied to improve feed degradability,
TABLE 2 Effects of yeast additive (prebiotic blend 11) inclusion levels and monensin on ruminal fermentation variables in the gas production systems
(experiment 1).

Item2
Additive inclusion (mg/kg DM)

SEM
Levels p-values

0 533 1,067 1,600 2,133 Monensin3 Linear Quadratic

Total gas production (mL/g DM)

24 hours 142 126 127 145 144 130 12.8 0.42 0.22

48 hours 172 154 153 176 175 158 14.0 0.39 0.18

CH4 (mM/g OM) 10.8 9.00 8.34 8.35 11.2 10.4 1.39 0.99 0.05

CO2 (mM/g OM) 27.4 39.7 31.9 31.4 34.4 22.7 4.50 0.63 0.44

ME4 (MJ/kg DM) 7.81 7.02 6.90 7.63 7.78 7.27 0.47 0.59 0.06

IVOMD (g/kg) 601 570 568 607 607 575 24.8 0.37 0.16

pH 6.73 6.71 6.70 6.70 6.71 6.73 0.04 0.25 0.12

Total VFAs (mM/g DM) 158 161 148 149 155 159 8.88 0.43 0.43

VFA profile (mol/100mol)

Acetate 62.9M 64.7 65.0 65.2M 64.6 64.2 0.55 < 0.01 < 0.01

Propionate 19.7 18.7 18.6 17.7M 19.7 19.4 0.49 0.47 0.01

Butyrate 10.4 10.2 10.1 9.94 10.1 10.0 0.49 0.27 0.40

Isovalerate 1.66M 1.58 1.56 1.44 1.60 1.53 0.06 0.04 0.01

Isobutyrate 1.74 1.61 1.59 1.48M 1.71 1.62 0.06 0.24 < 0.01

Valerate 3.53 3.23 3.17 2.94M 3.42 3.32 0.10 0.13 < 0.01

BCVFAs (mM) 5.27 4.84 4.76 4.42M 5.13 4.94 0.16 0.16 < 0.01

Acetate: propionate ratio 3.20 3.46 3.51 3.88M 3.26 3.31 0.17 0.28 0.02

NH3-N (mg/dL) 20.3 19.5 18.8m 21.3 21.1 21.0 0.83 0.18 0.15
The means with a superscript “M” are different from those for monensin at a p-value ≤ 0.05. The means with a superscript “m” indicate a trend of significant difference from monensin at 0.05< p
≤ 0.10.
1Yeast culture (Saccharomyces cerevisiae), beta-glucans, fructooligosaccharides, galactooligosaccharides, and mannanoligosaccharides (Golf®; Yessinergy LTDA, Campinas, SP, Brazil). This
blend consisted of a mixture of at least 210 g/kg of glucomannans, 150 g/kg of beta-glucans, 120 g/kg of fructooligosaccharides, 72 g/kg of galactooligosaccharides, and 60 g/kg of
mannanoligosaccharides.
2DM, dry matter; ME, metabolizable energy; IVOMD, in vitro organic matter digestibility, VFAs, volatile fatty acids, BCVFAs, branched-chain volatile fatty acids; SEM, standard error of the
mean.
3Monensin inclusion, 25 mg/kg DM.
4ME (MJ/kg DM) = 2.20 + (0.1357 × GP200) + (0.0057 × CP), where GP200 is mL/200 mg of DM incubated.
frontiersin.org

https://doi.org/10.3389/fanim.2023.1233273
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Cagliari et al. 10.3389/fanim.2023.1233273
consequently leading to greater nutrient absorption (Broadway

et al., 2015). Moreover, the additives used in this study are based

on a mixture of prebiotics intended to increase the populations of

beneficial bacteria that carry out feed degradation without causing

risks to animal health (Monnerat et al., 2013). In addition,

prebiotics can also reduce the levels of pathogens, such as

Escherichia coli, through competitive exclusion, as both have an

affinity for the same activation sites (Cross et al., 2002; Krehbiel

et al., 2003). Furthermore, the composition of yeast walls promotes

rumen health through the stimulation of lactic acid-utilizing

bacteria growth, which creates an environment with improved pH

conditions and immunomodulatory effects (Garcia et al., 2017).

