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Where is the sow’s nose:
RetinaNet object detector as a
basis for monitoring the use of
rack with nest-building material

Maciej Oczak1,2*, Florian Bayer2, Sebastian G. Vetter2,3,
Kristina Maschat2,4 and Johannes Baumgartner2

1Precision Livestock Farming Hub, The University of Veterinary Medicine Vienna (Vetmeduni Vienna),
Vienna, Austria, 2Institute of Animal Welfare Science, The University of Veterinary Medicine Vienna
(Vetmeduni Vienna), Vienna, Austria, 3Veterinary Public Health and Epidemiology, The University of
Veterinary Medicine Vienna (Vetmeduni Vienna), Vienna, Austria, 4Austrian Competence Centre for Feed
and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln, Austria
Access to nest-building material in the preparturient period is beneficial for

sows’ welfare. However, on slatted floors, long-stem forage can drop into the

slurry and block the drainage system. As a compromise considering the needs

of sows for access to adequate nest-building material, farrowing pens with

slatted floors are equipped with dispensers (racks) accessible by sows. In this

study, we developed a computer vision method to monitor the use of the racks

with nest-building material. In total, 12 sows were included in the experiment

from 5 days before farrowing to the end of farrowing. Hay rack use behaviors

were labeled for all the sows, i.e., pulling hay, nose close to the rack,

exploratory behavior, and bar biting. The object detection algorithm

RetinaNet was used to extract centroids of parts of the sow’s body and the

hay rack. Several feature variables were estimated from the centroids of

detected parts of the sow’s body, and random forest was used for the

classification of hay rack use behaviors. The model for the detection of

pulling hay behavior had the best performance: 83.5% sensitivity, 98.7%

specificity, and 98.6% accuracy. The distance between the sows’ nose and

the hay rack was the most important feature variable, which indicated the

importance of nose location for the recognition of behaviors in which pigs

interact with other objects. The developed models could be applied for

automated monitoring of the use of nest-building material in preparturient

sows. Such monitoring might be especially important in sows housed on

slatted floors.

KEYWORDS

sow, nest building, computer vision, hay rack use, automated monitoring, deep learning,
precision livestock farming
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1 Introduction

Access to roughage in confined pigs is widely considered to

be beneficial for the welfare of animals (Müller, 1979;

Vanputten, 1980). Straw is the most studied rooting material

for pigs, and the effect of other studied materials is very often

compared with the effect of straw (Studnitz et al., 2007). For sows

housed on a concrete floor, straw serves as bedding that

improves the thermal and physical comfort of the floor

(Fraser, 1975). Preparturient sows prefer a bedded area for

farrowing (Arey et al., 1991). Provision of straw for

preparturient sows resulted in more nest-building behaviors

(Burne et al., 2000) and additionally increased the response to

piglet screams 1 to 3 days postpartum (Herskin et al., 1998).

Just like straw, (lucerne) hay has been shown to increase nest

building and reduce stereotypical behavior prior to farrowing

(Edwards et al., 2019). Compared to straw, good-quality hay

might provide additional nutritional benefits for lactating sows,

including higher metabolizable energy and crude protein levels

(Kamphues, 2004) as well as a high content of secondary plant

substances (Ziolkowska et al., 2020), contributing to pigs’ health.

Hay might also be preferred as enrichment material over straw

by young piglets as it is softer and therefore easier to chew.

One disadvantage farmers might face when applying roughage

as enrichment material is that on slatted floors long-stem forage can

drop into the slurry and block the drainage system. To provide

access for the animals to adequate nest-building material, farrowing

pens with slatted floors can be equipped with straw dispensers

(racks) accessible by sows (Oczak et al., 2015). This allows sows to

gather small amounts of roughage from dispensers to perform nest-

building behavior (Arey et al., 1991) with a lower risk of blocking

the slurry drainage system compared to pens with straw bedding.

The risk of application of such dispensers in practical farm

conditions is that they are resupplied with a standard amount of

roughage by farm staff on a daily basis according to the appropriate

regulations, e.g., defined by the Austrian Tierhaltungsverordnung

(BMG, 2012), but without consideration for the individual needs of

the sow, which might vary between animals (Widowski and Curtis,

1990; Maschat et al., 2020).

Precision livestock farming (PLF) technology can be used for

the surveillance and monitoring at the level of the individual

animal, pen, farm, region, or country. Thus, PLF is currently

regarded as the heart of the engineering endeavor toward

sustainability in livestock-related food production. Its

application allows making optimal use of knowledge and

information in the monitoring and control of processes with

livestock (Berckmans and Guarino, 2008). Application of PLF

technology for automated monitoring of individual use of

roughage in a farrowing pen might offer a possibility to

improve individual care in preparturient sows by supporting

the decision of farm staff on when to resupply the dispensers

with nest-building material. Additionally, our hypothesis is that
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automated monitoring of rack use by sows might improve the

performance of models for farrowing prediction, which are

based only on the general activity level of animals. This might

be especially relevant for improving sow welfare in farrowing

systems designed for temporary sow confinement in crates

(Oczak et al., 2019).

