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This article reviews the different techniques used to monitor the respiration and sounds of
livestock. Livestock respiration is commonly assessed visually by observing abdomen
fluctuation; however, the traditional methods are time consuming, subjective, being
therefore impractical for large-scale operations and must rely on automation. Contact
and non-contact technologies are used to automatically monitor respiration rate; contact
technologies (e.g., accelerometers, pressure sensors, and thermistors) utilize sensors that
are physically mounted on livestock while non-contact technologies (e.g., computer
vision, thermography, and sound analysis) enable a non-invasive method of monitoring
respiration. This work summarizes the advantages and disadvantages of contact and
non-contact technologies and discusses the emerging role of non-contact sensors in
automating monitoring for large-scale farming operations. This work is the first in-depth
examination of automated monitoring technologies for livestock respiratory diseases; the
findings and recommendations are important for livestock researchers and practitioners
who can gain a better understanding of these different technologies, especially emerging
non-contact sensing.
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1 INTRODUCTION

This article surveys the techniques for monitoring the respiration and sounds of livestock.
Respiratory diseases are multifactorial diseases driven by complex interaction of factors
associated with the environment, the pathogen, the animal, and management practices, and
cause significant production and economic losses in the cattle and pork industry (Edwards, 2010;
Potter and Aldridge, 2010; Peel 2020; Smith et al., 2020). Some of the impacts of respiratory diseases
in livestock include mortality, reduced weight gain, decline in productivity, decreased pregnancy
percentage, increase in treatment and vaccination costs etc. (Peel, 2020). Modern technologies such
as sensors provide an opportunity to constantly monitor livestock health (Neethirajan, 2020).
Constant monitoring of livestock assists in early detection of diseases, which in turn can help
improve animal welfare, prevent further spread of disease and enhance farm revenue (Nasirahmadi
et al., 2017).

Livestock production and economic losses can be minimized by early detection of respiratory
health issues. Early detection (or early-warning surveillance) is defined as the “surveillance of health
indicators and diseases in defined populations in order to increase the likelihood of timely detection
of undefined (new) or unexpected (exotic or re-emerging) threats” (Hoinville et al., 2013).
Respiratory diseases are responsible for 23.9% of cattle deaths in production operations across
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the United States (USDA, 2017). Swine respiratory diseases were
reported as the leading cause of mortality in nursery (47.3%) and
grower finisher units (75.1%) (National Animal Health
Monitoring system,1995). Morbidity rates associated with
respiratory diseases in pigs range from 30-70% (Opriessnig
et al., 2011). Respiratory diseases accounted for nearly 5.6% of
all diseases in small ruminants including sheep and goats
(Hindson and Winter, 2002). Most respiratory diseases are
contagious and can lead to outbreak resulting in severe
economic losses for producers (Christensen and Mousing,
1992). Financial losses associated with respiratory diseases are
due to increased mortality, decreased weight gain, increased feed
costs, increased condemnation at slaughter, and increased costs
for treatments, vaccination, and labor. The total economic value
of death loss in cattle and calves due to respiratory diseases was
estimated at $907.8M (Peel, 2020). Annual production losses
incurred by the US pork industry due to respiratory diseases were
estimated at $560M (Neumann et al., 2005); a more recent study
estimated the combined economic losses due to respiratory
diseases at around $663.91M per year or around US $1.8
million per day (Holtkamp et al., 2013). Respiratory diseases
reduce reproductive efficiency by 1.44 pigs weaned per breeding
female per year; here reduced reproduction results in annual
production loss of US $302.06M or around $52.19 per head of
breeding female. This production loss results in 9.93 million
fewer pigs per year and 1.09 billion fewer kilograms of pork
marketed per year in the United States. On a per-pig basis,
respiratory diseases cost the pork industry $4.67 for every pig
marketed in the United States (Holtkamp et al., 2013). Moreover,
death loss comes with hidden costs that are often not reported;
these hidden costs include wastage of resources such as forages,
grain, supplements, water, and fossil fuel (Smith et al., 2020).

Producers have traditionally relied on a method of direct
observation at regular intervals to monitor animal health.
Respiration rate is estimated by visual observation of
fluctuation of the abdomen of the animal (Milan et al., 2016;
Lowe et al., 2019; Wu et al., 2020). However, with increasing
herd size, the attention received by individual animals is
decreasing (Stewart et al., 2017). This reduction in available
time and resources can lead producers to underestimate the
signs of respiratory diseases (White and Renter, 2009; Potter
and Aldridge, 2010) and often it is too late to intervene once the
symptoms become evident.