Therefore, we expected this prebiotic blend to have similar effects to

monensin on feed degradability and the rumen fermentation

patterns. Indeed, the total GP and VFA, ME, and IVOMD

concentrations did not differ among treatments in the first trial.

However, our results indicate that the prebiotic (at 1,600 mg/kg

DM) promoted VFA profile changes (compared with monensin),

with an increase in acetate concentration in exchange for

propionate, valerate, and BCVFAs. The different modes of action

of the additives could explain these alterations. On the one hand,

monensin acts by selecting microorganisms that lead rumen
Frontiers in Animal Science 07
fermentation to succinate and propionate (Schären et al., 2017).

On the other hand, prebiotic yeast provides a ruminal environment

with better conditions for anaerobic bacteria by reducing levels of

O2 (Vohra et al., 2016). Anaerobic bacteria are responsible for fiber

degradation, leading to higher levels of acetate production

(Gharechahi and Salekdeh, 2018). Furthermore, the yeast additive

used in this study is a blend rich in amino acids, which some rumen

bacteria might use, leading to BCVFA production (Reynolds and

Kristensen, 2008). It has also been reported that BCVFAs are related

to the increase of fibrolytic bacteria (Ruminococcus albus,

Ruminococcus flavefaciens, Fibrobacter succinogenes , and

Butyrivibrio fibrisolvens), enzyme activity (carboxymethyl

cellulose, cellobiase, and xylanase), and NDF degradation (Wang

et al., 2020). These findings are in line with the higher acetate-to-

propionate ratio observed in our study. Furthermore, these results

suggest that it would be interesting to test these yeast additives in

high-forage diets (especially at 1,600 mg/kg DM) and evaluate

ruminal NDF fermentation in future studies.

The VFA profile changes are closely correlated with enteric

greenhouse gas production (Ku-Vera et al., 2020). The propionate

formation pathways in the rumen result in a modification of the

overall electron balance, serving as a hydrogen sink and
FIGURE 1

Effects of yeast additive (prebiotic blend 11) inclusion and monensin on in vitro kinetic variables2 of gas production in experiment 1. The means with a
superscript “M” were different from those for monensin at a p-value ≤ 0.05. The means with a superscript “m” indicate a trend of significant
difference from monensin at 0.05< p ≤ 0.10. The symbol “Ƚ” indicates a linear effect and the symbol “ɋ” indicates a quadratic effect for the levels of
additive inclusion (p ≤ 0.05). 1Yeast culture (Saccharomyces cerevisiae), beta-glucans, fructooligosaccharides, galactooligosaccharides, and
mannanoligosaccharides (Golf®; Yessinergy LTDA, Campinas, SP, Brazil). This blend consisted of a mixture of at least 210 g/kg of glucomannans, 150 g/kg of
beta-glucans, 120 g/kg of fructooligosaccharides, 72 g/kg of galactooligosaccharides, and 60 g/kg of mannanoligosaccharides. 2V1 and V2 = maximum gas
volume of each pool (mL); K1 and K2 = specific rate of digestion of each pool (h–1); and L = lag time (h).
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subsequently reducing the availability of hydrogen (Pereira et al.,

2022). Furthermore, CO2 is not produced in any phase of the

propionate production pathways (Benedeti et al., 2018). However,

the pathways to acetate formation release two CO2 molecules and

eight hydrogens from each hexose (Benedeti et al., 2018). These are

substrates for CH4 production (Pereira et al., 2022). Controversially,

the quadratic effects suggested that the yeast additive at levels of

1,067 and 1,600 mg/kg (DM basis) had the highest acetate

concentration and the lowest CH4 production. Greenhouse

enteric gas emissions are undesirable from both environmental

and productive perspectives. The lost carbons in CH4 and CO2

forms could be used for carbohydrate, lipid, or amino acid building

(Tiago et al., 2016; Li et al., 2019). As stated by Elghandour et al.