Object detection is an important computer vision task that

deals with detecting instances of visual objects of a certain class

(such as humans, animals, or cars) in digital images. In recent

years, we can observe an unprecedented progress in object

detection with wide adoption of these methods in real-world

applications such as autonomous driving, robot vision, and

video surveillance (Zou et al., 2019). The object detection

model RetinaNet was applied as a PLF technique for the

recognition of different body parts of preparturient sows and

for the estimation of sows’ activity level, which resulted in high

agreement with gold-standard and accelerometer-based

estimation (Oczak et al., 2022). In this study, we aimed to

develop a computer vision algorithm based on an object

detection model for monitoring the use of the dispenser with

nest-building material in preparturient sows. The second

objective was to analyze if the output of this algorithm could

potentially improve the performance of farrowing prediction

compared to current state-of-the-art techniques for farrowing

prediction based solely on activity levels (Manteuffel et al., 2015;

Pastell et al., 2016; Traulsen et al., 2018; Oczak et al., 2019).
2 Materials and methods

2.1 Ethical statement

Project PIGwatch was authorized by the Ethical Committee

of the Austrian Federal Ministry of Science, Research and

Economy and by the Ethical Committee of Vetmeduni Vienna

(GZ: BMWFV-68.205/0082-WF/II/3b/2014) according to the

Austrian Tierversuchsgesetz 2012, BGBl. I Nr. 114/2012.
2.2 Experimental setup

2.2.1 Animals and housing
The experiment was conducted between June 2014 and

March 2016 at the pig research and teaching farm (VetFarm)

of the University of Veterinary Medicine Vienna, Vienna,

Austria. In total, 12 sows from two genetic lines were included

in the experiment: Austrian Large White sows and Landrace ×

Large White crossbreds. Animals were included in the

experiment from 5 days before farrowing to the end of

farrowing. These sows were housed in two types of farrowing

pens, which offered the option of either keeping the sows free or

confined in a farrowing crate. Sows were housed in two types of
frontiersin.org
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farrowing pens to increase the variability of housing conditions.

This should have increased the robustness of any algorithms

developed on collected datasets. Out of the 12 sows, six were kept

in sow welfare and piglet protection (SWAP) pens (Jyden Bur A/

S, Vemb, Denmark) and six in trapezoid pens (Schauer

Agrotronic GmbH, Prambachkirchen, Austria). None of the

animals included in the experiment were confined in a

farrowing crate from the introduction to the farrowing pen

until 24 h after the end of farrowing. Some of the animals

were confined in crates after the experimental period when

farrowing was already finished.

The SWAP pen had an area of 6.0 m2 with a solid concrete

floor in the front (lying area) and a slatted cast iron floor in the

back (defecation area). The pen had two troughs: one accessible

by the sow when the crate was opened and a second one

accessible by the sow when the crate was closed (Figure 1A).

The trapezoid pens had an area of 5.5 m2. The pens had plastic

flooring in the creep area and solid concrete flooring in the sow

lying area in front of the trough (Figure 1B). In both pen types, a

rack with nest-building material hay was mounted in the front

area of the pen, in close proximity to the trough.

The sows were introduced to the farrowing pens

approximately 5 days before the expected date of farrowing.

The date was derived from the average gestation length of sows

at VetFarm, which was 114 days. The experimental period was

from the introduction of the sow to the farrowing room until the

end of farrowing. The experimental pens were located in a

testing unit of the VetFarm, an isolated building with an

automatic ventilation system. The average temperature in the

room was 22°C. The sows were fed from 1.25 to 3.3 kg of wet

feed daily. They were fed twice a day during the experimental

period. Water was provided permanently in the troughs via a

nipple drinker or an automatic water-level system. To fulfill the

need for adequate material to explore and for nest building, sows

were offered hay in the aforementioned rack throughout their

stay in the pens. Farm staff checked the racks twice a day and

half-filled the racks in the morning or whenever the racks

were empty.
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2.2.2 Video recording
The behavior of the sows was video-recorded continuously

from introduction to the farrowing pens until 24 h postpartum

with 2D cameras in order to create a dataset that could be

labeled. Each pen was equipped with one IP camera (GV-BX

1300-KV, Geovision, Taipei, Taiwan) locked in protective

housing (HEB32K1, Videotec, Schio, Italy) hanging 3 m above

the pen, giving an overhead view. Additionally, infrared

spotlights (IR-LED294S-90, Microlight, Bad Nauheim,

Germany) were installed in order to allow night recording.

The videos were recorded with 1,280 × 720 pixel resolution, in

MPEG-4 format, at 30 fps.

The cameras were connected to a PC on which a Multicam

Surveillance System (8.5.6.0, Geovision, Taipei, Taiwan) was

installed. The system allowed simultaneous recording of videos

from nine cameras. Thus, not all 12 sows included in the

experiment were recorded simultaneously. The PC had an

Intel i5-3330 processor, 3 GHz (Intel, Santa Clara, USA) with

4 GB of physical memory. The operating system was Microsoft

Windows 7 Professional (Redmond, USA). Recordings were

stored on exchangeable, external 2 and 3 TB hard drives.
2.3 Dataset

The dataset composed of video material was divided into two

subsets: the first for training and the second for validation of the

computer vision algorithm for the classification of hay rack use.

