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Evaluation of graded levels of
corn fermented protein on
extrusion processing and diet
utilization in healthy adult dogs

Logan R. Kilburn-Kappeler and Charles G. Aldrich*

Department of Grain Science, Kansas State University, Manhattan, KS, United States
There has been increased interest among pet owners to feed vegetarian diets to

their pets. However, the primary protein sources used in pet food today are

animal based, warranting a need to evaluate novel plant-based ingredients to

meet the protein demand. Corn fermented protein (CFP), a coproduct from

ethanol production, may provide a plant-based alternative protein source for pet

food. Therefore, the objectives of this study were to determine the effects of

increasing levels of CFP on extrusion processing, stool quality, apparent total

tract digestibility, and palatability in dog diets. Four extruded diets were fed to 12

adult beagle dogs in a replicated 4 × 4 Latin square design. The control diet

contained 15% soybean meal (0C) and CFP was exchanged at either 5%, 10%, or

15% of soybeanmeal (5C, 10C, and 15C, respectively). Dogs were fed each dietary

treatment for 9 days of adaption followed by 5 days of total fecal collection.

Feces were scored on a 1–5 scale, with 1 representing liquid diarrhea and 5

representing hard pellet-like. Titanium dioxide (0.4%) was added to all diets as an

external marker to estimate digestibility. Data were analyzed using orthogonal

contrasts in SAS (version 9.4; SAS Institute, Inc., Cary, NC, USA). Dry bulk density

of kibble decreased (P < 0.05), whereas kibble toughness increased (P < 0.05)

with CFP inclusion. Fecal dry matter, dry fecal output, and defecations per day

increased (P < 0.05) when dogs were fed increased levels of CFP. Dry matter and

crude protein digestibility of CFP treatments were comparable (P > 0.05) to 0C.

There was a decrease (P < 0.05) in organic matter, crude fat, gross energy, and

total dietary fiber digestibility in the CFP treatments compared with 0C. A cubic

relationship (P < 0.05) was observed in the digestibility of all nutrients except

crude fat, indicating that 10C resulted in the lowest digestibility. For the

palatability assessment, dogs had no preference when comparing the 5C

treatment with the 0C treatment. Even with the differences in dietary

treatments, inclusion of CFP at 5%, 10%, and 15% still resulted in acceptable

processing parameters, kibble characteristics, and utilization when fed to dogs.
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1 Introduction

As the human population has become more concerned about

health, animal welfare, and the environment, there has been an

increase in the vegetarian lifestyle (Pribis et al., 2010; Stahler and

Mangels, 2022). The increase of affluent nations has shifted diets

from plant-based diets to diets high in animal products, which has

been identified as a contributor to the rise in chronic disease

(Popkin and Du, 2003; Walker et al., 2005). In addition, over 66

billion terrestrial animals are slaughtered for consumption

(Schlatzer, 2010), which has given rise to animal welfare

concerns. Climate change is also becoming one of the biggest

environmental issues, which is thought to be impacted by animal

agriculture (Koneswaran and Nierenberg, 2008). It is estimated that

75 million people are vegetarian by choice, which is expected to rise

as education and affluence spreads (Leahy et al., 2010).

Not surprisingly, the increase in the vegetarian population has

resulted in the demand for vegetarian diets for pets. However,

shifting dogs and cats to a vegetarian lifestyle is more challenging as

they belong to the order Carnivora whose ancestors survived by

consuming primarily or entirely captured prey animals. The

domestic dog has evolved to become omnivorous, as they have

increased gene expression for pancreatic amylase, the ability to

convert maltose to glucose, and increased intestinal glucose uptake

compared with wolves (Axelsson et al., 2013; Semp, 2014).

Therefore, dogs can metabolize carbohydrates and endure on a

lower-protein diet (Buff et al., 2014). However, often due to

consumer perception, pet food today consists primarily of

animal-based ingredients to mimic ancestral diets. For vegetarian

pet food to be safe and nutritious, the development and evaluation

of novel plant-based ingredients that are high in protein is

warranted. Traditional ingredients, such as corn gluten meal,

soybean meal (SBM), and pea protein concentrate, are currently

available but new options may be valuable.

Ingredients like corn fermented protein (CFP) may be able to

meet this demand. CFP, a coproduct from ethanol production, is

produced using post-fermentation separation technology, which

results in a high protein ingredient. The combination of zein and

yeast protein results in an ingredient containing 50% protein, which

is nearly double that of traditional distillers’ dried grains. Graded

levels of CFP have already been evaluated in cats, resulting in

acceptable palatability, stool quality, and nutrient digestibility

(Kilburn-Kappeler et al., 2022). Therefore, the objective of this

study was to evaluate increasing levels of CFP on extrusion

processing, stool quality, apparent total tract digestibility (ATTD),

and palatability in adult dogs.
2 Materials and methods

The digestibility trial was conducted at the Kansas State

University Large Animal Research Center (LARC) under the

Institutional Animal Care and Use Committee (IACUC) #4097

protocol. The palatability trial was conducted at Summit Ridge

Farms (Susquehanna, PA) under protocols KSUPALC00120,

KSUPALC00220, and KSUPALC00320.
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2.1 Diet formulation

Four different diets with increasing levels of CFP (POET

Bioproducts, Sioux Falls, SD) as a replacer of equal levels of SBM

(Fairview Mills, Seneca, KS, USA) were formulated. The nutrient

composition of the test ingredients (SBM and CFP) is reported in

Table 1. The control diet contained 15% SBM (0C) and CFP was

exchanged for either 5% (5C), 10% (10C), or 15% (15C) of SBM

(Table 2). The formulated diets met the Association of American

Feed Control Officials nutritional requirements of adult dogs.

