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Science, University of California, Davis, Davis, California, CA, United States, 3Department of Animal
Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States,
4Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University
of Kentucky, Lexington, KY, United States
Routinely collected sensor data could be used in metritis predictive modeling but

a better understanding of its potential is needed. Our objectives were 1) to

compare the performance of k-nearest neighbors (k-NN), random forest (RF),

and support vector machine (SVM) classifiers on the detection of behavioral

patterns associated with metritis events measured by a leg-attached

accelerometer (TrackaCow, ENGS, Hampshire, UK); 2) to study the impact of

farm scheduled activities on model performance; and 3) to identify which

behaviors yield the highest F1 score for metritis prediction as a function of the

number of time window and time-lags. A total of 239 metritis events (188 non-

metritis and 51 metritis events) were retrospectively created based on changes in

two consecutive uterine evaluations from a dataset containing sensor and

clinical data during the first 21 days postpartum between June 2014 and May

2017. These events were associated with a total of 10,874 - 14,138 data points

corresponding to hourly measurements of lying time, lying bouts, steps, intake,

and intake visits. Sensor data corresponding to the 3 days before each metritis

event were aggregated every 24-, 12-, 6-, and 3-hour time windows. Multiple

time-lags were also used to determine the optimal number of past observations

needed for optimal classification. Similarly, different decision thresholds were

compared. Depending on the classifier, algorithm hyperparameters were

optimized using grid search (RF, k-NN, SVM) and random search (RF). All

behaviors changed throughout the study period and showed distinct daily

patterns. From the three algorithms, RF had the highest F1 score, with no

impact of scheduled farm activities on classifier performance. Furthermore, 3-

and 6-hour time windows had the best balance between F1 scores and number
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of time-lags. We concluded that steps and lying time can be used to predict

metritis using data from 2 to 3 days before a metritis event. Findings from this

study will be used to develop more complex prediction models that could

identify cows at higher risk of experiencing metritis.
KEYWORDS

predictive modeling, classification algorithm, precision dairy technology, postpartum
period, dairy cattle behavior
1 Introduction

Metritis is a common disease that is diagnosed in 30 to 50% of

dairy cows (LeBlanc, 2010). Combined with other metabolic diseases

such as hypocalcemia or hyperketonemia, post-partum infectious

diseases have short- and long-term effects on welfare, reproductive

health, and antibiotic use (LeBlanc, 2010). Sick animals experience an

adaptative response known as sickness behavior that helps them to

cope with a given stressor. Most sickness behaviors are associated with

depression, loss of appetite, and weight loss (Tizard, 2008), which can

bemeasured with precision dairy monitoring (PDM) technologies such

as sensor devices. These technologies have experienced a rapid growth

due to increasing herd sizes and labor cost, combined with lower ratios

of farm staff to animals (de Koning, 2010; Rutten et al., 2013).

Machine learning (ML) is a group of statistical models used on

data collected with PDM technologies with the goal of finding

predictive patterns in the data. Therefore, ML algorithms can be

used on sensor data to develop predictive models to identify which

cows are at higher risk of becoming clinically ill. Given the high

frequency at which changes in behavioral patterns can be analyzed

when PDM technologies and ML algorithms are combined, there is

potential for earlier disease diagnosis compared with traditional

diagnostic methods. As result, earlier clinical or management

interventions could prevent or mitigate the impact of stress and

clinical disease on animals (Weary et al., 2009; LeBlanc, 2010;

Dittrich et al., 2019). Despite its potential, precision farming on

metritis detection has been understudied, with only an estimated

13% of the precision farming literature being related with disease

around parturition compared with other research areas such as

fertility (32%), locomotion problems (30%), or mastitis (25%)

(Rutten et al., 2013). Among the studies with a focus on metritis

during the transition period, researchers have found reduced

behaviors such as lying time (Urton et al., 2005; Sepúlveda-Varas

et al., 2014; Neave et al., 2018), feeding, and rumination duration

associated with the disease (Stangaferro et al., 2016b; Steensels et al.,

2017; Neave et al., 2018). However, common limitations of these

studies are the lack of control for concurrent postpartum diseases,

behavioral data aggregation before and after disease diagnosis

resulting in loss of temporal relationships, poor description of

sensor data pre-processing strategies, and lack of consideration of

within-same-day behavior variability due to farm scheduled

activities (Huzzey et al., 2007; Stoye et al., 2012).
02
The objective of the present study was to compare the

performance of three ML classification algorithms (k-nearest

neighbors, random forest, and support vector machine) on the

detection of behavioral patterns measured with a leg-attached

accelerometer, associated with changes in metritis score

throughout the post-partum period in dairy cows. A second goal

was to identify whether farm scheduled activities had an impact on

ML classification algorithm performance. A third goal was to

determine which animal behaviors yield the highest F1 score for

metritis prediction, to estimate the optimal time aggregation for the

raw sensor data, and to estimate the optimal number of time-lags

that are necessary to analyze for metritis prediction. Our findings

will provide a base for the development of more complex prediction

models that, eventually, could be integrated in the farm

management software to indicate farm personnel which cows are

at higher risk of developing metritis while optimizing the use of

sensor data.
2 Materials and method

The data used in this study was part of a large study designed to

quantify physiological and behavioral changes associated with

mastitis, lameness, estrus, and postpartum diseases, using multiple

PDM technologies (Tsai, 2017; Lee, 2018). The larger study included

data from 138 lactating cows at the University of Kentucky

Coldstream Dairy (Lexington, KY, USA) that were enrolled in the

study during two different periods: the first period, from June 2014 to

October 2015, and the second, from July 2016 to May 2017 under

Institutional Animal Care and Use Committee #2013-119 and 2016-

2368, respectively.
2.1 Population data

From the original dataset, a total of 35 dairy cows that either did

not experience any disease postpartum or were only affected by

metritis were retrospectively selected. Cows were enrolled in the

study after parturition and were followed for 21 days. Data from

two cows that died or were culled from the herd before 21 days in

milk (DIM) had been excluded in the original dataset and were not

available for this study.
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Details about animal management and study design are

provided somewhere else (Tsai, 2017; Lee, 2018). Briefly, cows

were moved to a close-up dry pen a month before the expected

calving date and moved again to a fresh cow pen upon parturition.

Lactating cows were housed in two free-stall barns and were

provided ad libitum access to fresh water in each barn. Lactating

cows were fed the same TMR between 6:00 to 10:00 h and 12:30 to

15:00 h. The lactating diet consisted of forage, alfalfa hay,

concentrate mix, alfalfa haylage, whole cottonseed mineral and

vitamin supplement. During the second study period, feed was

pushed up 22 times per day by an automated feed pusher (Lely

Juno, Ley Robots, Masslius, the Netherlands). Cows were milked

two times per day in a double 2 X 2 tandem-milking parlor at 4:30

to 5:30 h and 15:30 to 16:30 h.
2.2 Clinical data

Disease definitions and the health-monitoring program used in

the study are provided in detail somewhere else (Tsai, 2017; Lee,

2018). In short, fresh cows were monitored daily from 7:00 to 10:00

h for the first 21 days of lactation. A MetriCheck (Simero Tech Ltd,

Hamilton, New Zealand) device was used to obtain a uterine

discharge sample and scored on a 1 to 3 scale using a scale

modified from Sheldon et al. (2006). Briefly, score 1: thick,

viscous discharge, clear, opaque or red to brown in color, no odor

or mild; score 2: white or yellow pus, moderate to thick discharge,

mild odor; score 3: pink, red, dark red, or black watery discharge,

detectable offensive odor, possibly intolerable. Cows with score > 2

were classified as metritis cases (Tsai, 2017; Lee, 2018). Uterine

discharge was scored on 3, 5, 7, 9, 11, 17, 19, and 21 DIM, and

during the first study period, an additional sample was scored on 14

DIM, while during the second study period additional samples were

taken on 13 and 15 DIM. Differences in additional sampling days

between first and second study periods were due to other ongoing

research activities and availability of farm personnel. Cows were

also monitored for hypocalcemia, hyperketonemia, mastitis,

lameness, and retained placenta. Hypocalcemia was defined as

calcium level in blood serum< 8.6 mg/dL (Chapinal et al., 2011),

collected by caudal venipuncture on 3, 7, 14, and 21 DIM.