The subset for training consisted of the same number of animals

(n = 6) as the subset for validation (n = 6) of the algorithm. The

animals in both subsets were equally distributed between SWAP

and trapezoid pens. Comparison of statistical measures of the

effectiveness of the algorithm on the training and validation sets

enables one to draw conclusions on how well the algorithm

could work on other independent datasets. We decided to

include both types of pens in the training and validation sets

to increase the robustness of developed models to new

unseen environments.
A B

FIGURE 1

Farrowing pens with the possibility of temporary crating. (A) SWAP pen. (B) trapezoid pen.
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2.4 Data labeling

Videos of sow behavior were manually labeled in order to

create a reference dataset. In the first step of the labeling process,

the time of the onset of farrowing of each individual sow (n = 12)

was labeled. The onset of farrowing was defined as the point in

time when the body of the first piglet born dropped on the floor.

The time of birth of the last piglet indicated the end of farrowing.

The labeling software Interact (versions 9 and 14, Mangold

International GmbH, Arnstorf, Germany) was used to label

the beginning and end of farrowing on recorded videos.

The reference for the automated estimation of hay rack use

by sows was based on the manual labeling of four behaviors by

one trained labeler. These behaviors were pulling hay, nose close

to the rack, exploratory behavior, and bar biting (for definitions,

see Table 1). Hay rack use behaviors were labeled for all sows

(n = 12) included in the experiment. Behaviors were labeled

continuously from the introduction of the sow to the farrowing

pen until 24 h after farrowing. The start and end of each

behavior were labeled in this period for each sow. The labeling

software Boris (version 7.9.15, Torino, Italy) was used to label

gold standard for the estimation of hay rack use by sows.

The labeled dataset was divided to train two algorithms for

computer vision-based detection of hay rack use. The first

algorithm was trained on a reference dataset in which the

occurrence of any of four labeled hay rack use behaviors

indicated that the sow was using the rack. The second algorithm

was trained on a reference dataset in which only pulling hay

behavior was interpreted as hay rack use behavior, while all the

other labeled behaviors were interpreted as non-hay rack use. We

compared the performance of both algorithms to verify our

hypothesis that pulling hay behavior is easier to distinguish

visually for the labeler and automatically by computer vision

techniques than the other hay rack use behaviors. Thus, we

expected that the performance of the computer vision algorithm

trainedon labeledpullinghaybehaviorwill bebetter than thatof the

algorithm trained on all four labeled behaviors.
2.5 RetinaNet object detection model

Pytorch implementation of the RetinaNet object detection

algorithm (source code available at https://github.com/yhenon/
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pytorch-retinanet) was used for the task of detecting parts of the

body of sows such as the left ear, right ear, head, andwhole body and

also thehay rack in the farrowingpen (Lin et al., 2017).Theprocess of

trainingandvalidationof this algorithmfor thedetectionof sowbody

parts and the hay racks in the farrowing penswas described inOczak

et al. (2022).Originally recorded video datawere downsampled from

30 to 5 fps to increase the speed of training and inference with the

RetinaNet model. For the use of the algorithm in this analysis, we

trained the algorithm presented in Oczak et al. (2022) with the same

9,971 labeled images. The dataset with images used in Oczak et al.

(2022)wasupdatedwith labelingof thenosesof sows.TheComputer

Vision Annotation Tool (CVAT) was used to label the frames.

The performance of RetinaNet for the detection of the left

ear, right ear, head, and whole body of sows and the hay rack

that was already presented in Oczak et al. (2022) was updated

with the performance of the detection of noses of sows:

0.21 mAP at 0.5:0.95, 0.27 mAP at 0.5, and 0.2 mAP at 0.75.

RetinaNet models were trained on a workstation with two

CPUs: Intel Xeon Gold 6226 (total 24 cores) 256 GB memory

and NVIDIA Titan RTX GPU 24 GB GDDR6. It was possible to

train the models with 3.5 fps on the Titan RTX GPU installed on

the workstation. Thus, training of the RetinaNet model on 9,971

frames for 90 epochs took approximately 3 days.

Additionally, the activity level of every sow was estimated

based on the Euclidean distance between centroids of sow bodies

on consecutive frames as described in Oczak et al. (2022).
2.6 Algorithm for the classification of hay
rack use

2.6.1 Feature variables
The output of the RetinaNet algorithm—rectangles

corresponding to the parts of the body of a sow and a hay rack—

was further processed by extracting their centroids (Figure 2).

In the following steps, centroids of rectangles were used as

the basis for the calculation of 40 feature variables, which were

further used for the training of a random forest (RF) model for

the classification of hay rack use. The first feature variable was

calculated as the Euclidean distance between the sow’s head and

the hay rack (Figure 3),

where d(r, h) is the distance between points r and h. Point r

has Cartesian coordinates (rx, ry) and point h has Cartesian
TABLE 1 Definitions of hay rack use behaviors.

Behavior Definition

Pulling hay Visible manipulation of hay in the hay rack and/or pulling hay out of the hay rack for 2 s or longer.

Nose close
to the rack

Snout is touching the hay rack or in a range of half of the snout width to it for 2 s or longer.

Exploratory
behavior

Includes all kinds of movements of the head while the snout of the sow is directed toward the ground, i.e., rooting, arranging of the hay, carrying the hay,
etc. Behaviors had to be performed in close proximity to the hay rack, not more than a head width distance to it for 2 s or longer.