Titanium dioxide (0.40%) was added to serve as an indigestible

marker to estimate apparent total tract nutrient digestibility. The

dry raw materials, except for the CFP, SBM, and titanium dioxide,

comprised the base ration and were purchased from a commercial

mill (Fairview Mills, Seneca, KS, USA).
2.2 Diet production

Each diet was produced using a single screw extruder (model

E525; ExtruTech, Inc., Sabetha, KS, USA). The preconditioner

(model ADP 145; ExtruTech, Inc.) was configured with 12 45°

back and 57 neutral beaters on each of the two shafts. The extruder

profile and barrel temperatures were based on a typical commercial

pet food configuration. At the end of the extruder barrel there were

two round die inserts with an interior diameter of 3 mm. The dry

matrix feed rate (318 kg/h), preconditioner (PC) cylinder speed

(185 rpm), extruder (EX) water (0 kg/h), EX steam (0 kg/h), and EX

knife speed (1,600 rpm) were kept constant during the processing of

all treatments.

During processing, PC and EX parameters were collected from

sensor readouts every 2 min to evaluate potential effects of CFP

inclusion on the process. Output variables included PC discharge

temperature, EX motor load, EX die temperature, total mass flow

(TMF), specific mechanical energy (SME), and in-barrel moisture

content (MC).

The TMF was calculated by adding the dry feed rate with water

and steam injected in PC and EX, assuming that 80% of the water
TABLE 1 Analyzed chemical composition of experimental ingredients,
soybean meal (SBM) and corn fermented protein (CFP), reported on a dry
matter basis.

Nutrient (%) SBM CFP

Dry matter 88.03 94.87

Moisture 11.97 5.13

Organic matter 91.86 97.16

Ash 8.14 2.84

Crude protein 53.44 52.62

Crude fat 2.71 5.60

Insoluble dietary fiber 16.36 31.41

Soluble dietary fiber 3.52 3.58

Total dietary fiber 19.88 34.89
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coming from the PC and EX steam is lost during flash-off as kibbles

exit the die:

TMF = dry feed rate   +   PC water   +   (0:2*PC steam)   +   EX water   +   (0:2*EX steam) (1)

SME was calculated using the following formula:

SME  
kJ
kg

� �
  =  

t  −   to
100 *

N
Nr

� �
  *   Pr

m
(2)

where, t is the EX torque percentage or EX motor load, t0 is the
EX no-load torque percentage (25% at EX screw speed 425 rpm), N

is the EX screw speed (rpm), Nr is the rated EX screw speed (425

rpm), Pr is the rated EX motor power (114 kW), and m is TMF

(kg/s).

The MC was also calculated using the following formula:

MC  =
mf � Xf +mps +mpw +mes +mew

mf +mps +mpw +mes +mew
(3)

where mf is the feed rate, Xf is the moisture content of the raw

material, mps is the percentage of added steam in the

preconditioner, mpw is the percentage of added water in

the preconditioner, mes is the percentage of steam added into

the extruder, and mew is the percentage of water added into the

extruder. A moisture content of 10% was assumed for Xf.

After extrusion, kibble was pneumatically conveyed through an

8-inch clean air hood system and deposited onto an oscillating belt

spreader. The kibble was dried on a 1.5-m-wide single-pass two-

zone dryer (model AFI; ExtruTech) to achieve a less than 10%

moisture content. The kibble was dried at approximately 110°C for

22 min. The dried kibble was coated with chicken fat protected with

natural antioxidants and a dry powdered flavor designed for dogs.

The coated diets were stored in polylined Kraft paper bags until fed.
2.3 Physical characteristics of kibble

The wet and dry bulk density were measured off the extruder and

off the dryer every 15 min during the processing of each treatment.

The bulk density was measured using a 1-L cup in which kibble was
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leveled and weighed on a digital scale with a 0.1-g sensitivity. In

addition, five kibbles were randomly selected every 15 min of each

diet production off the extruder and off the dryer and measured for

diameter and length using a digital caliper. Ten randomly selected

kibbles off the dryer were also weighed using a digital scale with a

0.0001-g sensitivity (EX324 N; Ohaus Corporation, Parsippany, NJ,

USA). The diameter, length, and mass measurements were used to

determine sectional expansion index (SEI) and specific length.

The SEI was determined by comparing the squared diameter of

the dried extruded kibbles by the squared die diameter of the

extruder:

SEI   =  
D2

d2
(4)

where D is the extrudate diameter and d is the extruder

die diameter.

The specific length in mm/g was determined by the following

equation:

Specific   length   =  
l
m

(5)

where l is the extrudate length and m is the extrudate mass.