Hyperketonemia was defined as beta-hydroxybutyrate (BHBA)

concentration in blood > 1.2 mmol/L (Kaufman et al., 2016)

measured with Precision Xtra electronic handheld device (Abbott

Laboratories, Chicago, IL, USA) on days 3, 7, 14, and 21 DIM, and

BHBCheck (PortaCheck Inc., Moorestown NJ, USA) on days 1, 2, 3,

4, 5, 6, 7, 10, 14, and 21 DIM for the first and second study periods,

respectively. Cows were diagnosed with clinical mastitis using the

following criteria: watery, thickened, and discolored milk; milk

containing blood, pus, flakes, or clots; edema, erythema; or pain

in the associated quarter (Royster andWagner, 2015) between 1 and

21 DIM by trained milkers. Furthermore, subclinical mastitis was

assessed measuring somatic cell count (SCC) on days 4 + 2 DIM

and 9 + 2 DIM via flow cytometry in quarter milk samples. Cows

with SCC > 200,000 cells/mL in one or more quarters were

considered positive for subclinical mastitis. Finally, locomotion
Frontiers in Animal Science 03
scores were recorded on days 1, 7, 14, and 21 postpartum on a 1

to 3 scale (Schlageter-Tello et al., 2014). Retained placenta was

recorded if fetal membranes were retained for > 24 hours (Sheldon

et al., 2006).

For any given cow and day, a metritis event was assigned when a

cow developed metritis (score increased from 1 to either 2 or 3) or

remained with metritis (scores 2 or 3 remained higher or equal than

2) between two consecutive uterine discharge evaluations. Similarly,

for any given cow and any given day, a non-metritis event was

assigned when a cow recovered from metritis or remained healthy,

this is, when the metritis score decreased to 1, or when the score

remained as 1, between two consecutive uterine discharge

evaluations. Only those cows that either did not experience any

disease postpartum or were only affected by metritis during the 21

days following parturition were selected for further analysis. Among

those, some events were classified as either non-metritis or

metritis events.
2.3 Sensor data and data pre-processing

For this study, each cow was equipped with a leg-attached

accelerometer (Trackacow, ENGS, Hampshire, UK) from

parturition (day 1) to 21 days postpartum. For each animal, the

device registered the number of minutes per hour a given behavior i

was classified as either lying (minutes per hour), lying bouts

(number per hour), steps (number per hour), intake (minutes per

hour), and intake visit (number of visits to the feedbunk per hour).

Five parallel time series were generated for each behavior i for any

given time period. Trackacow device has been previously validated

by (Chapinal et al., 2007; Borchers, 2015; Borchers et al., 2016).

To remove seasonality in the time series data, we differentiated

the time series for each cow and behavior i by subtracting from each

time step the value registered by the device in time step

corresponding to the previous 24 hours. Sensor data were then

combined with the clinical data. First, for a given cow, we assigned

the time of diagnosis t at 6:00 h on each one of the days when a

metritis event was assigned, and only the time steps from the sensor

data corresponding to the previous 72 hours before a given metritis

event were considered for further data manipulation. Therefore, the

6:00 h time was used as offset during the pre-processing of the time

series sensor data (all_day models). The time series data for each

metritis event at time t was then defined by (xi, t−1,  xi, t−2,  …,  xi, t−n)

where xi was the time step corresponding to the differenced hourly

sensor measurement for behavior i and time step t being i  ∈
 flying ,  lying  bouts,  steps,  intake,   intake visitg and n the time step

within a 72-hour period. Next, we aggregated the time steps using

the mean over 4 different time windows tw1 that had different

widths: 3, 6, 12, and 24 h. As result, the new time series data for each

behavior and metritis event at time t was defined by  (�xij,t−1,  �xij,t−2
,…, �xij,t−m) where �xij as the mean sensor value for behavior i and

time window twj being i  ∈  flying , lying  bouts,  steps,  intake,  intak
e visitg, time window width j  ∈  f3 h,  6 h,  12 h,  24 hg and m the

time step within a 72-hour period. The number of time steps that

could be included within this period was a function of the width of
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the time window twj Lastly, to estimate the number of optimal time-

lags for model performance, transformed time series with different

number of time steps were used for each behavior iwithin a 72-hour

period. Model inputs were then defined by (�xij,t−1,  �xij,t−2,  …,  �xij,t−k)

where each feature �xij was the mean sensor value for behavior i and

time window twj and time-lag k = 1,  2,  …,  l being l the number of

time steps included as features within a 72-hour period before a

given metritis event. The number of time-lags that could be

included within a 72-hour period was a function of j For

example, for behavior registered as lying, time window tw24 and

time-lag k 1, the number of features included in the model were

(�xlying ,  24h,  t−1) corresponding to the mean hourly lying time in the

24 hours right before a given metritis event. Similarly, for behavior

registered as lying, time window tw6 and time-lag k 3, the number of

features included in the model were (�xlying ,  6h,  t−1,   �xlying,  6h,  t−2,  
�xlying ,  6h,  t−3 corresponding to the mean hourly lying time in the

18 hours right before a given metritis event.

To identify whether farm scheduled activities had an impact on

ML classification algorithm performance, same data pre-processing

steps described above (aggregation of time steps using the mean

over 4 different time windows, use of different number of time steps

to study the optimal time-lags) were repeated using only sensor data

from 17:00 to 3:00 h, being the time of diagnosis t assigned at 17:00

h on each one of the days when a metritis event was assigned

(evening-night models). In this case, the 17:00 h time was used as

offset for data manipulation during data pre-processing.
2.4 Model fitting

In this paper, we evaluate the ability of 3 supervised ML

classifiers (k-nearest neighbors, random forest, and support vector

machines) to discriminate among 2 possible distinct patterns

(metritis and non-metritis events) in 5 animal behaviors as

independent variables (Alpaydin, 2010). These classifiers are

amongst the most used ones in PDM literature and are

conceptually different, making them a sensible choice to compare

performance (Kohavi et al., 1997). For each combination of

behavior i ML classifier, time window twj and time-lag k within

the 72 hours before a given metritis event, one model was fitted on

the sensor data. The process was performed twice: in the first one,

all sensor data was used (all_day models) while in the second time,

sensor data between 17:00 and 3:00 h were used (evening-night

models). In those cases where differences in the behavior

distribution between cows of different parities were significantly

different, models were fitted a third time, with separate models for

primiparous and multiparous cows.

All classifiers used in this study have been described elsewhere.