Once the symptoms of disease become evident, the
producers either take no action, seek help from veterinary
professionals, use antibiotics or adopt a combination of these
three approaches to cure their livestock (Neethirajan, 2020).
Getting to this point though involves understanding the
physiological issues and novel sensing technology approaches
have been investigated to estimate respiratory rates or detect
behavioral changes linked to respiratory diseases to identify
sick livestock at an early stage (Silva et al., 2008; Weixing and
Zhilei, 2010; Mutlu et al., 2018; Al-Naji et al., 2019; Barbosa and
Pereira, 2019; Lowe et al., 2019; Wu et al., 2020). Respiratory
rate detection technology can be broadly classified into either
contact or non-contact technologies.
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The contact methods of respiration estimation involve the use
of sensors that need to be mounted or implanted in the livestock
to monitor respiration rate. Domain specific examples of contact
sensor technology include thoracic belts (Egenberg et al., 2000),
spirometry masks (Maia et al., 2014), temperature sensors (Milan
et al., 2016), and pressure sensors (Strutzke et al., 2019). Demand
for automated non-invasive methods of disease detection in
livestock has increased because it provides a remote and non-
invasive method of respiration monitoring in livestock. Unlike
contact sensors, the non-contact methods of monitoring cause
no influence on livestocks’ behavior and do not induce stress. In
this article, the methods of non-contact technology reviewed and
summarized are: (i) sound analysis, (ii) thermal imaging, (iii)
laser and radar sensors, and (iv) machine vision technology.

The rest of the article is organized as follows. Section 2
describes traditional methods of respiration rate estimation.
Sections 3 and 4 describe contact and non-contact methods of
respiration estimation and their advantages and limitations.
Section 5 concludes this article.
2 METHODS OF LIVESTOCK
RESPIRATION RATE ESTIMATION

This section describes the methods used for livestock respiration
rate estimation. The methods reviewed include traditional
methods, contact, and non-contact. Figure 1 summarizes the
novel technologies employed under contact and non-contact of
respiratory disease detection in livestock, which are described in
detail in section 3 and 4.

2.1 Traditional Methods
Producers on-farm keep track of livestock respiration rates as
determined by visual observation of abdominal fluctuation
exhibited by an animal (Milan et al., 2016; Lowe et al., 2019;
Wu et al., 2020). To visually observe respiration rate, it is
recommended to start on an exhale and use the stopwatch to
record the time it takes to count 10 full breaths. One full breath is
defined as one inhale and one exhale. The livestock is exhaling
when the flank looks sunken in and inhaling when the flank
looks full of air. Once the time required to take 10 full breaths is
recorded, the following equation is used to calculate breaths per
minute, B (Becker et al., 2020):

B =
10
t10

� �
∗ 60

where t10 is the number of seconds it took to take 10 breaths.
These first-person observation methods of estimating respiration
rate can be subjective and time sensitive, making them
impractical for large scale production operations. The flank
counting method, for example, can lead to erroneous results if
the flank movements are caused by activities other than
respiration, such as from stretching, swatting flies, etc.
(Egenberg et al., 2000). Further, the flank counting method can
be affected by climate; rapid and heavy breathing might be
June 2022 | Volume 3 | Article 904834
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observed during summers, with slower and less noticeable
breathing in colder weather making the observations difficult
to capture with consistency (Stewart et al., 2017).

2.2 Contact Methods
Advancement in sensor technology has assisted in the
replacement of traditional methods of animal monitoring in
commercial farms. A sensor can be defined as a device which
measures or detects a biological, chemical, physical, or
mechanical property or a combination of these properties,
records and collects the data for interpretation by a human or
a machine (Neethirajan, 2020). The sensors can automatically
monitor animals in real time for any changes in behavior (e.g.,
aggression, increased resting), detection of symptoms of disease
(e.g., increased respiration rate, cough), identifying sick animals
from the herd etc. Using sensors allows producers to improve
animal welfare, prevent disease outbreak, reduce labor
requirements, and improve farm returns.