(2014), the presence of yeast additives may induce a competition for

co-metabolizing H2 between acetogenic and methanogenic

microorganisms. Previous studies also observed CH4 reduction

when the yeast additives were evaluated in rumen fermentation

(Polyorach et al., 2014; Pedraza-Hernández et al., 2019). Thus, the
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CH4 reduction in our study could be an indication of better

nutrient utilization.

We hypothesized that diets with yeast additives included could

have similar rumen kinetics to those with monensin included.

Interestingly, we observed that the prebiotic reduced the required

time to start fermentation. Others have also observed a reduction in

the DM lag time when yeast based on S. cerevisiae were tested in

both in vivo and in vitro trials (Williams et al., 1991; Pedraza-

Hernández et al., 2019). According to the aforementioned authors,

the utilization of S. cerevisiae-based additives has the potential to

enhance the initial rate of fiber degradation in the rumen. Thus, this

effect can be attributed to the presence of macromolecules within

the yeast that stimulate the growth and activity of fibrolytic

microorganisms. However, contradicting our hypothesis,

monensin promoted a higher degradation rate of the second pool,

which might be related to the fermentation of slower degraded

components, such as fiber. Nevertheless, this higher degradation

rate of the second pool for monensin should be the reason for the
TABLE 3 Effects of yeast additive (prebiotic blend 21) inclusion and monensin on ruminal fermentation variables in the gas production systems
(experiment 2).

Item2
Additive inclusion (mg/kg DM)

SEM
Levels p-values

0 533 1,067 1,600 2,133 Monensin3 Linear Quadratic

Total gas production (mL/g DM)

24 hours 134 118 123 126 115 115 15.9 0.34 0.85

48 hours 163 147 151 151 141 143 18.0 0.21 0.85

CH4 (mM/g OM) 10.8 10.5 9.30 10.0 11.6 10.4 1.02 0.66 0.06

CO2 (mM/g OM) 28.4 33.3 29.8 30.8 30.7 28.3 2.61 0.78 0.52

ME4 (MJ/kg DM) 7.54 7.09 6.94 7.04 6.68 6.79 0.61 0.13 0.77

IVOMD (g/kg) 58.7 55.8 55.6 56.1 53.9 54.9 3.24 0.14 0.78

pH 6.77 6.77 6.68 6.70 6.72 6.71 0.06 < 0.01 0.01

Total VFAs (mM/g DM) 153 147 149 160m 143 145 14.5 0.74 0.56

VFA profile (mol/100mol)