Bar biting Biting and gnawing on the hay rack or elements of the pen not farther away than a snout width from the rack for 2 s or longer.
frontiersin.org

https://github.com/yhenon/pytorch-retinanet
https://github.com/yhenon/pytorch-retinanet
https://doi.org/10.3389/fanim.2022.913407
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Oczak et al. 10.3389/fanim.2022.913407
coordinates (hx, hy). Point h is the centroid of the sow’s head,

while point r is the centroid of the hay rack (Figure 3). The

second feature variable was calculated as the Euclidean distance

between the centroid of the sow’s nose and the centroid of the

hay rack according to Eq. 1 (Figure 3).

d r, hð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx − hxð Þ2+ ry − hy

� �2q
(1)

The next calculated feature variable was the orientation of the

sow toward the hay rack based on a line perpendicular to the line

joining the centroids of both ears. This feature variable was

calculated in three steps. In the first step, the Cartesian coordinates

(ax, ay) and (bx, by) designating a perpendicular line between

centroids of both ears were calculated according to Eqs. 2–5,
Frontiers in Animal Science 05
ax =
lx − txffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lx − txð Þ2+
q

ly − ty
� �2 q +

lx − tx
2

(2)

ay =
ly − tyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lx − txð Þ2+
q

ly − ty
� �2 q +

ly − ty
2

(3)

bx =
lx − txffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lx − txð Þ2+
q

ly − ty
� �2 q +

lx − tx
2

(4)

by =
ly − tyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lx − txð Þ2+
q

ly − ty
� �2 q +

ly − ty
2

(5)
FIGURE 3

Distance from nose to rack and from head to rack.
FIGURE 2

Output of the RetinaNet algorithm; centroids extracted from parts of the body of a sow and a hay rack.
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where (lx, ly) are Cartesian coordinates of the centroid of the left ear

and (tx, ty) are Cartesian coordinates of the centroid of the right ear.

Variable q is a length of the perpendicular line, which had a length of

a diameter of an image, 1,252 pixels.

In the second step, we calculated the Cartesian coordinates

(cx, cy) of a point on a line perpendicular to the line between the

ears of the sow according to Eqs. 6 and 7,

cx = ax +
ry − ay
� �

by − ay
� �2+ rx − axð Þ bx − axð Þ2
bx − axð Þ + by − ay

� �2 bx − axð Þ (6)

cy = ay +
ry − ay
� �

by − ay
� �2+ rx − axð Þ bx − axð Þ2
bx − axð Þ + by − ay

� �2 by − ay
� �

(7)

where (rx, ry) are Cartesian coordinates of the centroid of the hay

rack. Point c indicates a point on a line perpendicular to the line

between the ears of the sow, which is the closest to the centroid

of the hay rack (Figure 4).

Finally, we calculated the Euclidean distance between points

c and r according to Eq. 8,

d r, cð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx − cxð Þ2+ ry − cy

� �2q
(8)

The fourth calculated feature variable was the orientation of the

sow toward a rack based on the location of the centroid of the nose

of the sow. The main difference in the calculation of this feature

variable and the previous one was that the line indicating the

direction of the head of the sow was not perpendicular to the line

between the left and right ears of the sow, but rather it was simply

a line joining the point in the middle between both ears of the sow

and the centroid of the nose. The Cartesian coordinates of this line

(dx, dy) and (ex, ey) were calculated according to Eqs. 9–12,
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dx =
lx + tx
2

+ q (9)

dx =
ly+ty
2 − ny

lz+tz
2 − nx

q +
ly + ty
2

(10)

ex = nx − q (11)

ey =
ly+ty
2 − ny

lz+tz
2 − nx

−qð Þ + ny (12)

where (nx, ny) are the Cartesian coordinates of the centroid of the

sow’s nose. The location of a point with the shortest distance to

the rack on the line from points d to e was calculated as in Eqs. 6

and 7. Similarly, the distance of this point to the centroid of the

rack was calculated as in Eq. 8 (Figure 4). Variable q is the length

of the perpendicular line, which had a length of a diameter of an

image, 1,252 pixels.

To calculate the next 36 feature variables, the Euclidean

distance was estimated between the centroids of the head, body,

or nose. For each of these three body parts, the Euclidean

distance was calculated between consecutive frames of

individual body parts according to Eq. 1. Finally, the statistical

metrics—the sum and the mean of the Euclidean distance—were

calculated on window durations of 2, 5, 10, 20, 30, and 45 s (3

body parts × 6 window durations × 2 statistical metrics = 36

feature variables). The main purpose of extraction of these 36

feature variables was to provide information to the model for the

classification of hay rack use on the movement of the different

parts of the sow’s body in various time windows (from 2 to 45 s).

We hypothesize that these could help to, for example, recognize

events in the video as non-hay rack use when a sow was sleeping

with her head and nose far from the hay rack, but the Euclidean
FIGURE 4

Orientation of the head toward the rack based on the location of the nose and ears.
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distance measured between the head of the sow and the hay rack

was small due to measurement of the distance in 2D

space (Figure 5).