Briefly, k-nearest neighbors (k-NN) relies on the assumption that

similar data points exist in close proximity and estimates the

closeness using Euclidean distance for each data point to the rest

of the data points (Fix and Hodges, 1951; Dasarathy, 1991; Hastie

et al., 2009). Random forest (RF) is made up from many decision

trees, a flowchart of questions asked about the data that leads to a

predicted class (metritis or non-metritis events) with the greatest
Frontiers in Animal Science 04
reduction in Gini Impurity, or the probability that a randomly

chosen sample in a set of data points or node would be correctly

labeled if it was labeled by the distribution of samples in the node

(Breiman, 2001; Hastie et al., 2009). In contrast, support vector

machines (SVM) estimate the optimal hyperplane, or decision

hyperplane, that separates the different classes while maximizing

the distance, or margin, to the closest point from either class, also

called support vectors. One of the advantages of SVM is the use of

the kernel function, a mathematical function that transforms the

feature space to deal with cases in which classes are not linearly

separated (Vapnick, 1995; Hastie et al., 2009).
2.5 Model performance assessment

To assess model performance, we used group fivefold cross-

validation (5-FCV) to set aside a validation set and use it to assess

the performance of the prediction model, using cow ID as grouping

variable. Specifically, for any given model, 4/5ths of the data were

used to fit the model, whereas the other 1/5th was used to calculate

the prediction error of the fitted model (validation set). This process

was repeated each time until all 5 folds had been used for both,

fitting the model and validation, resulting in an average prediction

error. The use of cow ID as grouping variable prevented that events

corresponding to the same cow could end up in both, train and

validation sets, as multiple events were recorded for each cow

during the study period.

Grid Search (GS) was used to optimize classifier hyperparameters,

except for RF classifier, where GS was performed after Randomized

Search (RS) to reduce the grid search so computing time was

manageable. Optimal values that were found to allow for best mean

cross-validation accuracy were used to train the final model. Optimized

hyperparameters for RF were bootstrap, maximum depth, minimum

samples leaf, minimum samples split, and number of estimators. The

optimization of SVM were gamma and C. We repeated model

evaluation with kernels linear, radial, polynomial, and sigmoid. For

k-NN, parameter kwas optimized. A complete description of the values

used for each one of the hyperparameters and the list of models used

during optimization can be found in Table 1.

After model fitting, the prediction class probability for each

health event of being classified as metritis was obtained and ranked

from highest to lowest, and the top 20, 30, and 40% class

probabilities were used as different cut-off points instead of using

the default 0.50 class probability. For each cut-off point (20, 30,

40%), classification performance was evaluated using averaged

estimates of 5-FCV sensitivity (Se or recall), specificity (Sp),

positive predictive value (PPV or precision), negative predictive

value (NPV), accuracy (Ac), F1 score, the area under the curve

(AUC) for the receiver operating characteristic (ROC) curve and

Precision Recall (PR)-curves. Sensitivity was estimated as the ratio

of correctly predicted positive observations to all observations in the

actual class (metritis event) in each one of the 5 cross-validation

folds. Specificity was estimated as the ratio of correctly predicted

negative observations to all observations in the actual class (non-

metritis event) in each one of the 5 cross-validation folds. Positive
frontiersin.org

https://doi.org/10.3389/fanim.2023.1157090
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Vidal et al. 10.3389/fanim.2023.1157090
predictive value was the ratio of correctly predicted positive

observations to all predicted positive observations in each cross-

validation fold. Similarly, NPV was the ratio of correctly predicted

negative observations to all predicted negative observations in each

fold. Accuracy was the ratio of correct predictions to all number of

observations in each fold. F1 score is the weighted average of PPV

and Se, considering both false positives and false negatives. It is used

in classification problems where the distribution of the observations

in each class is unbalanced (Saito and Rehmsmeier, 2015). F1 score

was computed as (1 + b2)*(PPV * Se)/((b2 * PPV) + Se), where b =

1 (Saito and Rehmsmeier, 2015).

Open-source software was used for feature extraction, classifier

implementation, and parameter optimization (pandas, numpy,

scikit-learn. Python version 2.7. Python Software Foundation,

http://www.python.org) (Pedregosa et al., 2011). Plots were done

using ggplot2 library (Wickham, 2009), using R open-source

statistical software (R Core Team, 2017).
Frontiers in Animal Science 05
3 Results

3.1 Metritis events

Based on the changes of metritis score between two consecutive

evaluations, 239 health events were created. Among those, 188 were

labeled as non-metritis class, while 51 were labeled as metritis class.

The resulting dataset was unbalanced given the greater number of

non-metritis events compared to the metritis events. All events were

generated from the clinical evaluations from 35 dairy cows (Jersey =

20; Holstein = 15; primiparous = 17; multiparous = 18) that had

been retrospectively selected from the original dataset (n = 138).

The number of hourly sensor records ranged from 10,874 (intake

and intake visit) to 14,138 (lying, lying bouts, and steps).

Average + SD milk yield was 36.1 kg. + 15.6. Of the 35 cows

selected, 13 did not have any metritis events during the study period,

while 22 were diagnosed at least once with metritis (score >1),
TABLE 1 Hyperparameter values used for optimization of k-nearest neighbors (k-NN), random forest (RF), and support vector machine (SVM)
classification algorithms used on behavior variables measured with a leg-attached 3-axis accelerometer (Trackacow, ENGS, Hampshire, UK).

Classifier Parameter Randomized
Search Grid Search Models Used Optimum

Value

k-NN k1 N/A 1 to 15 Lying time, 24 hours, all_day, evening-night, time-lag = 1 to 3
days.
Lying bout, 12 hours, all_day, evening-night, time-lag = 1 to 3
days.
Lying bout, 24, 12, 6, 3 hours, primiparous, multiparous,
all_day, time-lag = 1 to 3 days.

8 (10 for
primiparous)

RF Bootstrap2 True, False True Lying time, 24, 12, 6, 3 hours, all_day, evening-night, all
parities, primiparous, time-lag = 1 to 3 days.
Lying bouts, 24, 3 hours, all_day, primiparous, time-lag = 1 to
3 days.
Steps, 3, 6, 12 hours, evening-night, primiparous, time-lag = 1
to 3 days.

True

Max. depth3 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 110, None

5, 10, 15, 20 10

Max. features4 ‘auto’, ‘sqrt’ ‘auto’, ‘sqrt’ ‘auto’ (‘sqrt’ for
primiparous)

Min. samples
leaf5

1, 2, 4 2, 4, 6 5 (4 for
primiparous)

Min. samples
split6

2, 5, 10 2, 3, 4, 5 2

Number of
estimators7

100, 200, 300, 400, 500, 600,
700, 800, 900, 1000

100, 500, 800 500 (800 for
primiparous)

SVM Kernel8 N/A Linear, rbf,
poly, sigmoid

Lying time, 24, 12, 6, 3 hours, all_day, evening-night, all
parities, primiparous, time-lag = 1 to 3 days.
Lying bouts, 3, 24 hours, all_day, primiparous, time-lag = 1 to
3 days.
Steps, 12 hours, evening-night, primiparous, time-lag = 1 to 2
days.

Linear

C9 N/A 0.01, 0.1, 1, 10 0.01

Degree10 N/A 2, 3 2

Gamma11 N/A ‘auto’, 0.01,
0.1, 1, 10

‘auto’
1k, number of neighbors.
2Bootstrap, method for sampling data points (with or without replacement).
3Max. depth, maximum number of levels in each decision tree to control for overfitting.
4Max. features, maximum number of features (independent variables) considered for splitting a node.
5Min. samples leaf, minimum number of data points allowed in a leaf node.
6Min. samples split, minimum number of data points placed in a node before the node is split.
7Number of estimators, number of trees in the forest.
8Kernel, type of kernel used to map the data to a different space where a linear hyperplane can be used.
9C, cost parameter to control the tradeoff between the misclassifications and width of the margin.
10Degree, degree of the polynomial used when kernel = ‘poly’.
11Gamma, defines how far the influence of a single data point reaches and configures the sensitivity to differences in the data. When gamma is large, the radius of the area of influence only
includes the support vector itself, and no amount of regularization with C will be able to prevent overfitting.
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occurring at 12 DIM (12.02 + 4.72 DIM). Among these, 2 cows had

retained fetal membranes and were kept for data analysis. None of the

selected animals had hyperketonemia, mastitis, or hypocalcemia. The

proportion of metritis events for primiparous and multiparous were

20% and 23%, respectively.
3.2 Sensor data

Cows showed high variability in their behaviors during the

study period, especially regarding number of steps (98.8 ± 72.51

number/h) and lying time (21.74 ± 21.06 min/h), followed by intake

(7.54 ± 12 min/h). This trend was constant regardless of the level of

sensor data aggregation and time of the day (Table 2). Furthermore,

the distributions for lying bouts, steps, intake, and intake visits were

right-skewed, and differences in the mean values by parity were
Frontiers in Animal Science 06
greater during the evening-night hours for lying and

steps (Figure 1).