A texture analyzer (model TA-XT2; Texture Technology Corp.,

Scarsdale, NJ, USA) with a 30-kg load cell was used to measure

kibble texture. A cylindrical probe (with a 25-mm diameter) was

used to compress 30 kibbles within each treatment. The procedure

was adapted from Dogan and Kokini (2007), with a test speed of

2 mm/s and strain level set at 80%. The kibble hardness was

considered to be the peak force in kilogram of the first major

kibble breakage, and the energy to compress the kibbles to 80% was

computed as the area under the curve in kg mm for each

compressed kibble, not accounting for the negative values. The

compression energy was considered as kibble toughness.
2.4 Feeding trial

For this study, 12 healthy adult (6.3 ± 0.45 years) beagle dogs

(eight castrated males and four spayed females) were enrolled. The
TABLE 2 Ingredient composition of canine diets with increasing levels of corn fermented protein (CFP).

Ingredient (%)

Treatment1

0C 5C 10C 15C

Corn 37.97 38.11 38.26 38.41

Chicken meal 20.86 20.23 19.59 18.96

Chicken meal, low ash 11.11 11.72 12.33 12.95

Soybean meal 15.00 10.00 5.00 –

CFP – 5.00 10.00 15.00

Chicken fat 5.65 5.52 5.40 5.27

Other2 9.42 9.42 9.42 9.42
10C, 0% CFP; 5C, 5% CFP; 10C, 10% CFP; 15C, 15% CFP.
2Other ingredients: beet pulp, fish meal, flavor, titanium dioxide, salt, potassium chloride, vitamin and mineral premix, choline chloride, and natural antioxidant.
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dogs had an average body weight of 11.4 ± 1.2 kg. The daily

metabolizable energy requirement was calculated for laboratory

kennel dogs [130 * BWkg
0.75; NRC (2006)] to determine the amount

of food offered to each dog per day. However, it was adjusted

to 105 * BWkg
0.75 to maintain the body weight of dogs. The body

weight was measured at the beginning, middle, and end of each

period. The experiment consisted of four periods, and each one was

composed of 9 days of adaptation followed by 5 days of collection.

Dogs were randomly assigned to each of the four treatments over

the four periods. In this model, each animal served as its own

control, and each treatment had 12 total observations.

The dogs were individually housed in pens (1.83 m × 1.20 m)

equipped with an acrylic-coated mesh floor to allow for separation of

urine and feces. Six animals were maintained per room in a

temperature-controlled (23°C) modular building with a 12-h light

cycle. The dogs received two feedings per day at 08:00 and 17:00, with

water provided ad libitum. During the collection period, all feces were

collected periodically throughout each day to prevent contamination

and disturbance. The fecal samples were weighed, scored on a scale of

1–5 with 0.5 increments [with 1 representing liquid diarrhea and 5

representing dry hard pellets; Carciofi et al. (2008)]. A score of 3.5–

4.0 was considered ideal. In addition, the pH of a fresh sample (within

15 min of defecation) was recorded in triplicate with a calibrated glass

electrode pH probe (FC240B; Hanna Instruments, Smithfield, RI,

USA). Fecal samples were stored in a labeled Whirl-Pak® bag in a

freezer until further processing.
2.5 Digestibility calculations
and nutrient analysis

After each collection period, feces from each dog were

composited and dried at 55°C in a forced-air oven until at a

constant weight (24–48 h). The dried samples were ground to

pass through a 1-mm screen in a laboratory fixed-blade impact mill

(ZM 200; Retsch, Verder Scientific, Haan, Germany). Titanium

dioxide (TiO2) concentration was measured in food and feces using

a spectrophotometric plate reader (Gen5TM; Biotek® Instruments,

Inc., Winooski, VT, USA) at 410 nm (Myers et al., 2004). ATTD

was estimated by TiO2 using the following equation:

ATTD   =   1   −  
%  TiO2   in   food   *   %   nutrient   in   feces
%  TiO2   in   feces   *   %   nutrient   in   food

� �
  *   100       (6)

Food and partially dried fecal samples were analyzed in duplicate

for moisture (AOAC 930.15), ash (AOAC 942.05), crude fat by acid

hydrolysis and hexane extraction (AOAC 960.39), gross energy (Parr

6200 Calorimeter; Parr Instrument Company, Moline, IL, USA), and

total dietary fiber (AOAC 991.43). Crude protein was determined by

Dumas combustion (AOAC 990.03) using a nitrogen analyzer

(FP928; LECO Corporation, Saint Joseph, MI, USA).
2.6 Palatability trial

The experimental treatments (5C, 10C, and 15C) were

evaluated for palatability compared with the control diet (0C) by
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dog panels at a commercial kennel (Summit Ridge Farms,

Susquehanna, PA). Each experiment was conducted as a split-

plate test, in which two stainless steel bowls containing 400 g

of food were presented to dogs for a total of 30 min. Each

comparison trial was repeated for 2 days, with bowl position

switched daily. Twenty dogs were fed daily, providing 40

observations for each paired comparison test. Preference was

determined based on the dogs’ first choice and total food

consumption. Data from consumption were represented as the

following ratio:

Intake   ratio   =  
Consumption   of   diet  A

Total   consumption   of   diet  A   +   diet  B
(7)
2.7 Statistics

The least squares means of the data were estimated by ANOVA

using the GLIMMIX procedure in SAS (version 9.4; SAS Institute

INC, Cary, NC, USA) with Tukey correction. Contrasts comparing

control (0C) with treatments (5C, 10C, and 15C), and linear,

quadratic, and cubic relationships among all diets were

considered significant at a P-value < 0.05. For each diet

production, sampling was conducted at evenly spaced intervals,

which were considered replicates. The digestibility experiment was

conducted as a replicated 4 × 4 Latin square design, with three dogs

randomly assigned to each of the four diets in each period.