The lack of movement of the head and nose in these frame

sequences might indicate that there were no hay rack use

behaviors. What was unknown was the time window that was

the most appropriate to estimate the movement for the purpose

of detection of these events. The application of the RF classifier

and the estimation of the mean decrease of impurity (MDI) in

the next step of the analysis helped to answer this question.

2.6.2 Random forest classifier
The RF classifier was used for the classification of hay rack

use events in preparturient sows. RFs are machine learning

methods for constructing prediction models from data. The

RF classifier is an ensemble classifier that produces multiple

decision trees, using a randomly selected subset of training

samples and variables (Breiman, 2001). Furthermore, this

classifier can be successfully used to select and rank those

variables with the greatest ability to discriminate between the

target classes (Belgiu and Drăgut,̧ 2016). The Python package

scikit-learn was used to train and validate the model (Pedregosa

et al., 2011).

The RF model was trained with depth of the tree increasing

from 2 to 40, and the performance of the model was evaluated

using the area under the receiver operating characteristic (ROC)

curve (AUC), a metric of algorithm performance especially

applicable for unbalanced datasets. The usage of AUC is

preferred to the overall accuracy for the “single number”

evaluation of machine learning algorithms (Bradley, 1997).

Two algorithms with the highest AUC score on the validation

set were selected: one for the classification of hay pulling and one

for the classification of all hay rack use behaviors. In addition to
Frontiers in Animal Science 07
AUC, accuracy, sensitivity, and specificity were used to evaluate

the algorithm performance (Berckmans, 2013).

The importance of the 40 feature variables was evaluated

with MDI. In RF, classification is performed based on a tree

structure, where each node of a tree is divided (split) into

subnodes. For the impurity (loss) importance, a division of a

tree node into multiple subnodes with a large decrease in

impurity is considered important, and as a consequence,

variables used for splitting at important divisions of a tree are

also considered important. Based on this idea, the impurity

importance for a variable Xi is computed by the sum of all

impurity decrease measures of all nodes in the forest at which a

split on Xi has been conducted (Nembrini et al., 2018).
3 Results

3.1 Labeling

The labeling of four categories of behaviors in the period from

the introductionof sows to the farrowingpenuntil 24hafter the end

of farrowing revealed that both in the training and validation

datasets, nose close to the rack was the behavior with the longest

duration. The animals in the training dataset spend on average less

time with their noses close to the hay racks than sows in the

validationdataset.Thebehaviorwith the second longestduration in

both datasets was pulling hay. Only 6 out of 12 animals expressed

bar biting behavior. Events of bar biting were very short and only

observed in trapezoidpens(Table2).Barbitingeventsdidnotoccur

in the SWAP pens because they were not equipped with bars

around the rack as opposed to the trapezoid pens.

Rack use category is the sum of nose close, pulling hay, bar

biting, and exploratory behavior.
FIGURE 5

The sow’s head was close to the hay rack, but the sow was not using the rack and she was just sleeping. The sow’s nose was not detected.
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The sow with the shortest duration of hay rack use behaviors

was sow 6, while sow 12 expressed hay rack use behaviors for the

longest time (Table 2). Sows did not express nest-building

behaviors after the farrowing was finished.
3.2 Classification

For both pulling hay behavior and all hay rack use behaviors,

increasing the tree depth of the RF model from 2 to 7 resulted in

an increase in model AUC and sensitivity in both training and

validation datasets (Figure 6). A further increase in tree depth

resulted in the stabilization of the model AUC in the validation

dataset, a drop in sensitivity, and an increase in specificity. The

highest AUC value of the RF classifier in the validation dataset

was achieved with the tree depth of 10 (99.2%) for pulling hay

behavior, while all hay rack use behaviors for the tree depth of

seven showed the best result (96%) (Tables 3, 4). Increasing the

model complexity beyond the tree depth of seven for all hay rack

use behaviors or 10 for pulling hay behavior led to a model

overfit with a further increase in AUC in the training dataset and

a drop in the validation dataset (Figure 6). Thus, models with

tree depths of seven and 10 were chosen as the optimal models

for the classification of all hay rack use behaviors and pulling hay

behavior, respectively.

The AUC for pulling hay behavior was higher (99.2%) than

for all hay rack use behaviors grouped together (96%) (Tables 3,

Table 4). What became apparent from the examination of

confusion matrices of both models was that although AUC,

accuracy, sensitivity, and specificity were high, the overestimate

by two trained models of pulling hay behavior and all hay rack

use behaviors was also relatively high. In the validation set, the

labeled duration of all hay rack use behaviors was 25:40:50, while
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the automatically classified duration was 44:34:42. Similarly, in

the validation set, the labeled duration of pulling hay behavior

was 07:29:54, while the automatically classified duration was

15:41:44 (Tables 3, 4).

The most important feature variables in the RF model for

pulling hay behavior (MDI > 0.05) was the distance from the

nose to the rack (MDI = 0.29), the orientation of the head toward

the rack based on nose location (MDI = 0.09), the distance from

the head to the rack (MDI = 0.08), and the orientation of the

head toward the rack based on the location of the ears

(MDI = 0.07). Variable importance in the model for the

classification of all hay rack use behaviors was more evenly

split between all feature variables, where two variables had MDI

above 0.1, i.e., the distance from the nose to the rack

(MDI = 0.13) and the orientation of the head toward the rack

based on nose location (MDI = 0.13). In this model, variables for

estimating the movement of the sow’s head, body, and nose

calculated on a window duration of 45 s seemed to be more

important than those estimated on windows of other

durations (Figure 7).