Animal behavior changed throughout the study period, with

significant changes in the first 3 days post-partum for lying time,

lying bouts, and steps (Figure 2). During the first 3 DIM, lying time

increased while number of lying bouts and steps decreased. Overall,

intake time showed an upward trend throughout the study period.

When behaviors were stratified by parity, multiparous cows showed

significantly lower number of lying bouts than primiparous cows

throughout the study period, while significant differences in

number of steps by parity occurred around 7 and 14 DIM.

During the whole study period, primiparous cows tended to

spend less time lying down with greater number of steps than

multiparous cows. When looking at the variability of each behavior

throughout the 24 hours of any given day, lying time and steps had

inverse trends, with greater number of steps during milking times
TABLE 2 Descriptive statistics for the five behavior variables measured with a leg-attached 3-axis accelerometer (Trackacow, ENGS, Hampshire, UK).

Raw Data

Time Window1 Time of the Day2

3 h 6 h 12 h 24 h Milking Morning Evening-Night

Lying (minutes per hr.)

n 14,138 4,374 2,199 1,138 588 2,356 5,312 6,470

mean 21.74 0.33 0.34 0.36 0.46 11.78 21.88 25.25

std 21.06 14.94 10.63 8.39 7.58 15.87 20.81 21.76

min 0 -60 -60 -60 -60 0 0 0

max 60 58 56 43 43 60 60 60

Lying Bouts (number per hr.)

n 14,138 4,374 2,199 1,138 588 2,356 5,312 6,470

mean 0.62 0.00 0.00 0.00 0.00 0.53 0.71 0.57

std 0.85 0.60 0.44 0.33 0.27 0.77 0.94 0.79

min 0 -5 -3.33 -2.67 -2.67 0 0 0

max 12 5.33 4.33 2.25 1.5 6 11 12

Steps (number per hr.)

n 13,631 4,422 2,219 1,142 587 2,372 5,348 5,911

mean 98.80 -1.71 -1.64 -1.77 -1.90 117.64 109.47 81.59

std 72.51 54.52 41.70 34.07 28.53 56.29 81.24 65.88

min 0 -536.50 -291.20 -208.27 -152.33 0 0 0

max 636 448 267.2 202.82 115.70 479 636 574

Intake (min per hr.)

n 10,874 3,312 1,667 869 452 1,812 4,088 4,974

mean 7.54 0.22 0.22 0.17 0.31 5.30 8.39 7.65

std 12.00 8.69 5.90 4.49 3.46 9.51 12.58 12.23

min 0 -43 -40 -33 -24 0 0 0

max 60 47.33 33.5 25 25 60 60 60

(Continued)
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TABLE 2 Continued

Raw Data

Time Window1 Time of the Day2

3 h 6 h 12 h 24 h Milking Morning Evening-Night

Intake Visit (number per hr.)

n 11,330 3,456 1,739 906 471 1,888 4,259 5,183

mean 0.38 0.00 0.00 0.01 0.01 0.39 0.41 0.35

std 0.56 0.37 0.26 0.20 0.17 0.55 0.59 0.54

min 0 -1.67 -1 -0.67 -0.54 0 0 0

max 3 1.67 1.17 1 1 3 3 3
F
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 frontiers
1Time window: level of hourly sensor data aggregation. Computations were done after removal of seasonality in the raw sensor data by differentiation.
2Time of the day: to assess differences based on scheduled farm activities, activities were classified based on farm schedule: milking was from 4:00 to 5:59 h and from 15:00 to 16:59 h; morning was
from 6:00 to 14:59 h; evening-night was from 17:00 to 3:59 h of the following day.
FIGURE 1

Distribution and density of raw sensor data stratified by parity and time of the day for the five behaviors registered by a leg-attached 3-axis
accelerometer (TrackaCow, ENGS, Hampshire, UK). Horizontal lines indicate mean and standard deviation. Milking is from 4:00 to 5:59 h and from
15:00 to 16:59 h; morning is from 6:00 to 14:59 h; evening-night is from 17:00 to 3:59 h in the following day.
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and at 10:00 h, time at which lying bouts were also the greatest

(Figure 3). Intake and intake visits showed similar trends, with

greater values right after milking times. Differences by parity were

observed for lying bouts throughout the day, while differences by

parity regarding lying and steps were observed during the evening-

night hours, when multiparous spent more time lying down and

took fewer steps than primiparous.

To further explore the changes of the different behaviors across the

study period, we also looked at the variation for any given 24-hour

period for different postpartum periods: convalescent (from parturition

to 3 DIM), first week (4 to 7 DIM), second week (8 to 14 DIM), and

third week (15 to 21 DIM). No significant differences were observed

across the different periods, however, intake and lying tended to be

greater while steps tended to be lower during the third week compared

with the convalescent period. Such trends became unnoticeable during
Frontiers in Animal Science 08
milking times and, in some cases, when cows were locked in their pens

for health checks at 10:00 h (Figure 4).
3.3 Performance comparison of three
ML classifiers

A total of 1,386 models were fitted representing all possible

combinations of ML algorithm (k-NN, RF, SVM), behavior i (lying,

lying bouts, steps, intake, intake visit), time window twj (3, 6, 12,

24 h), time-lag k (between 3 and 72 h before any given event), time

of the day (all_day, evening-night), and parity (primiparous,

multiparous). We only fitted models for each parity in those

behaviors where differences between primiparous and

multiparous have been observed (lying, lying bouts, steps). To
FIGURE 2

Mean raw sensor data and 95% C.I. for the mean by days in milk (DIM) stratified by parity for the five behavior variables measured with a leg-attached
3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK).
frontiersin.org

https://doi.org/10.3389/fanim.2023.1157090
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Vidal et al. 10.3389/fanim.2023.1157090
select the best models, 5-FCV F1 score was used for comparison

across all cut-offs (20, 30, 40%).

To assess the effect of farm scheduled activities on ML

performance, we compared the distribution of the 5-FCV F1 score

for each classifier. Our results showed that, for all three classifiers,

higher F1 scores were obtained when all sensor data were used

regardless of the time of the day (all_daymodels) and using the 20%

cut-off. Random forest had the highest and most consistent F1
scores across multiple time windows and time-lags, followed by k-

NN and SVM (Figure 5). Detailed performance metrics can be

found in the supplemental materials for all models.