Therefore, dog and period were considered random effects in the

model for analysis of data from the digestibility trial.

In the palatability experiments, the intake ratio was analyzed

using a t-test in a two-way ANOVA and the first-choice preference

was analyzed using a chi-squared test. The 20 dogs were considered

the experimental units for analysis.
3 Results

3.1 Extrusion processing
and kibble characteristics

The PC cylinder speed was kept constant across all treatments

at 185 rpm (Table 3). However, PC steam, PC water, and EX screw

speed fluctuated among dietary treatments. There was slightly more

steam and water added to the PC during the production of 0C than

during the CFP treatments (P < 0.05). The 0C treatment resulted in

the fastest (P < 0.05) screw speed at 425 rpm, compared with the

CFP treatments at an average of 395 rpm.

The PC discharge temperature was lower (P < 0.05) in the 0C

treatment than in the CFP treatments, and resulted in a significant

quadratic relationship among dietary treatments (Table 3). The

motor load was also lower (P < 0.05) in the 0C treatment than in the

CFP treatments, and resulted in a significant cubic relationship

among dietary treatments. The 0C treatment resulted in the lowest

die temperature (109°C), compared with the CFP treatments

(average 110°C). There was also a significant quadratic

relationship in die temperature among dietary treatments. The 0C
frontiersin.org
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treatment had a greater (P < 0.05) TMF compared with the other

treatments, and there was also a quadratic relationship (P < 0.05),

indicating that 5C and 10C resulted in a lower TMF than 0C and

15C. SME was lower (P < 0.05) for 0C at 135 kJ/kg than for the other

treatments at an average of 141 kJ/kg. There was also a cubic

relationship (P < 0.05) among dietary treatments for SME,

indicating that 10C had the greatest SME at 149 kJ/kg. The MC

was higher (P < 0.05) during the production of 0C than during the

production of the other treatments. There was also a quadratic

relationship (P < 0.05) for MC, showing that 0C and 15C resulted in

a higher MC than 5C and 10C.

There was a significant quadratic relationship in wet bulk

density, wet kibble diameter, and wet kibble length among dietary

treatments (Table 3). Dry bulk density was greater (P < 0.05) for the

0C treatment at 337 g/L compared with the CFP treatments at an

average of 320 g/L. Dry bulk density also decreased linearly

(P < 0.05) as CFP increased. Dry kibble diameter was not affected

(P > 0.05) by CFP inclusion. The dry kibble length was smaller for

0C than for CFP treatments, and increased linearly (P < 0.05) with

CFP inclusion. The specific length or SEI of kibble were not affected

(P > 0.05) by CFP inclusion.

Inclusion of CFP linearly increased (P < 0.05) toughness of

kibble, ranging from 5.1 kg mm to 6.4 kg mm. However, kibble

hardness did not result in a significant linear relationship. Instead,

there was a cubic relationship (P < 0.05), indicating that the 0C and

10C treatments resulted in the hardest kibble (Table 3).
3.2 Diet chemical analyses

The diets were drier than target at an average of 5% moisture.

Overall nutrient composition for dry matter, organic matter, crude

fat, and gross energy were maintained among dietary treatments at

94.7%, 91.2%, 12.3%, and 4970.4 kcal/kg, respectively (Table 4). The

average crude protein content of CFP treatments was 36.7%,

whereas the crude protein content of 0C was 38.4%. The total

dietary fiber content was greatest for the 15C treatment at 16.1%

and lowest for the 0C treatment at 13.8%.
3.3 Feed intake and fecal characteristics

The food intake of dogs was lower for the 0C treatment than for

the CFP treatments, and resulted in a cubic relationship (P < 0.05)

among dietary treatments (Table 5). The wet fecal output of dogs

was maintained (P > 0.05) among dietary treatments (Table 5).

Fecal dry matter percent was lower for dogs fed the 0C treatment

(32%) than for dogs fed the CFP treatments (average 33%), and

increased linearly (P < 0.05) as CFP increased. The dry fecal output

of dogs increased linearly (P < 0.05) with CFP inclusion, ranging

from 35 to 40 g per day. Defecations per day also increased linearly

(P < 0.05) with CFP inclusion, ranging from 2.2 to 2.4 times per day.