Analysis of manually labeled pulling hay and all hay rack use

behaviors and comparison of these variables to the automatically

estimated activity level of sows in a period from introduction to

the farrowing pen until farrowing indicate high variability of

expressed hay rack-oriented behaviors. In 11 out of 12 sows, the

increase in activity level was very clear with a peak visible several

hours before the start of farrowing (Figures 8–10), which is

consistent with the reported dynamics of sows’ activity level in

this period (Oczak et al., 2019). In contrast, only six out of 12

sows reached their peak of labeled hay rack use and pulling hay

behaviors at the same time as their peak of activity level (e.g.,

Figure 10). The other animals had no clearly visible peak in the

labeled hay rack use and pulling hay behaviors or the peak was
TABLE 2 Results of labeling of hay rack use behaviors.

Sows Pen types Dataset Nose close Pulling hay Bar biting Exploratory Rack use

1 Trapezoid Training 01:41:40 00:32:33 00:00:03 00:15:56 02:30:13

2 Trapezoid 02:52:41 01:12:33 00:1:22 00:16:42 04:23:19

3 Trapezoid 03:05:24 01:41:30 00:34:28 00:25:14 05:46:36

4 SWAP 00:35:20 00:21:15 00:00:00 00:02:00 00:58:35

5 SWAP 00:41:52 00:39:10 00:00:00 00:24:47 01:45:49

6 SWAP 00:30:17 00:06:09 00:00:00 00:02:43 00:39:09

Mean 01:47:23 00:53:24 00:07:11 00:16:56 03:04:54

7 Trapezoid Validation 04:05:40 01:07:21 00:08:47 00:46:02 06:07:51

8 Trapezoid 02:10:20 00:09:24 00:00:26 00:20:49 02:40:58

9 Trapezoid 02:45:46 02:41:28 00:01:21 00:46:31 06:15:07

10 SWAP 00:07:26 00:02:15 00:00:00 00:03:11 00:12:52

11 SWAP 01:55:36 00:44:08 00:00:00 00:35:21 03:15:04

12 SWAP 02:09:42 02:45:19 00:00:00 02:13:58 07:08:59

Mean 02:12:25 01:14:59 00:01:46 00:47:39 04:16:48
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FIGURE 6

Performance of the RF classifier in the training and validation datasets for the classification of pulling hay (A–C) and all hay rack behaviors (D–F).
(A) AUC for pulling hay, (B) sensitivity of pulling hay, (C) specificity of pulling hay, (D) AUC for rack use, (E) sensitivity of rack use, and (F)
specificity of rack use.
TABLE 3 Confusion matrix of RF classification of hay rack use in the validation set.

Total duration Actual

Rack use (s) No rack use (s)
25:40:50 723:31:55

Classified Rack use (s) 44:34:42 20:11:32 24:23:10

No rack use (s) 704:38:03 05:29:18 699:08:45

Sensitivity 78.6%

Specificity 96.6%

Accuracy 96%

AUC 96%
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TABLE 4 Confusion matrix of RF classification of pulling hay behavior in the validation set.

Total duration Actual

Pulling hay (s) No pulling hay (s)
07:29:55 741:34:52

Classified Pulling hay (s) 15:41:44 06:15:47 09:25:57

No pulling hay (s) 733:23:03 01:14:08 732:08:55

Sensitivity 83.5%

Specificity 98.7%

Accuracy 98.6%

AUC 99.2%
Frontiers in Animal Science 10
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FIGURE 7

Variable importance based on MDI. Only variable importance higher than 0.05 is shown. (A) Model of pulling hay. (B) Model of all hay rack
use behaviors.
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reached at different times than the peak of activity level, i.e.,

around 24 h (Figure 9) or 48 or 72 h (Figure 8) before the start

of farrowing.

Comparison of manually labeled pulling hay and all hay rack

use behaviors with the results of classification within individual

animals suggests a high consistency of overestimates. Peaks of

detected behaviors occurred at the same time as labeled by a

human observer, and the dynamics of the variables was very

similar (e.g., Figures 8–10). It was possible to observe only in one

out of 12 sows two automatically detected peaks in hay rack use

behaviors, which were not labeled by a human observer at 5.5

and 4 days before the beginning of farrowing.
4 Discussion

Our proposed method for detection of hay rack use

behaviors in farrowing pens was based on the object detection

algorithm RetinaNet, extraction of several feature variables from

the centroids of detected parts of the sow’s body, and RF for

classification. Both trained models, the first for the detection of

all hay rack use behaviors and the second for the detection of

pulling hay behavior, had good performance metrics with

accuracies of 96% and 98.6%, respectively. These results are
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comparable with the results of Chen et al. (2020) in which a

combination of the HSV (hue, saturation, value) tracking

algorithm, the convolutional neural network (CNN)

architecture InceptionV3, and the long short-term memory

(LSTM) was used to detect pig enrichment engagement

behaviors. The objective of that research was similar to ours in

terms of the behavior of pigs, i.e., to detect engagement with

enrichment material. In that research, it was possible to detect

the interaction with enrichment material in weaner pigs housed

in group pens with performance from 96.5% to 97.6% accuracy

depending on which type of enrichment material was used.