To manage the large number of models fitted in this study, we

further identified the best models for each ML classifier based on an

upper quartile F1 score at the 20% cut-off for all_day models. For

RF, the upper quartile F1 scores were between 92.86% and 100%,
Frontiers in Animal Science 09
while for k-NN they were between 44.94% and 63.16%. In contrast,

SVM had lower F1 scores, with the upper quartile values between

23.26% and 65%. Those behaviors for which separate models were

fitted by parity, higher number of models for primiparous cows

ranked in the top quartile of the F1 score distribution (20% cut-off

and RF classifier).
3.4 Optimal time windows and time-lags
for best behavioral variables

Our results confirmed that, among the three classifiers, RF had

the best performance. As the level of sensor data aggregation became

smaller (3- and 6-hour time windows), a greater number of behaviors

had slightly higher F1 score values and ranked in the upper quartile
FIGURE 3

Mean raw sensor data and 95% C.I. for the mean within 24 hours for any given day of the study period stratified by parity for the five behavior
variables measured with a leg-attached 3-axis accelerometer (TrackaCow, ENGS, Hampshire, UK).
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for eachML classifier. However, when data were aggregated using 24-

hour time window tw24, the predominant behaviors were lying and

intake visit when using k-NN or SVM. When sensor data were

aggregated using 12-hour time window tw12, steps were the

predominant behavior, followed by intake and intake visit using k-

NN and SVM classifiers. When sensor data were aggregated using 6-

or 3-hour time windows, lying and steps were the predominant

behaviors when RF was used. In contrast, for the same time windows,

intake visit was the predominant behavior when k-NN or SVM were

used, while lying was the least predominant behavior (Figure 6). For

those behaviors for which separate models were fitted by parity, best

time windows were 3-, 6-, or 12-hours, and best time-lags were those

corresponding to all sensor data up to 25 – 72 hours before a

given event.
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Our study found that RF showed the best balance between high

F1 score values and consistency regarding the number of time-lags a

given behavior ranked amongst the best models. Best results were

obtained when sensor data were aggregated using 6- or 3-hour time

windows. For time window tw6, best models were found between 31

to 72 hours before the event (time-lags from 6 to 12). Similarly, for

time window tw3, the best models were found between 16 to 72

hours before the event (number of time-lags from 6 to 24)

(Figure 6). Tables 3 and 4 show the performance metrics for the

selected best models at two different cut-off points (20 and 30%).

For the selected time-lags and the 20% cut-off, Se and PPV

increased as we increased the time-lags, with PPV always higher

than the Se. However, adding more time steps did not always

improve model performance.
FIGURE 4

Mean raw sensor data and 95% C.I. for the mean for each behavioral variable measured with a leg-attached 3-axis accelerometer (TrackaCow,
ENGS, Hampshire, UK) in a 24-hour period stratified by parity and days in milk (DIM) categorized as convalescent (parturition to 3 DIM), first week
(4 – 7 DIM), second week (8 – 14 DIM), and third week (15 – 21 DIM). Only convalescent and third week are shown for comparison purposes.
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FIGURE 6

Distribution of F1 scores (%) at the 20% cut-off from the upper quartile by behavior and classifier when sensor data registered by a leg-attached 3-
axis accelerometer (TrackaCow, ENGS, Hampshire, UK) were aggregated using 24-, 12-, 6-, and 3-hour time windows, and sensor data from all day
were used. F1 scores are shown for different times-lags and for each one of the classifiers: k-nearest neighbors (KNN), random forest (RF), and
support vector machine (SV).
FIGURE 5

F1 scores (%) using the 20% highest class probabilities as cut-off when sensor data registered by a leg-attached 3-axis accelerometer (TrackaCow,
ENGS, Hampshire, UK) were aggregated using time windows of 24, 12, 6, and 3 hours. F1 scores are shown for those models where all sensor data
were used to fit the models and parity was not taken into account. F1 scores are shown for different time-lags and for each one of the classifiers:
k-nearest neighbors (k-NN), random forest (RF), and support vector machine (SVM).
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For example, the PPV for lying behavior and time window tw3

peaked at time-lag 8 (100% PPV) and plateaued afterwards. Similarly,

the PPV for step and time window tw6 peaked at time-lag 8 (100%

PPV), decreasing afterwards. For behavior steps, the highest F1 scores

were obtained at 1.5 – 2 days before any given event (13 time-lags and 8

time-lags corresponding tw3 and tw6 time windows, respectively). In

contrast, the highest F1 score for lying time was found at time-lags 8

and 6 for time windows tw3 (24 hours before an event) and tw6 (36

hours before an event), respectively.

Using the estimated predicted probabilities, we compared the

metritis events identified by RF with the clinical data. We found that

the number of missed events ranged between 1 and 4, increasing as

we increased the number of time steps before the health event, and

none of them were two consecutive missed events, this is, the

metritis had either been diagnosed before, or it was diagnosed at the

following metritis evaluation.

4 Discussion

In this study, we developed a predictive model for early detection

of metritis events using behavioral data collected from a leg-attached

accelerometer. The study compared the performance of three ML

classification algorithms to develop the predictive model, using F1
score to compare acrossmodels. We also studied the appropriate time

windows and time-lags for optimal model performance, taking into

account the potential effect of farm scheduled activities and decision

thresholds on classifier performance.
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4.1 Sensor data

Our results confirmed that behavior data can be highly variable.

From the results summarized in Table 2 stands out that cows spent,

on average, 8.7 hours/day lying down (21.74 + 21.06 min/h), had

14.88 lying bouts per day (0.62 + 0.85 per h), and took 2,371.2 steps

per day (98.80 + 72.51 per h). Our findings are similar to those

found by others, although mean lying time was found to be in the

lower of what is recommended (Bewley et al., 2010; Gomez and

Cook, 2010). Differences in the mean values across studies could be

due to differences in the devices used or the average DIM of the

animals. Most of the studies that report descriptive statistics of

different behaviors are validation studies where cows across the

whole lactation were used, increasing the average DIM of the

animals in the study. This is particularly relevant since cow’s

behavior is constantly changing postpartum. Furthermore,

differences in management practices such as high frequency feed

delivery will translate into differences in lying time and lying bouts

across studies (Mattachini et al., 2019).

In this study, animal behavior changed according to DIM. During

the first 3 DIM, lying bouts and steps behaviors had a downward trend

while lying time had an upward trend. Overall, intake had an upward

trend for the whole study period.We also found that multiparous had a

lower number of lying bouts and steps than primiparous, while the

amount of time lying was greater than that found in primiparous,

particularly during evening-night hours. The trends observed during

the study period agree with those found by other authors. Lying time
TABLE 3 Results from models’ performance (%) where random forest (RF) classifier was used on sensor data registered by a leg-attached 3-axis
accelerometer (TrackaCow, ENGS, Hampshire, UK) from all day were aggregated using a 6-hour time window and the 20% cut-off as decision
threshold after ranking the classification probabilities from high to low.

Behavior Time-Lag k
Sample Size 20% cut-off

Metritis Non- metritis Se Sp PPV NPV Ac. F1 score

Lying 5 44 170 88.64 97.65 90.7 97.08 95.79 89.66

6 43 163 93.02 99.39 97.56 98.18 98.06 95.24

7 43 163 93.02 99.39 97.56 98.18 98.06 95.24

8 43 162 90.7 98.77 95.12 97.56 97.07 92.86

9 42 161 92.86 98.76 95.12 98.15 97.54 93.98

10 41 156 87.8 98.08 92.31 96.84 95.94 90

11 41 156 87.8 98.08 92.31 96.84 95.94 90

12 40 155 97.5 100 100 99.36 99.49 98.73

Step 5 45 173 91.11 98.27 93.18 97.7 96.79 92.13

6 45 167 88.89 98.8 95.24 97.06 96.7 91.96

7 45 167 91.11 99.4 97.62 97.65 97.64 94.25

8 45 166 93.33 100 100 98.22 98.58 96.55

9 44 165 88.64 98.18 92.86 97.01 96.17 90.7

10 44 160 90.91 99.38 97.56 97.55 97.55 94.12

11 44 160 90.91 99.38 97.56 97.55 97.55 94.12

12 43 159 88.37 98.74 95 96.91 96.53 91.57
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has been reported to decrease in the days following parturition, with

increasing lying time as DIM increased (Chaplin and Munksgaard,

2001; Bewley et al., 2010). Udder discomfort or high demand for food

have been proposed as explanations for this trend (Chaplin and

Munksgaard, 2001). Feeding behavior has been found to decrease by

35% over the 2 weeks before calving and to increase by 99% over the 3

weeks following parturition (Urton et al., 2005). Differences by parity

regarding lying bouts, lying time, and number of steps have been

found in other studies, where primiparous cows have shown

increased lying times among grazing dairy cows (Sepúlveda-Varas

et al., 2014), as well as in free-stall housed cows (Vasseur et al., 2012;

Barragan et al., 2018; Neave et al., 2018). In contrast, multiparous

cows had greater lying times in our study, a finding supported by
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Piñeiro et al. (2019). It is not clear why different studies yield

contradictory results for the interaction between parity and lying

time, but it is possible that different findings may be attributed to

inflammatory response differences by parity (Humblet et al., 2006;

Piñeiro et al., 2019), or to social dominance dynamics between

primiparous and older cows (Sepúlveda-Varas et al., 2014).