Acetate 63.0M 65.0 64.5 64.8 64.2 64.7 0.57 0.11 < 0.01

Propionate 19.6 19.2 19.4 19.0 19.3 19.4 0.31 0.27 0.41

Butyrate 10.6M 9.8 9.70 9.75 10.4m 9.8 0.59 0.47 < 0.01

Isovalerate 1.64M 1.54 1.56M 1.56M 1.55m 1.48 0.03 0.06 0.09

Isobutyrate 1.70M 1.66 1.61 1.63 1.57 1.59 0.06 0.02 0.85

Valerate 3.43M 3.09 3.17 3.28 3.19 3.15 0.14 0.33 0.14

BCVFAs (mM) 5.13M 4.75 4.78 4.90 4.66 4.74 0.19 0.07 0.48

Acetate: propionate ratio 3.22 3.31 3.33 3.41 3.34 3.35 0.08 0.10 0.29

NH3-N (mg/dL) 19.4 17.4 15.3M 17.1 16.7m 19.4 1.29 0.07 0.07
The means with a superscript “M” are different from those for monensin at a p-value ≤ 0.05. The means with a superscript “m” indicate a trend of significant difference from monensin at 0.05< p
≤ 0.10.
1Beta-glucan fractions and mannanoligosaccharides from Saccharomyces cerevisiae (GlucanMos®; Yessinergy LTDA, Campinas, SP, Brazil). This blend consisted of a mixture of at least 440 g/kg
of glucomannans, 240 g/kg of beta-glucans, and 140 g/kg of mannanoligosaccharides.
2DM, dry matter; ME, metabolizable energy; IVOMD, in vitro organic matter digestibility, VFAs, volatile fatty acids, BCVFAs, branched-chain volatile fatty acids; SEM, standard error of the
mean.
3Monensin inclusion, 25 mg/kg DM.
4ME (MJ/kg DM) = 2.20 + (0.1357 × GP200) + (0.0057 × CP), where GP200 is mL/200 mg of DM incubated.
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similar total GP observed for all treatments at the end of the

fermentation baths.

Likewise, in the BCVFA results, part of ruminal NH3-N comes

from protein degradation (Refat et al., 2015). Furthermore, some

rumen fibrolytic microorganisms can build their amino acids from

NH3-N and carbon skeletons (Reynolds and Kristensen, 2008).

Hence, we speculate that the reduced NH3-N levels observed in the

yeast additive group, at a dose of 1,067 mg/kg (DM basis), indicate

that there is a greater conversion of NH3-N into microbial protein

when compared with the other doses. Moreover, lower

concentrations of NH3-N and higher acetate concentrations (as

observed here for yeast) are also indicators of increased fibrolytic

bacterial growth. However, we did not evaluate this parameter in

our study. Nevertheless, despite the differences in the VFA profile

and NH3-N concentration between the monensin and prebiotic

blends, these additives promoted similar OM digestibility, ME

values, total GP, and concentrations of VFAs. Moreover, the yeast

additive also showed the potential to decrease CH4 enteric

production and increase fiber fermentation, which is highly

desirable from an environmental perspective.
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Experiment 2: prebiotic blend 2

The findings of this second trial also confirmed our hypothesis

that yeast and monensin have the same total GP, ME, and IVOMD.

Moreover, in this experiment we observed that the yeast additive at

1,600 mg/kg (DM basis) had a higher total VFA concentration than

monensin. To understand these results, we point out that this

additive originates from S. cerevisiae strains, which have

characteristics of controlling pH and removing O2, which

maximizes anaerobic bacterial growth (Bach et al., 2007;

Broadway et al., 2015). In regard to the VFA profile, only the

concentrations for butyrate (at 2,133 mg/kg DM) and isobutyrate

(at 1,067, 1,600, and 2,133 mg/kg DM) were higher for the yeast

additive than monensin. Butyrate (at 2,133 mg/kg DM) and

isobutyrate (at 1,067, 1,600, and 2,133 mg/kg DM) concentrations

were higher for the yeast additive than monensin. However,

butyrate, isobutyrate, isovalerate, and BCVFA concentrations

were reduced, whereas the acetate concentration and acetate-to-

propionate ratio increased when the yeast additive was added to the

diet. These results are in line with those from experiment 1 and thus
FIGURE 2

Effects of yeast additive (prebiotic blend 21) inclusion and monensin on in vitro kinetic variables2 of gas production in experiment 2. The means with
a superscript “M” are different from those for monensin at a p-value ≤ 0.05. The means with a superscript “m” indicate a trend of significant
difference from monensin at 0.05< p ≤ 0.10. The symbol “Ƚ” indicates linear effect and the symbol “ɋ” indicates a quadratic effect for the levels of additive
inclusion (p ≤ 0.05). 1Beta-glucan fractions and mannanoligosaccharides from Saccharomyces cerevisiae (GlucanMos®; Yessinergy LTDA, Campinas, SP,
Brazil). This blend consisted of a mixture of at least 440 g/kg of glucomannans, 240 g/kg of beta-glucans, and 140 g/kg of mannanoligosaccharides. 2V1 and
V2 = maximum gas volume of each pool (mL); K1 and K2 = specific rate of digestion of each pool (h–1); and L = lag time (h).
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suggest that the yeast additives might lead to greater fibrolytic