The fecal score was lower (P < 0.05) for dogs fed the 0C treatment

(3.7) than for dogs fed the CFP treatments (average 3.9). The fecal
Frontiers in Animal Science 05
score of dogs also had a quadratic relationship (P < 0.05) among

dietary treatments. The fecal pH of dogs was maintained similarly

(P > 0.05) among dietary treatments.
3.4 Apparent total tract digestibility

There was a cubic relationship (P < 0.05) in dry matter, organic

matter, crude protein, gross energy, and total dietary fiber

digestibility among dietary treatments, indicating that 10C

resulted in the lowest digestibility (Table 6). Dry matter and

crude protein digestibility were not different (P > 0.05) when

comparing the 0C treatment with CFP treatments. However,

organic matter digestibility was higher (P < 0.05) for the 0C

treatment (87.6%) than for the CFP treatments (average 86.7%).

Crude fat digestibility was greater (P < 0.05) in the 0C treatment

(97.8%) than in the CFP treatments (average 97.5%). Crude fat

digestibility also resulted in a quadratic relationship (P < 0.05),

indicating greater digestibility for the 0C and 15C treatments than

for the 5C and 10C treatments. Gross energy digestibility was higher

(P < 0.05) in the 0C treatment (88.1%) than for the CFP treatments

(average 87.2%). The 0C treatment also resulted in greater

(P < 0.05) total dietary fiber digestibility, compared with

CFP treatments.
3.5 Palatability

There was no preference between the 5C and 0C treatments

offered to dogs, indicated by the non-significant results in first

choice and intake ratio (Table 7). However, dogs chose the 0C

treatment first over the 10C treatment 27 out of 40 times, indicating

a first-choice preference (P < 0.05). Conversely, based on the intake

ratio, dogs did not consume significantly more of the 0C treatment

compared with 10C treatment. When comparing the 15C and 0C

treatments, dogs consumed more (P < 0.05) of the 0C treatment,

with no preference based on first choice.
4 Discussion

4.1 Extrusion processing and kibble
characteristics

The differences in PC steam, PC water, and PC discharge

temperature were minimal and interpreted to be of no practical

importance. On average, CFP treatments contained greater levels of

soluble fiber than the 0C treatment, which may have increased

viscosity within the extruder barrel (Donadelli et al., 2021), resulting

in an increase in motor load. However, the difference in soluble fiber

was minimal. Therefore, the decrease in screw speed with the CFP

treatments was likely the major contributor to the increase in motor

load, as a decreased screw speed would result in increased barrel fill,

increasing motor load (Unlu and Faller, 2002). Therefore, the
frontiersin.org
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variation in input variables (EX screw speed) likely caused the

increase in motor load and not the CFP inclusion itself.

Surprisingly, the fluctuation in EX screw speed did not appear

to affect the final product. It would be expected that a decrease in

screw speed would result in less mechanical energy, decreasing

material cook and expansion (Rokey, 2006). Therefore, the fastest

screw speed should have produced the most expanded kibble;

however, this was not the case, as the 0C treatment had the fastest

screw speed, but the 15C treatment was the most expanded

indicated by the lowest bulk density. This could be explained by

the fact that a decreased screw speed would increase material

retention time in the extruder barrel, allowing for an increased

cook time (Yeh et al., 1992). This is supported by the increased
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TMF with the 0C treatment. Therefore, the fluctuations in screw

speed could have counteracted, resulting in a similar process

among dietary treatments. In other words, the degree of cook in

the 10C and 15C treatments could have been comparable to the 0C

and 5C treatments with the faster screw speeds. This is supported

by the increased SME for CFP treatments, specifically 10C,

compared with 0C. Regardless, the differences in bulk density

were not of practical concern, as the average dry bulk density of

the dietary treatments (324 g/L) resembled that of typical

commercial kibble, which have densities between 280 and 400 g/

L (Rokey, 2006). The increase in die temperature would also be

expected to increase product expansion (Shukla et al., 2005).

However, this was not observed in this study, as the 5C and 10C
TABLE 3 Least squares means and contrasts [0C vs. 5C–15C (T), linear (L); quadratic (Q); cubic (C) level of corn fermented protein (CFP)] for
processing parameters and physical characteristics of diets with increasing levels of CFP.

Treatment1

Parameter 0C 5C 10C 15C SEM 0C vs. T L Q C

Preconditioner

Cylinder speed (rpm) 185.00 185.00 185.00 185.00 0.000 1.000 1.0000 1.0000 1.000

Steam flow (kg/h) 47.94 47.67 47.58 46.62 0.194 0.0460 0.0862 0.2596 0.9268

Water flow (kg/h) 57.57 57.36 57.40 57.54 0.046 0.0005 0.7206 < 0.0001 0.3807

Discharge temperature (°C) 89.09 90.37 90.84 90.02 0.179 < 0.0001 < 0.0001 < 0.0001 0.3854

Extruder

Screw speed (rpm) 425.00 415.74 375.00 394.44 9.220 0.0001 < 0.0001 0.0299 0.0022

Motor load (amps) 70.56 72.04 76.41 72.81 0.842 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Die temperature (°C) 108.70 110.68 111.23 108.42 0.354 < 0.0001 0.7834 < 0.0001 0.0839