Nevertheless, we found that classifier performance for lying time by

parity was not superior to that one in which data from all cows were

pooled together.

The studied behaviors also changed according to the time of the

day. When behaviors were observed in a 24-hour period, cows showed

inverse trends regarding lying and steps. Lying time is a resting state

that was higher during night hours, followed by the hours between
TABLE 4 Results from model’s performance (%) where random forest (RF) classifier was used on sensor data registered by a leg-attached 3-axis
accelerometer (TrackaCow, ENGS, Hampshire, UK) from all day aggregated using time windows of 3 hours and the 20% cut-off as decision threshold
after ranking the classification probabilities from high to low.

Behavior Time-Lag k
Sample Size 20% cut-off

Metritis Non- metritis Se Sp PPV NPV Ac. F1 score

Lying 6 44 168 90.91 98.81 95.24 97.65 97.17 93.02

7 44 168 93.18 99.4 97.62 98.24 98.11 95.35

8 44 168 95.45 100 100 98.82 99.06 97.67

9 44 167 95.45 100 100 98.82 99.05 97.67

10 44 164 95.45 100 100 98.8 99.04 97.67

11 43 159 93.02 100 100 98.15 98.51 96.38

15 43 158 93.02 100 100 98.14 98.51 96.38

16 42 157 95.24 100 100 98.74 98.99 97.56

18 42 155 92.86 100 100 98.1 98.48 96.3

19 41 151 92.68 100 100 98.05 98.44 96.2

23 40 150 95 100 100 98.68 98.95 97.44

24 40 149 95 100 100 98.68 98.94 97.44

Step 6 45 171 91.11 98.83 95.35 97.69 97.22 93.18

7 45 171 93.33 99.42 97.67 98.27 98.15 95.45

8 45 171 91.11 98.83 95.35 97.69 97.22 93.18

9 45 170 91.11 98.82 95.35 97.67 97.21 93.18

10 45 167 91.11 99.4 97.62 97.65 97.64 94.25

11 45 163 91.11 99.39 97.62 97.59 97.6 94.25

12 45 163 88.89 98.77 95.24 96.99 96.63 91.96

13 45 163 93.33 100 100 98.19 98.56 96.55

15 45 162 91.11 100 100 97.59 98.07 95.35

16 44 161 93.18 100 100 98.17 98.54 96.47

18 44 159 93.18 100 100 98.15 98.52 96.47

19 44 155 88.64 99.35 97.5 96.86 96.98 92.86

23 43 154 88.37 99.35 97.44 96.84 96.95 92.68

24 43 153 90.7 100 100 97.45 97.96 95.12
fro
Only rows where a change in either sensitivity (Se) or positive predictive value (PPV) are shown.
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morning and afternoon milking. In contrast, behavior steps is an

activity state that was higher during milking times and at 10:00 h, time

at which cows were being moved to be treated or checked. These trends

are supported by circadian cycle research (Ruckebusch, 1972) and

similar findings have also been reported by other authors, although

small differences can be found across studies due to differences in

milking times, feeding management, or environmental temperature

(Overton et al., 2002; DeVries and von Keyserlingk, 2005). Differences

by parity were only observed during the evening-night hours, a finding

that could support the hypothesis that when left alone by farm

personnel, cows may have greater opportunities to express their

natural behavior. Therefore, restricting the use of sensor data to the

evening-night hours could improve classifier performances. Our

findings regarding model performance comparing all_day versus

evening-night models did not support this hypothesis. Nevertheless,

future studies should evaluate classifier performance under different

scenarios on a case basis, as there are some behaviors that may not be

worth considering given certain times of the day such as milking times,

where animals will not lay down or eat.

To better understand the dynamics of cow behavior throughout

the study period, we looked at the behaviors in a 24-hour period when

DIM were categorized. Based on our results, we did not find significant

differences across mean values for each hour of the day. However,

based on our results, we propose that the inclusion or exclusion of data

from the first 3 DIM should be routinely evaluated in these types of

studies, since results may change depending on the type of sensor

device used and the nature of behavioral data being collected.
4.2 Performance comparison of three
ML classifiers

Based on the F1 score distribution and consistency of results at

the 20% cut-off, RF had the best performance, followed by k-NN

and SVM, with slightly higher F1 scores as the level of time

aggregation became smaller, a finding also reported in other

studies (Martiskainen et al., 2009). In this study, amongst those

models with best performance, k-NN achieved an F1 score with

values between 44.94 – 63.16%, while SVM yielded an F1 score

between 23.26 – 65.00%. In contrast, the best RF models had F1
scores in the range between 92.86 – 100%. Random forest is based

on decision trees, a classification method that has been used in the

precision dairy farming with great success to study grazing cattle

behavior (Williams et al., 2016), to predict fertility and improve heat

detection in dairy cows (Caraviello et al., 2006; Vanrell et al., 2014),

to predict mastitis (Kamphuis et al., 2010), or to understand

complex relationships between metabolic diseases postpartum and

culling risk (Probo et al., 2018). Random forest can handle large

data sets with a high number of features; however, the decision trees

the RF is made of are not intuitive, making it harder to grasp the

relationship existing in the input data when compared with

other methods.

We also found that, even though intake and intake visit did not yield

high F1 scores, SVM and k-NN classifiers performed better with

behaviors intake and intake visit while RF performed better with

behaviors lying and steps. This supports the idea that some ML
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classifiers may work better than others for certain behaviors, and

alternative ML algorithms for feeding related behaviors measured

with Trackacow device should be explored.
4.3 Optimal time windows and time-lags
for best behavioral variables

In dairy cattle, increased physical activity is a sign of estrus (Firk

et al., 2002) and a sign of sickness behavior when decreased around

metritis diagnosis (Liboreiro et al., 2015; Stangaferro et al., 2016a;

Steensels et al., 2017). In our study, number of steps had a Se that

ranged between 88.37 to 93.33%, PPV between 92.86 and 100%, and F1
score between 90.7 and 96.55%, being these estimates using the 20%

cut-off and RF classifier. These results were similar when sensor data

were aggregated either every 6- or 3-hour time windows. These

performance metrics were greater than those reported by (Mayo

et al., 2019) for heat detection, although their sample size was

smaller, and they did not use a ranked-based approach to evaluate

model performance. Our estimates were also higher than those

reported by Stangaferro et al. (2016b), with average Se of 53% and a

maximum of 70% Se for those cows with rectal temperature ≥ 40.0°C.

However, comparison is not straightforward since performancemetrics

provided by other authors were for the associations between metritis

diagnosis and a health index, computed with proprietary algorithms

that combined rumination and activity measured in arbitrary units per

day. Furthermore, no values for PPV were reported since no specific

disease was provided in the alert generated by their device.