bacteria proliferation and reduced decarboxylation of branched-

chain amino acids (isoleucine, leucine, and valine), which in turn

indicates that the addition of the additive at intermediate doses led

to a lower degradation of these amino acids (Refat et al., 2015).

Furthermore, it is important to emphasize that the tested additive

provided an additional source of BCVFAs. Therefore, rumen

bacteria did not need to degrade branched-chain amino acids for

the formation of BCVFAs. As a result, a larger portion of these

compounds could potentially be absorbed in the small intestine,

leading to an increase in protein synthesis.

Regarding greenhouse gas production, we observed a trend of

quadratic effect for CH4, with the minimum values reaching 1,067

and 1,600 mg/kg (DM basis). The ruminal CH4 production can be

reduced in different ways: (1) by decreasing H2 availability (dos

Santos et al., 2023); (2) by increasing H2-consuming pathways, such

as the production of compounds that act as H2 sinks; or (3) by

reducing the population of methanogenic Archaea. Although we

did not observe propionate changes, our results suggest that the
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decrease in CH4 concentration was due to the better efficiency of

microbial mass, which decreased the available H2 for CH4

production (Mombach et al., 2021).

Changes in fermentation pattern affected the rumen kinetics of

yeast-additive diets compared with monensin. Thus, it seems that

this prebiotic promoted a faster fermentation initiation that

increased the total GP of the first pool (at 1,600 and 2,133 mg/kg

DM), even with a lower degradation rate. Moreover, the first pool

total fermentation increased with increasing levels of additive

inclusion. On the other hand, monensin seems to induce a higher

degradation rate of the second pool, which might have been the

reason for its second pool maximum gas volume being higher than

that of the treatment with 1,067 mg/kg (DM basis) of yeast additive.

An interesting advantage of conducting trials that evaluate gas

production (kinetics and total volume) together with fermentation

parameters (such as VFA, IVOMD, and greenhouse gases) is that it

is possible to follow the feed carbon destination (Nelson et al.,

2009). This chemical element might be used to form essential

nutrients (carbohydrates, lipids, and protein) to provide microbial
TABLE 4 Effects of yeast additive (yeast cells1) inclusion and monensin on ruminal fermentation variables in the gas production systems (experiment
3).

Item2
Additive inclusion, mg/kg DM

SEM
Levels p-values

0 533 1067 1600 2133 Monensin3 Linear Quadratic

Total gas production (mL/g DM)

24 hours 145 139 126 143 132 129 8.93 0.46 0.56

48 hours 174 164 152 169 156 156 9.81 0.37 0.54

CH4 (mM/g OM) 10.8 14.6M 11.7 12.1 9.60 10.1 1.60 0.23 0.06

CO2 (mM/g OM) 27.9 41.9M 39.7M 34.3m 32.0 26.1 5.40 0.95 < 0.01

ME4 (MJ/kg DM) 7.88 7.84 7.33 7.86 7.54 7.18 0.32 0.57 0.70

IVOMD (g/kg) 60.5 58.9 56.9 59.8 57.7 57.0 1.94 0.42 0.58

pH 6.74 6.69 6.71 6.69 6.75 6.69 0.04 0.73 0.09

Total VFAs (mM/g DM) 167 167 172 171 183m 163 10.6 0.18 0.54

VFA profile (mol/100mol)