TMF2 (kg/h) 385.33 385.08 385.09 385.24 0.061 0.0001 0.1728 < 0.0001 0.4731

SME3 (kJ/kg) 135.35 140.49 149.37 133.62 2.345 0.0031 0.6211 < 0.0001 0.0002

MC4 (%) 32.41 32.34 32.33 32.36 0.032 0.0067 0.0825 0.0225 0.7755

Bulk density (g/L) 344.00 351.60 333.40 321.00 6.110 0.0967 0.0005 0.0353 0.1147

Kibble diameter (mm) 4.99 4.94 4.87 5.07 0.085 0.7299 0.5053 0.0383 0.2513

Kibble length (mm) 4.18 4.14 4.31 4.57 0.093 0.0555 < 0.0001 0.0286 0.6209

Dryer

Bulk density (g/L) 336.65 337.10 316.03 308.03 6.670 0.0308 0.0019 0.4008 0.1301

Kibble diameter (mm) 4.85 4.83 4.77 4.99 0.093 0.8559 0.2305 0.0774 0.2823

Kibble length (mm) 3.66 3.74 3.99 4.12 0.113 0.0023 < 0.0001 0.7694 0.4357

Specific length (mm/g) 133.01 136.92 138.99 138.43 4.034 0.1253 0.1546 0.4356 0.9499

SEI5 (mm2/mm2) 2.63 2.61 2.54 2.77 0.100 0.8691 0.2398 0.0742 0.2601

Hardness (kg) 2.45 2.22 2.49 2.24 0.158 0.3213 0.4708 0.8745 0.0435

Toughness (kg mm) 5.46 5.06 6.12 6.43 0.368 0.1749 0.0009 0.1795 0.0605
front
10C, 0% CFP; 5C, 5% CFP; 10C, 10% CFP; 15C, 15% CFP.
2TMF = total mass flow.
3SME = specific mechanical energy.
4MC = in-barrel moisture content.
5SEI = sectional expansion index.
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treatments resulted in the highest die temperature, but not the

lowest bulk density. The differences in MC among dietary

treatments were minimal (< 0.1%) and unlikely to affect

processing or final kibble characteristics.
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It would have been expected that the CFP treatments,

specifically 15C, would result in denser kibble due to the increase

in dietary fiber. Previous studies have reported decreased kibble

expansion with dietary fiber (Monti et al., 2016; Alvarenga et al.,
TABLE 4 Analyzed chemical composition of canine diets with increasing levels of corn fermented protein (CFP) on a dry matter basis.

Treatment1

Nutrient 0C 5C 10C 15C

Dry matter (%) 93.50 95.47 95.20 94.61

Moisture (%) 6.50 4.53 4.80 5.39

Organic matter (%) 90.50 91.09 91.24 91.87

Ash (%) 9.50 8.91 8.76 8.13

Crude protein (%) 38.44 36.52 36.63 36.87

Crude fat (%) 12.88 12.15 11.39 12.79

Insoluble dietary fiber (%) 11.01 10.75 11.55 12.95

Soluble dietary fiber (%) 2.65 3.35 2.45 3.19

Total dietary fiber (%) 13.76 14.20 14.00 16.13

Gross energy (kcal/kg) 4992.05 4959.87 4933.84 4995.75
10C, 0% CFP; 5C, 5% CFP; 10C, 10% CFP; 15C, 15% CFP.
TABLE 5 Least squares means and contrasts [0C vs. 5C–15C (T), linear (L); quadratic (Q); cubic (C) level of corn fermented protein (CFP)] for food
intake and stool quality parameters of dogs fed diets with increasing levels of CFP.

Treatment1

Parameter 0C 5C 10C 15C SEM 0C vs. T L Q C

Food intake (g/d) 190.05 189.14 195.48 193.31 1.232 0.0151 0.0003 0.4757 0.0003

Wet fecal output (g/d) 113.16 109.20 111.69 116.88 3.326 0.8349 0.2041 0.0611 0.7232

Fecal dry matter (%) 31.59 32.43 33.59 34.00 0.296 < 0.0001 < 0.0001 0.3037 0.2640

Dry fecal output (g/d) 35.65 35.35 37.41 39.61 1.184 0.0706 0.0008 0.1477 0.5585

Defecations per day 2.25 2.18 2.30 2.42 0.080 0.4483 0.0200 0.1138 0.4726

Fecal score 3.67 3.82 3.87 3.87 0.034 < 0.0001 < 0.0001 0.0043 0.7839

Fecal pH 5.85 5.80 5.64 5.77 0.092 0.1271 0.1722 0.1579 0.1845
fr
10C, 0% CFP; 5C, 5% CFP; 10C, 10% CFP; 15C, 15% CFP.
TABLE 6 Least squares means and contrasts [0C vs. 5C-15C (T), linear (L); quadratic (Q); cubic (C) level of corn fermented protein (CFP)] for apparent
total tract digestibility, estimated by titanium dioxide as a dietary marker, of diets with increasing levels of CFP.