Among behaviors considered as resting state, lying time has a

critical role in the production potential and welfare status of dairy

cattle. Associated with disease, increased lying time has been found in

animals with metritis as a consequence of depression (Barragan et al.,

2018), while it has been found to decrease associated with mastitis due

to discomfort while lying down (Siivonen et al., 2011). In this study,

lying time Se, Sp, PPV, F1 score, and Ac were 87.8 – 97.5%, 98.08 –

100%, 92.31 – 100%, 90 – 98.73%, and 95.94 – 99.49%, respectively,

with slightly greater values when sensor data were aggregated using a

time window of 6 hours. Our performance metrics are higher than

those found in accelerometer device validation studies, with Se, PPV,

and Ac of 80%, 83%, and 84%, respectively (Martiskainen et al., 2009),

as well as higher than those found using lying time 1 week before

calving to predict metritis post-partum, with reported Se and Sp of 75%

and 66.67%, respectively (Patbandha et al., 2012).

The number of models that ranked amongst the best ones

changed based on the different time windows. Based on our

findings, best results were obtained with sensor data aggregated

using 6- or 3-hour time windows, being the 6-hour time window

slightly better for steps, while the 3-hour time window resulted in

slightly better performance for lying bouts. For optimal

performance, sensor data from the previous 36 – 72 hours before

the event were needed when sensor data with 6-hour time windows

were used, although when data were aggregated using 3-hour time

windows, data from the previous 18 hours before an event did

suffice. This is in agreement with what has been found by other

authors: steps have been found to change 2 days before diagnosis of

metritis (Steensels et al., 2017), metabolic, or digestive problems
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(Edwards and Tozer, 2004). Similarly, lying bouts have been found

to change 2 to 3 days before metritis diagnosis (Neave et al., 2018;

Piñeiro et al., 2019). Nevertheless, the appropriate combination of

number of observations used as cut-off, time window, and time-lags

should be chosen on a farm case basis and should be dynamically

adjusted to reflect changes in the incidence of metritis cases, costs

for medical treatments, and cost of missed metritis cases.
4.4 Model generalization

Studying metritis events is challenging due to the multifactorial

causes of common diseases during the transition period in dairy cattle.

Three weeks before and after parturition, dairy cattle undergo a

negative energy balance, which is a risk factor for diseases such as

metritis, hypocalcemia, or hyperketonemia (LeBlanc, 2010). There is

also no clear ML algorithm that can be used for detecting metritis

events, and contradictory findings are found in the literature. It is

difficult to generalize feature-based models to unseen data, as causes

and incidence of health problems as well as differences in animal

behavior often differ between herds. One explanation of differences

between farms could be linked to farm-specific factors that have an

impact on animal behavior such as differences in feeding and milking

times, stall stock density, type of housing system, type of lying material,

standing surface, weather and climate (Tucker et al., 2021). Similarly,

the use of different metritis scoring systems and diagnostic techniques

could result in different findings as those presented in this study.

Besides, meaningful model inputs can be hard to identify due to an

overall lack of methodological study and reporting of sensor data pre-

processing in the literature. It could be possible to overcome the

generalization problem by continuously implementing the model on

farms, resulting in improved model performance over time.

Furthermore, a larger dataset containing more animals and multiple

farms may facilitate the extraction of model variables that do not

farm-specific.

Overfitting is another common problem in machine learning that

impacts the generalization of the models. In fact, better performance at

shorter time windows (e.g., time windows tw3 versus tw12) or longer

time-lags (e.g., 3 versus 24 with time window tw3) could be due to

overfitting. In those cases where changes in performance are not

statistically significantly different, simpler models should be preferred.
4.5 Conclusions

The findings of this study have several implications. Our results

indicate that rank-based methods for model fitting yields superior

results to those studies where data were artificially balanced.

Therefore, rank-based methods should be preferred when

developing predictive models that deal with unbalanced datasets

that may be implemented in the future. We also found that data

from the last two days regarding steps and lying time measured with

Trackacow device could be used to predict metritis events with RF

classifier when sensor data were aggregated using either 6- or 3-

hour time windows.
Frontiers in Animal Science 15
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.

Ethics statement

The animal study was reviewed and approved by Institutional

Animal Care and Use Committee IACUC protocol number 2013-

1199 and 2016-2368.

Author contributions

GV, JS, and BM-L contributed to conception and design of the

study. GV, IT and AL organized the different datasets. GV performed

the statistical analysis. GV wrote the first draft of the manuscript. All

authors contributed to the article and approved the submitted version.

Funding

This work was partially supported by the National Science

Foundation awards IIS-BigData-AI-1838207 and OIA-2134901. JS was

partially supported by the National Science Foundation DMS 1712996.

Acknowledgments

The authors would like to thank the University of Kentucky

Coldstream dairy staff, and to all the students who helped with the

fresh cow exam and data collection. We would also like to thank

Jeffrey Bewley for facilitating data sharing.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fanim.2022.1157090/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fanim.2022.1157090/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fanim.2022.1157090/full#supplementary-material
https://doi.org/10.3389/fanim.2023.1157090
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Vidal et al. 10.3389/fanim.2023.1157090
References
Alpaydin, E. (2010). Introduction to machine learning (Cambridge, Massachusetts:
The MIT Press).

Barragan, A. A., Piñeiro, J. M., Schuenemann, G. M., Rajala-Schultz, P. J., Sanders, D.
E., Lakritz, J., et al. (2018). Assessment of daily activity patterns and biomarkers of pain,
inflammation, and stress in lactating dairy cows diagnosed with clinical metritis.
J. Dairy Sci. 101, 8248–8258. doi: 10.3168/jds.2018-14510

Bewley, J. M., Boyce, R. E., Hockin, J., Munksgaard, L., Eicher, S. D., Einstein, M. E.,
et al. (2010). Influence of milk yield, stage of lactation, and body condition on dairy
cattle lying behaviour measured using an automated activity monitoring sensor.
J. Dairy Res. 77, 1–6. doi: 10.1017/S0022029909990227

Borchers, M. R. (2015). An evaluation of precision farming technology adoption, perception,
effectiveness and use. Thesis and Dissertations – Animal and Food Sciences.. 45.

Borchers, M. R., Chang, Y. M., Tsai, I. C., Wadsworth, B. A., and Bewley, J. M.
(2016). A validation of technologies monitoring dairy cow feeding, ruminating, and
lying behaviors. J. Dairy Sci. 99, 7458–7466. doi: 10.3168/jds.2015-10843

Breiman, L. (2001). Random forests. Mach. Learn 45, 5–32. doi: 10.1023/
A:1010933404324

Caraviello, D. Z., Weigel, K. A., Craven, M., Gianola, D., Cook, N. B., Nordlund, K.
V., et al. (2006). Analysis of reproductive performance of lactating cows on large dairy
farms using machine learning algorithms. J. Dairy Sci. 89, 4703–4722. doi: 10.3168/
jds.S0022-0302(06)72521-8

Chapinal, N., Carson, M., Duffield, T. F., Capel, M., Godden, S., Overton, M., et al.
(2011). The association of serum metabolites with clinical disease during the transition
period. J. Dairy Sci. 94, 4897–4903. doi: 10.3168/jds.2010-4075

Chapinal, N., Veira, D.M.,Weary, D.M., and von Keyserlingk,M. A. G. (2007). Technical
note: validation of a system for monitoring individual feeding and drinking behavior and
intake in group-housed cattle. J. Dairy Sci. 90, 5732–5736. doi: 10.3168/jds.2007-0331

Chaplin, S., and Munksgaard, L. (2001). Evaluation of a simple method for
assessment of rising behaviour in tethered dairy cows. Anim. Sci. 72, 191–197.
doi: 10.1017/S1357729800055685

Dasarathy, B. (1991). Nearest neighbor pattern classification techniques (Los
Alamitos, CA: IEEE Computer Society Press).

de Koning, C. J. A. M. (2010). “Automatic milking - common practice on dairy
farms,” in Proceedings First North America conference Precision Dairy Management,
Toronto, Canada. 52–67.