Acetate 63,3M 65.3 65.0 64.7 64.8 64.7 0.60 < 0.01 < 0.01

Propionate 19.3 18.8 18.6m 18.7 18.2M 19.0 0.20 < 0.01 0.49

Butyrate 10.4M 9.70 10.1 10.1 10.3m 9.8 0.42 0.85 0.05

Isovalerate 1.65M 1.51 1.54 1.55 1.56m 1.50 0.02 0.12 < 0.01

Isobutyrate 1.76M 1.59 1.63 1.66 1.68 1.68 1.64 0.36 < 0.01

Valerate 3.58M 3.13M 3.24 3.33 3.39 3.36 0.09 0.49 < 0.01

BCVFAs (mM) 5.33M 4.72M 4.88 4.99 5.08 5.00 0.13 0.45 < 0.01

Acetate: propionate ratio 3.29M 3.48 3.51m 3.48 3.56M 3.41 0.14 < 0.01 0.06

NH3-N (mg/dL) 21.0 22.9 22.4 22.8 20.8 21.3 1.13 0.88 0.05
The means with a superscript “M” are different from those for monensin at a p-value ≤ 0.05. The means with a superscript “m” indicate a trend of significant difference from monensin at 0.05< p
≤ 0.10.
1Hydrolyzed, inactivated, and spray-dried yeast (Saccharomyces cerevisiae) cells (BioHydro®; Yessinergy LTDA, Campinas, SP, Brazil).
2DM, dry matter; ME, metabolizable energy; IVOMD, in vitro organic matter digestibility, VFAs, volatile fatty acids, BCVFAs, branched-chain volatile fatty acids; SEM, standard error of the
mean.
3Monensin inclusion, 25 mg/kg DM.
4ME (MJ/kg DM) = 2.20 + (0.1357 × GP200) + (0.0057 × CP), where GP200 is mL/200 mg of DM incubated.
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energy reserves or structures (Tiago et al., 2016; Li et al., 2019). In

the worst scenario, it can be released as a greenhouse gas (CO2 and

CH4), which is undesirable from both environmental and

production perspectives (McAllister et al., 2011). Therefore, the

higher total VFA concentration and maximum gas production of

the first pool (faster lag time), the reduction of NH3-N and CH4 for

the yeast additives, and also the non-differences in total GP (at 24

hours and 48 hours) and fast lag time might suggest that rumen

microorganisms more efficiently used carbon from these diets for

their growth.
Experiment 3: prebiotic blend 3

The results of experiment 3 are indicative of the same effects as

the previous trial, where the yeast additive promoted similar total

GP, ME, and OM, and also higher total VFA (at 2,133 mg/kg DM)

concentrations than monensin. Moreover, here we also observed

changes in the VFA profile, with a higher concentration of butyrate

at the expense of propionate and BCVFAs for yeast treatments,

which also increased the acetate-to-propionate ratio. We also

observed similar results for ruminal kinetics, finding that there

was a lower lag time, degradation rate, maximum gas volume of the
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second pool, and higher maximum gas volume produced in the first

pool for the yeast additive diets than for monensin. Thus, we could

see the same fermentation pattern changes for all tested additives.

However, we observed contradicting results for CH4 and CO2

production in this trial, where the yeast additives produced a

greater amount of these gases than monensin. Curiously, these

effects were more prominent for the lower levels, especially at 533

mg/kg (DM basis) of additive inclusion. However, these differences

diminished with increasing levels of inclusion until the highest level

(2,133 mg/kg DM), where greenhouse gas emissions were

equivalent to those observed with monensin supplementation.

Therefore, based on our findings, we can draw the conclusion

that yeast-based additives might be used as ruminal fermentation

modulators to improve nutrient usage. In summary, our results have

indicated promising treatment options for each additive examined.