Treatment1

Nutrient (%) 0C 5C 10C 15C SEM 0C vs. T L Q C

Dry matter 82.87 83.16 81.68 82.83 0.420 0.3623 0.2344 0.1557 0.0024

Organic matter 87.59 87.46 86.01 86.56 0.332 0.0021 0.0002 0.1594 0.0037

Crude protein 88.32 88.81 87.92 88.89 0.285 0.3534 0.3674 0.2436 0.0012

Crude fat 97.78 97.50 97.32 97.64 0.150 0.0198 0.1979 0.0073 0.3972

Gross energy 88.06 87.95 86.49 87.17 0.300 0.0015 0.0001 0.0699 0.0009

Total dietary fiber 59.91 58.12 45.29 48.04 1.409 < 0.0001 < 0.0001 0.4465 < 0.0001
10C, 0% CFP; 5C, 5% CFP; 10C, 10% CFP; 15C, 15% CFP.
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2018). According to the Guy Classification System, fibers are

dispersed phase fillers and known to have very poor functionality

in extrusion, meaning that they lead to less-expanded final products

(Guy, 2001). Therefore, it was surprising that the 15C treatment

resulted in the most expanded kibble. However, protein is also

considered a dispersed phase filler (Guy, 2001), which was greatest

in the 0C treatment. Therefore, the higher protein content could

help to explain the decreased expansion observed in the 0C

treatment. In contrast to the current study, Shukla et al. (2005)

reported an increase in bulk density with increased inclusion of

traditional distillers’ dried grains with solubles (DDGS). This could

indicate that CFP has less of an effect on expansion, regarding bulk

density, compared with DDGS.

On average, the CFP treatments resulted in greater levels of

insoluble fiber compared with the 0C treatment, which may affect

longitudinal expansion and radial expansion of kibble. Donadelli

et al. (2021) reported a greater longitudinal expansion, compared

with radial expansion, in kibble containing ingredients with a

higher concentration of insoluble fiber. Monti et al. (2016) also

reported an increase in kibble length with the addition of an

insoluble fiber compared with a soluble fiber. In addition,

Alvarenga et al. (2018) observed an increase in kibble length

with a decrease in kibble diameter as insoluble fiber increased. In

the current study, CFP inclusion did increase kibble length, but

kibble diameter was not affected. However, even with the

differences in kibble length, specific length and SEI of kibble

were maintained among dietary treatments, indicating that

overall expansion was not impacted by CFP inclusion. Previous

studies have reported a decrease in radial expansion with inclusion

of distillers’ dried grains (Satterlee et al., 1976; Breen et al., 1977;

Walker, 1980; Anderson et al., 1981; Shukla et al., 2005). These

results could indicate that traditional distillers’ dried grains have a

greater effect on radial expansion than CFP.

Previous research has reported that kibble expansion has an

impact on hardness and compression energy (Moraru and Kokini,

2003; Yanniotis et al., 2007). Therefore, it would be expected that

the densest treatment (5C) would have resulted in the greatest

hardness and toughness. However, this was not the case, as the 10C

treatment resulted in the greatest hardness, while the 15C treatment

resulted in the greatest toughness. The increased toughness in the

15C treatment could be explained by the increase in dietary fiber.

This corresponds to a previous study that reported a higher cutting

force in kibble containing sugarcane fiber compared with kibble

containing wheat bran (Monti et al., 2016). In addition, Kantrong

et al. (2018) reported a correlation of increased hardness in rice-
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based snacks, with a decrease in screw speed, which supports the

results in the current study.

Due to the varying results, there does not appear to be a direct

correlation between increased levels of CFP on processing

conditions or kibble characteristics. Instead, there seems to be a

greater effect from the variation in input processing conditions,

specifically EX screw speed.
4.2 Diet chemical analyses

The lower than targeted moisture content was likely due to the

small kibble size, which would have required less dry time than the

standard 22 min. The small kibble size was intentional, as diets were

produced for both dogs and cats. Of note, the ideal moisture content

of kibble is ≤ 10% to prevent mold growth (Gautam et al., 2018).

Therefore, the low moisture content in experimental treatments was

not of concern. The decrease in crude protein content in the CFP

treatments compared with the control was unexpected, as the test

ingredients SBM and CFP are comparable in protein content on a

dry matter basis, at 53.4% and 52.6%, respectively. Therefore, the

slight increase in protein for the 0C treatment could be due to the

normal variation among laboratory analysis. The increase in total

dietary fiber in the 15C treatment was expected because CFP

contained 34.9% total dietary fiber, whereas SBM contained

19.9% total dietary fiber.
4.3 Feed intake and fecal characteristics

The calculation used to determine food amounts was the same

among all dogs for each period. In addition, all dogs readily

consumed the entire portion offered each day. Therefore, there

should not have been any differences in food intake among

dietary treatments. Of note, differences in food intake were

minimal (< 7 g/day) and unlikely to affect stool quality or

nutrient digestibility.

The increase in fecal dry matter of dogs consuming the CFP

treatments explains the consistent wet fecal output and the increase

in dry fecal output with CFP inclusion. Kilburn-Kappeler et al.

(2022) reported a similar relationship in fecal dry matter and fecal

output of cats fed increased levels of CFP. The increase in fecal dry

matter also resulted in firmer stool, which was observed with the

increase in stool quality score of dogs fed CFP treatments. In

addition, an increase in dry fecal mass resulted in an increase in
TABLE 7 First choice (FC) and intake ratio (IR) of dogs fed diets with increasing levels of corn fermented protein (CFP).