What was similar between our results and those of Chen

et al. (2020) was the high overestimates of behavior. In the

research of Chen et al. (2020), the interactions with the

enrichment materials—golden ball (264%) and wooden beam

(138%)—were overestimated, while in our research, both types

of hay rack use behaviors, i.e., all hay rack use (173%) and

pulling hay (209%), were overestimated. Only the most frequent

behavior under study in Chen et al. (2020), i.e., blue ball, had a

low overestimate value of 107%. In general, in the classification

of behavior in PLF applications, overestimation has to be

considered very carefully aside from other algorithm

performance metrics such as accuracy, sensitivity, or

specificity. High overestimates of behavior might lead to low
A

B

C

FIGURE 8

Labeling and classification for sow 5 from the training dataset of (A) pulling hay behavior and (B) all hay rack use behaviors. (C) Activity level
estimated on the basis of the Euclidean distance between the centroids of the sow’s body in consecutive frames. Presented variables are
calculated on a sliding window of 4 h with 15 min steps.
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usability of the developed models in some applications, e.g.,

when comparisons of the duration of the behavior of interest

between individuals are important. To reduce the overestimates

of hay rack use in future research, we will automatically detect

sow’s pose (e.g., the Residual Steps Network; Cai et al., 2020) and

apply skeleton-based action recognition algorithms (e.g.,

PoseConv3D; Duan et al., 2021). Such an approach will

include information on the posture of the sow aside from the

head, nose, and ears included in this study. Additional

information on the posture of the sow might help to reduce

overestimates related to, e.g., sleeping in close proximity to the

hay rack. Applications where overestimates of behavior might be

less problematic are those in which dynamics of behavior of

interest is of higher relevance than absolute duration, e.g., in

farrowing prediction (Oczak et al., 2019). In the study of Chen

et al. (2020), temporal information on modeled variables was

included in the LSTM model, while in our study, the RF model

included only the current values of the modeled variables. This

was an important difference between both studies. As living

organisms are time-varying in their nature and are dynamic

systems, the most appropriate models used in PLF must

continuously adapt to the individual (Berckmans, 2013). This

is only possible if models have the ability to process temporal

information. On the other hand, the application of RF models on
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several feature variables extracted from the centroids of detected

parts of the sow body allowed the analysis of variable importance

based on MDI in our study. Thus, we would argue that the

interpretability of such a model is higher than the model in the

study of Chen et al. (2020) in which the input to LSTM was a

131,072 (8 × 8 × 2,048)-dimensional vector characterizing

images processed by the CNN. Although the authors

visualized the heat maps representing the part of an image on

which the CNN is focusing on, the main conclusion from visual

inspection of the heat maps was that intense movement

discriminates engagement with enrichment from behaviors not

directed at the enrichment.

Examination of variable importance based on MDI allowed

us to conclude that distance from the sow’s nose to the centroid

of the hay rack was the most important variable for the

classification of pulling hay behavior. For the detection of all

hay rack use behaviors, movement of the head, body, and nose

and also the distance between the head and the hay rack seemed

to be more important than for the detection of pulling hay

behavior. The difference in variable importance between pulling

hay and all hay rack use behaviors seems logical when

considering that pulling hay requires the sow to touch the rack

with her nose, and this is represented by close proximity of the

nose to the hay rack and the orientation of the head based on the
A

B

C

FIGURE 9

Labeling and classification for sow 1 from the training dataset of (A) pulling hay behavior and (B) all hay rack use behaviors. (C) Activity level
estimated on the basis of the Euclidean distance between the centroids of the sow’s body in consecutive frames. Presented variables are
calculated on a sliding window of 4 h with 15 min steps.
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nose location. The other behaviors labeled in our study, such as

exploratory behavior, can be performed in close proximity to the

rack, but the nose does not necessarily need to be directed at the

rack or be located closer to the rack than the centroid of

the head.

A similar approach to monitoring pig behavior as in our

study was used in the study of Kashiha et al. (2013) where the

focus was on automated estimation of water intake in fattening

pigs. In this study, a visit to the drinker was detected if either the

nose or ears of the pig were in proximity of 10 pixels to the

nipple drinker. However, drinking from the nipple drinker was

characterized by the lack of movement for at least several

seconds (standing still), while especially all hay rack-directed

behaviors were related to the intense movement of the head in

our study.

The results of our study and those of Kashiha et al. (2013)

indicate the importance of nose location and head orientation

for the recognition of behaviors in which pigs interact with

other objects (i.e., drinker, hay rack). Touch and nose contact

has an essential role in communication, recognition, social

grooming, and maintenance of dominant relationships

(Newberry and Wood-Gush, 1986). The results of our study

confirm the important role of the nose for pigs, also apparent

from ethological studies such as that of Stolba and Wood-
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Gush (1989) who showed that pigs spend around half of the

daylight period foraging with the nose for feed in a

seminatural environment. One obvious explanation for why

pigs use their nose is that they obtain important information

from their environment by olfactory cues (Camerlink and

Turner, 2013).