DeVries, T. J., and von Keyserlingk, M. A. G. (2005). Time of feed delivery affects the
feeding and lying patterns of dairy cows. J. Dairy Sci. 88, 625–631. doi: 10.3168/
jds.S0022-0302(05)72726-0

Dittrich, I., Gertz, M., and Krieter, J. (2019). Alterations in sick dairy cows’ daily
behavioural patterns. Heliyon 5, e02902. doi: 10.1016/j.heliyon.2019.e02902

Edwards, J. L., and Tozer, P. R. (2004). Using activity and milk yield as predictors of
fresh cow disorders. J. Dairy Sci. 87, 524–531. doi: 10.3168/jds.S0022-0302(04)73192-6

Firk, R., Stamer, E., Junge, W., and Krieter, J. (2002). Automation of oestrus detection in
dairy cows: a review. Livest Prod Sci. 75, 219–232. doi: 10.1016/S0301-6226(01)00323-2

Fix, E., and Hodges, J. L. (1951). Discriminatory analysis – nonparametris
discrimination: consistency properties, U.S. Air Force, School of Aviation Medicine,
Randolph Field, TX.

Gomez, A., and Cook, N. B. (2010). Time budgets of lactating dairy cattle in
commercial freestall herds. J. Dairy Sci. 93, 5772–5781. doi: 10.3168/jds.2010-3436

Hastie, T., Tibshirani, R., and Friedman, J. (2009). “The elements of statistical learning,” in
Data mining, inference, and prediction, 2nd Edition (New York: Springer). doi: 10.1007/b94608

Humblet, M. F., Guyot, H., Boudry, B., Mbayahi, F., Hanzen, C., Rollin, F., et al.
(2006). Relationship between haptoglobin, serum amyloid a, and clinical status in a
survey of dairy herds during a 6-month period. Vet. Clin. Pathol. 35, 188–193.
doi: 10.1111/j.1939-165X.2006.tb00112.x

Huzzey, J. M., Veira, D. M., Weary, D. M., and von Keyserlingk, M. A. G. (2007).
Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. J.
Dairy Sci. 90, 3220–3233. doi: 10.3168/jds.2006-807

Kamphuis, C., Mollenhorst, H., Heesterbeek, J. A. P., and Hogeveen, H. (2010). Detection of
clinical mastitis with sensor data from automatic milking systems is improved by using
decision-tree induction. Journal of Dairy Science. 93 (8), 3616–3627. doi: 10.3168/jds.2010-3228

Kaufman, E. I., LeBlanc, S. J., McBride, B. W., Duffield, T. F., and DeVries, T. J.
(2016). Association of rumination time with subclinical ketosis in transition dairy cows.
J. Dairy Sci. 99, 5604–5618. doi: 10.3168/jds.2015-10509

Kohavi, R., Sommerfield, D., and Dougherty, J. (1997). Data mining using MLC++ a
machine learning library in c++. Int. J. Artif. Intell. Tools 6, 537–566. doi: 10.1142/
S021821309700027X

LeBlanc, S. (2010). Monitoring metabolic health of dairy cattle in the transition
period introduction–metabolic challenges in peripartum dairy cows and their
associations with reproduction. J. Reprod. Dev. 56, 29–35. doi: 10.1262/jrd.1056S29

Lee, A. R. (2018). An evaluation of physiological and behavioral indicators of
postpartum diseases and heat stress in dairy cows. Theses Dissertations - Anim. Food
Sci. 91. doi: 10.13023/etd.2018.379
Frontiers in Animal Science 16
Liboreiro, D. N., Machado, K. S., Silva, P. R. B., Maturana, M. M., Nishimura, T. K.,
Brandão, A. P., et al. (2015). Characterization of peripartum rumination and activity of
cows diagnosed with metabolic and uterine diseases. J. Dairy Sci. 98, 6812–6827.
doi: 10.3168/jds.2014-8947

Martiskainen, P., Järvinen, M., Skön, J. P., Tiirikainen, J., Kolehmainen, M., and
Mononen, J. (2009). Cow behaviour pattern recognition using a three-dimensional
accelerometer and support vector machines. Appl. Anim. Behav. Sci. 119, 32–38.
doi: 10.1016/j.applanim.2009.03.005

Mattachini, G., Pompe, J., Finzi, A., Tullo, E., Riva, E., and Provolo, G. (2019). Effects
of feeding frequency on the lying behavior of dairy cows in a loose housing with
automatic feeding and milking system. Animals 9. doi: 10.3390/ani9040121

Mayo, L. M., Silvia, W. J., Ray, D. L., Jones, B. W., Stone, A. E., Tsai, I. C., et al.
(2019). Automated estrous detection using multiple commercial precision dairy
monitoring technologies in synchronized dairy cows. J. Dairy Sci. 102, 2645–2656.
doi: 10.3168/jds.2018-14738

Neave, H. W., Lomb, J., Weary, D. M., LeBlanc, S. J., Huzzey, J. M., and von
Keyserlingk, M. A. G. (2018). Behavioral changes before metritis diagnosis in dairy
cows. J. Dairy Sci. 101, 4388–4399. doi: 10.3168/jds.2017-13078

Overton, M. W., Sischo, W. M., Temple, G. D., and Moore, D. A. (2002). Using time-
lapse video photography to assess dairy cattle lying behavior in a free-stall barn. J. Dairy
Sci. 85, 2407–2413. doi: 10.3168/jds.S0022-0302(02)74323-3

Patbandha, T. K., Mohanty, T. K., Layek, S. S., Kumaresan, A., and Behera, K. (2012).
Application of pre-partum feeding and social behaviour in predicting risk of developing
metritis in crossbred cows. Appl. Anim. Behav. Sci. 139, 10–17. doi: 10.1016/
j.applanim.2012.03.014

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Piñeiro, J. M., Menichetti, B. T., Barragan, A. A., Relling, A. E., Weiss, W. P., Bas, S.,
et al. (2019). Associations of pre- and postpartum lying time with metabolic,
inflammation, and health status of lactating dairy cows. J. Dairy Sci. 102, 3348–3361.
doi: 10.3168/jds.2018-15386

Probo, M., Pascottini, O. B., LeBlanc, S., Opsomer, G., and Hostens, M. (2018).
Association between metabolic diseases and the culling risk of high-yielding dairy cows
in a transition management facility using survival and decision tree analysis. J. Dairy
Sci. 101, 9419–9429. doi: 10.3168/jds.2018-14422

R Core Team (2017). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing.

Royster, E., and Wagner, S. (2015). Treatment of mastitis in cattle. Veterinary Clinics
North America - Food Anim. Pract. 31, 17–46. doi: 10.1016/j.cvfa.2014.11.010

Ruckebusch, Y. (1972). The relevance of drowsiness in the circadian cycle of farm
animals. Anim. Behav. 20, 637–643. doi: 10.1016/S0003-3472(72)80136-2

Rutten, C. J., Velthuis, A. G. J., Steeneveld, W., and Hogeveen, H. (2013). Invited
review: sensors to support health management on dairy farms. J. Dairy Sci. 96, 1928–
1952. doi: 10.3168/jds.2012-6107

Saito, T., and Rehmsmeier, M. (2015). The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One
10, 1–21. doi: 10.1371/journal.pone.0118432

Schlageter-Tello, A., Bokkers, E. A. M., Groot Koerkamp, P. W. G., van Hertem, T.,
Viazzi, S., Romanini, C. E. B., et al. (2014). Effect of merging levels of locomotion scores
for dairy cows on intra- and interrater reliability and agreement. J. Dairy Sci. 97, 5533–
5542. doi: 10.3168/jds.2014-8129
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