Diet comparison (A vs. B)1 FC2 IR3

5C vs. 0C 22 0.471

10C vs. 0C 13* 0.399

15C vs. 0C 20 0.325*
10C, 0% CFP; 5C, 5% CFP; 10C, 10% CFP; 15C, 15% CFP.
2Number of first visits to bowl A out of 40 observations.
3IR = intake (g) of diet A/total intake (g) of diets A + B.
*Comparison differs (P < 0.05).
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the number of defecations per day for dogs fed CFP. The differences

in stool quality with increased CFP inclusion is likely due to the

increased fiber content in CFP treatments, specifically 15C,

compared with the 0C treatment, as previous studies have

attributed an increase in fecal bulk to increased dietary fiber in

dogs (Fahey et al., 1992; Sunvold et al., 1995). In terms of its fiber

profile, CFP would be considered more of an insoluble fiber type

(Kilburn-Kappeler et al., 2022). In agreement with the current

study, Wichert et al. (2002) reported that the addition of cellulose

(an insoluble fiber) increased dry matter content of feces and

frequency of well-formed feces when fed to dogs. Fecal pH was

not affected by CFP, indicating that the increase in dietary fiber did

not alter microbial fermentation. This is supported by results from

the work of Wichert et al. (2002), which also reported that fecal pH

of dogs was not impacted by an insoluble fiber source.
4.4 Apparent total tract digestibility

The significant cubic relationships among dry matter, organic

matter, crude protein, gross energy, and total dietary fiber

digestibility, with the 10C treatment having the lowest

digestibility, were surprising. Rather, it was expected that the 15C

treatment would result in the lowest digestibility due to the

increased dietary fiber content and greatest fecal output. Previous

studies have reported the effects of dietary fiber on gastric emptying,

digesta transit time, and nutrient digestibility in dogs (Burrows

et al., 1982; Russell and Bass, 1985; Fahey et al., 1990). Russell and

Bass (1985) concluded that an increase in dietary fiber content and

viscosity resulted in slowed gastric emptying in dogs. However,

Burrows et al. (1982) reported a decrease in intestinal transit time

with added dietary fiber in dogs. Therefore, decreased transit time

could explain a decrease in nutrient digestibility (Burrows et al.,

1982). Fahey et al. (1990) reported that increased dietary fiber did

not impact digesta mean retention time of dogs, but still decreased

dry matter and organic matter digestibility. The differing results in

the current study and previous studies indicate that fiber type,

inclusion level, and diet matrix can impact the effect of fiber on

nutrient digestibility. Of note, the decrease in organic matter, crude

fat, and gross energy digestibility with CFP treatments compared

with the 0C treatment was minimal (< 1%), and unlikely to be of

practical concern.

The digestibility of diets containing increasing levels of CFP when

fed to dogs differed relative to that observed in cats. Kilburn-Kappeler

et al. (2022) reported that digestibility of diets containing 5% and 10%

CFP was comparable to the control when fed to cats. However, a

significant decrease in digestibility was observed when cats were fed

diets containing 15% CFP. The study in cats indicated a clear level of

inclusion in which digestibility was affected, which was not observed

in the current study with dogs. This could be explained by the fact

that cats have a shorter digestive tract than dogs, decreasing their

ability to utilize fiber (Verbrugghe and Hesta, 2017).
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4.5 Palatability

The palatability of CFP in dogs differed from that in cats.

Wherein, Kilburn-Kappeler et al. (2022) observed that cats

preferred a 5% inclusion of CFP compared with a control (0%

CFP), but had no preference with increased inclusion levels (10%

and 15% CFP). However, in the current study, dogs had no

preference between the control and the low inclusion level (5%

CFP), but appeared to prefer the control over the higher CFP

inclusion levels of 10% and 15%.

In addition to ingredients, palatability may be affected by

processing and final kibble characteristics (Koppel et al., 2015).

Therefore, the preference for the 0C treatment over the 10C and

15C treatments could be due to product texture, not the increased

CFP inclusion. Specifically, the increased kibble toughness observed

with the 10C and 15C treatments may have limited palatability in

dogs. Regardless, dogs willingly consumed all treatments and no

refusals were observed.
4.6 Application of CFP in the pet
food industry

Several studies have raised concerns about the nutritional

adequacy of vegetarian diets for companion animals, specifically

insufficient amino acids. A future study exchanging CFP for an

animal-based ingredient would be interesting. However, it is

important to remember that animals require specific nutrients,

rather than specific ingredients. Therefore, both dogs and cats can

subsist on vegetation diets if adequate levels of nutrients are met.

Like all pet food, special care is required when formulating

vegetarian diets. Specifically, vegetarian diets for cats will need

additional supplementation, such as taurine, as cats are unable to

meet their nutrient requirements when fed exclusively plant-

based ingredients.
5 Conclusion

In conclusion, acceptable processing parameters, stool quality,

nutrient digestibility, and palatability indicate that CFP can be

utilized as a plant-based alternative protein source for dogs.

Surprisingly, many parameters evaluated in this study resulted

in a quadratic or cubic relationship as CFP increased, rather

than an exclusive linear response as expected. The quadratic

relationships may indicate an optimum inclusion level of

CFP for specific parameters, whereas the cubic relationships could

reveal other factors that may have affected the results, such as

processing conditions and physical characteristics of kibble, not

CFP inclusion.
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