Regarding prebiotic blend 1, we highlight the inclusion of 1,600 mg/

kg (DM basis). For prebiotic blend 2, 1,600 g of additive included for

each kg of DM was the most promising treatment. Concerning yeast

cells, the better treatment was the inclusion of 2,133 mg/kg (DM

basis). However, in spite of the results found in this study, there is still

a gap in the body of knowledge regarding the use of yeast-based

products as feed additives to improve ruminal fermentation efficiency

in the diets of ruminants. Therefore, future studies evaluating these
FIGURE 3

Effects of yeast additive (yeast cells1) inclusion and monensin on in vitro kinetic variables2 of gas production in experiment 3. The means with a
superscript “M” are different from those for monensin at a p-value ≤ 0.05. The means with superscript “m” indicate a trend of significant difference
from monensin at 0.05< p ≤ 0.10. The symbol “Ƚ” indicates linear effect and the symbol “ɋ” indicates a quadratic effect for the levels of additive inclusion (p
≤ 0.05). 1Hydrolyzed, inactivated, and spray-dried yeast (Saccharomyces cerevisiae) cells (BioHydro®; Yessinergy LTDA, Campinas, SP, Brazil). 2V1 and V2 =
maximum gas volume of each pool (mL); K1 and K2 = specific rate of digestion of each pool (h–1); and L = lag time (h).
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additives on rumen fermentation parameters and animal

performance are needed. Based on the results presented, we

concluded that yeast-based additives possess the potential to

modulate ruminal fermentation. This modulation is characterized

by an increase in the total concentration of VFAs and a reduction in

the concentrations of NH3-N and BCVFAs, and in CH4 production.

Thus, these additives have the potential to be used as alternatives to

monensin to improve nutrient utilization from feeds. In addition, the

greenhouse gas results observed in this study might also indicate that

yeast-based products could potentially be used to improve livestock

sustainability. However, we did not observe any effects of additive

inclusion on the total gas production, ME, and IVOMD in this study.

Therefore, further studies are warranted to validate the findings

obtained in this study and assess the effects of these additives on in

vivo ruminal fermentation parameters, animal performance, and

economic feasibility.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The animal study was approved by Animal Use Ethics

Committee of the Instituto de Zootecnia under protocol n° 249-

19. The study was conducted in accordance with the local legislation

and institutional requirements.
Author contributions

ARC: methodology, investigation, data curation, writing (original

draft), and visualization. EM: methodology, investigation, data

curation, writing (review and editing), and visualization. FR:

methodology, investigation, writing (review and editing), and

visualization. KL: methodology, investigation, writing (review and

editing), and visualization. ACC: methodology, investigation, writing

(review and editing), and visualization. BA: methodology, investigation,

writing (review and editing), and visualization. JS: conceptualization,

resources, writing (review and editing), visualization, and funding

acquisition. VS: conceptualization, resources, writing (review and

editing), visualization, and funding acquisition. MM: methodology,

validation, formal analysis, data curation, writing (review and editing),

and visualization. EP: conceptualization, methodology, validation,
Frontiers in Animal Science 12
formal analysis, resources, data curation, writing (original draft),

visualization, supervision, project administration, and funding

acquisition. PB: conceptualization, methodology, validation, formal

analysis, data curation, writing (original draft), visualization,

supervision, and funding acquisition. RB: conceptualization,

validation, resources, writing (review and editing), visualization,

supervision, project administration, and funding acquisition. All

authors contributed to the article and approved the submitted version
Funding

The authors gratefully acknowledge the funding from the

company Yessinergy LTDA (Campinas, SP, Brazil), and the São

Paulo Research Foundation (FAPESP) for funding the project

(grant number 2018/19743-7; grant number 2017/50339-5). They

also thank the members of the Laboratory of Nutrition and Ruminal

Fermentation of the Beef Cattle Research Center of Instituto de

Zootecnia for their assistance with sample collection and laboratory

analyses. The authors thank the Fundação de Amparo à Pesquisa e

Inovação do Estado de Santa Catarina (FAPESC, grant numbers

TO2021TR937 and TO2023TR535). The authors are also thankful

to Programa de Bolsas de Iniciação Cientıfíca of Universidade do
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