The onset of nest building is internally triggered by

hormonal changes. Specifically, the decline in progesterone

concentration starts 72 h before farrowing, while the increase

in prolactin starts 24 h before farrowing (Algers and Uvnäs-

Moberg, 2007). Due to hormonal changes and the presence of

external stimuli, nest building starts 24 h before parturition,

reaches maximum frequency 6 to 12 h before parturition, and

then decreases as parturition approaches (Castren et al., 1993).

The possibility to perform nest-building behavior should be

offered to all sows in modern management systems. For this

possibility, space and the provision of adequate nest-building

material are two relevant prerequisites (Wischner et al., 2009).

Automated monitoring of hay rack use in preparturient sows

might add important information on sow nest-building

behavior. This could support individual care for the sow in

this sensitive period, considering that the necessary amount of

enrichment or nest-building material is not defined in the law.

Based on the information provided by such a monitoring system,
A

B

C

FIGURE 10

Labeling and classification for sow 12 from the validation dataset of (A) pulling hay behavior and (B) all hay rack use behaviors. (C) Activity level
estimated on the basis of the Euclidean distance between the centroids of the sow’s body in consecutive frames. Presented variables are
calculated on a sliding window of 4 h with 15 min steps.
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the farm staff could offer more nest-building material (refill the

dispenser) to the sows that use it more frequently. If some

sows use the hay racks very often, then there is a risk that farm

staff will not react to repeated alarms especially when they are

to be diverted from other tasks. A possible solution to this

problem might be further automation and the use of robots in

livestock farming. The main advantage of the application of

computer vision for monitoring hay rack use is the versatility

of a single camera sensor, which could also be used to monitor

other nest-building behaviors or body condition or feeding in

sows and piglets. Such versatility is difficult to achieve with

other sensor-based solutions even if they are simpler to

implement for a single application. An alternative approach

to hay rack use monitoring might be the application of a

weight scale under the hay rack.

The results of our study suggest that some sows use the rack

frequently only on some days before the onset of farrowing, not

necessarily in the last hours before the onset of farrowing. Thus,

nest-building material could be offered precisely on these days

when sows use the rack. Additionally, more care could be offered

to the sows that rarely use the rack in the preparturient period.

The lack of activity around the hay rack might suggest that a

dispenser is not a sufficient means of provision of nest-building

material for some sows, and it should be offered in a different

way (e.g., on the ground) to those sows. In a future study, we

plan to focus on automated quantification of the amount of nest-

building material used by the sows. A similar research has

already been performed with a focus on feed intake estimation

in Bezen et al. (2020). Additionally, the detection of how much

nest-building material is available in the rack based on computer

vision methods will be the focus of our studies. This should allow

informing the farmer on when to provide additional nest-

building material to the sow, which is not possible based on

the algorithm developed in this study. This should also reduce

the need for manual observation of hay racks and related

workload on the farm.

The second objective of our study was to analyze if the

output of the algorithm for hay rack use detection could

potentially improve the performance of farrowing prediction

compared to current state-of-the-art techniques for farrowing

prediction based solely on activity levels (Manteuffel et al., 2015;

Pastell et al., 2016; Traulsen et al., 2018; Oczak et al., 2019).

Analysis of the performance of the developed models for

automated detection of hay rack use suggested that they could

be useful for farrowing prediction. The algorithm correctly

indicated the dynamics of labeled behaviors, i.e., peaks in the

labeled hay rack use behaviors were automatically detected by

the algorithm at the same time as by the labeler in 11 out of 12

sows. However, variability in the labeled hay rack use behaviors

seems to be much higher than in the activity levels of sows as

indicated by the fact that only six out of 12 sows reached their

peak of labeled hay rack use and pulling hay behaviors within the
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last 24 h before the start of farrowing. This is different from the

pattern in the activity level of sows, which for all animals in our

study was the highest in the last hours before the beginning

of farrowing.

Without modeling the data for the purpose of farrowing

prediction and also considering the low number of animals in

our study, it is not possible to further conclude if automated

detection of hay rack use might improve the performance of

farrowing prediction beyond the outcome based only on activity

levels. The activity level itself allowed the prediction of

approaching farrowing in around 70% of sows without false

positives, and 61% (11 out of 18) of alarms were generated

between 6 and 13 h before the onset of farrowing (Oczak et al.,

2019). Thus, even if in one animal out of 12 sows from our study

the classification of hay rack use behaviors would allow the

generation of correct alarm on approaching farrowing, which

would not be otherwise possible solely on the basis of changes of

activity levels, this would be an important improvement in the

performance of the models for farrowing prediction. However, it

has to be noted that based on visual examination of results of

labeling and classification of hay rack use behaviors in

comparison to changes in activity levels, we did not observe in

any of the sows, in the period of 24 h before the onset of

farrowing, an increase in the use of hay rack that would not be

associated with increased activity level. Half of the sows in our

study (6 out of 12) did not increase the use of the hay rack in the

nest-building period, although their activity level increased. It is

possible that sows express nest-building behavior differently

(Oczak et al., 2015) between individuals, and the increase in

activity level before the onset of farrowing in some sows is

associated with the increase in the other nest-building behaviors,

e.g., rooting, bar biting, or pawing. These behaviors were not

analyzed in our current study. We aim to focus on these

behaviors in our future research.
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