Various methods have been developed to automatically
monitor the respiration rate of livestock to attempt to provide
the producers with consistent data with minimum labor
requirements and least interference to the animal activities
(Egenberg et al., 2000). For instance, Egenberg et al. (2000)
developed a system consisting of a transducer with a thoracic belt
that measured changes in thoracic and abdomen movement of
the cattle. The transducer provided an electrical signal in
response to pulmonary effort. The belt was used to hold the
sensor in place and was designed to be unaffected by
precipitation, manure, and urine. The disadvantages of using
thoracic belt include frequent slipping of the belt, chewing of the
belt by other cattle, behavioral changes etc. This can lead to
sensor damage and inaccurate respiration rate estimation (Milan
et al., 2016; Strutzke et al., 2019). Additionally, this system was
found to be unsuitable for measuring respiration rate in pigs.
Frontiers in Animal Science | www.frontiersin.org 3
The increased resting time and decreased definitive respiratory
movement of pigs as compared to cattle made it unsuitable for
use in pigs (Eigenberg et al., 2002). To overcome these
challenges, the researchers developed a respiratory rate
monitor that utilized auditory component of the pig’s
respiration. The sensor consisted of a speaker attached to the
pig’s throat using a bandaging tape, wrapped with an electric
wrap. The sensor responded to air movement through larynx.
Signal processing was then performed to input meaningful signal
to the data logger. Although, the monitor developed performed
well, still it required critical mounting of sensor. The use of
bandaging tape may not be suitable for adoption in commercial
swine farms. In 2018, Atkins et al. developed a continuous
respiration rate sensor similar to the one designed by
Eigenberg et al. (2000). The sensor was designed using a force
sensitive resistor to measure respiration rate of heat stressed
dairy cows. Elastic straps were used to attach the sensor around
the cow’s abdomen. The sensor measured respiration by
detecting changes in the pressure on inhalation and exhalation.
The researchers developed an algorithm to automatically filter
segments of unreliable signal. Loosening of the harness and
damaging of the sensors resulted in weak or non-uniform
signals. The researchers observed an increase in respiration
rate and body temperature while lying and decrease in
respiration rate and body temperature while standing. The
increase in body temperature and respiration rate while lying
was caused due to decrease in amount of cow’s surface area
exposed to ambient air.

Maia et al. (2014) utilized spirometry mask to determine the
respiration rate of livestock. A spirometry mask is a facial mask
designed to measure the gaseous exchange of oxygen and carbon
dioxide. The masks were shaped to best suit the geometry of the
livestock’s face, for example, the researchers designed a
cylindrical, triangular, and ellipsoidal shaped mask for sheep,
FIGURE 1 | Taxonomic organization of respiratory disease detection.
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goats, and cattle respectively. Using spirometry masks requires
training and restraining livestock. Additionally, masks must be
fitted individually on all livestock, which is not suitable in
commercial scale farming (Milan et al., 2016; Lowe et al.,
2019). In a study conducted by Milan et al. (2016), the authors
developed a device that employed temperature sensors to
monitor thermal fluctuations caused due to respiration near
the nostril of the animal. This device enabled the researchers
to continuously monitor the respiration rate of the cattle in their
natural habitat without any need to train or restrain them. The
cattle showed no sign of discomfort during mounting and
wearing of the device. However, the drawback of this device
was reduced accuracy of the sensor in case of similar ambient
and body temperature. Strutzke et al. (2019) developed a device
consisting of differential pressure sensor, a micro controller and
software to measure the difference in the strength of exhaled and
inhaled pressure to determine the respiration rate in cattle. One
port of the pressure sensor was inserted 10 cm into the nasal
cavity of the cattle, the other port was left open and exposed to
the ambient pressure. The researchers reported a drop in
incoming pressure at the sensor at the beginning of inhalation
and an increase in pressure at the beginning of exhalation. The
limitations of the differential pressure sensor include limited
battery life, and difficulty in mounting the sensor on the cattle.
Apart from using thoracic belts, thermistors, pressure sensors,
researchers have also employed telemetry sensors to estimate
respiratory rate in rats. Telemetry sensors are based on changes
in cardiovascular data resulting from respiratory effort. These
sensors are implanted via surgery which can lead to stress and
reduced mobility in animals (Eigenberg et al., 2000; Milan
et al., 2016).

The contact sensor technology has been successfully applied
for respiration rate estimation in animals. Table 1 summarizes
few studies on respiration rate detection using contact sensors.
Some of the disadvantages of using contact sensor technology
are: dislodging of the sensor, difficulty of mounting the sensor,
requirement of restraining the animals, discomfort of the animal
wearing the sensor, changes in animal behavior, vulnerability to
environmental and weather conditions, need for frequent
changing of batteries etc.

2.3 Non-Contact Methods
2.3.1 Sound Analysis
Rapid and effective diagnosis require early detection of symptoms of
the disease in animals. Respiratory diseases in animals are associated
Frontiers in Animal Science | www.frontiersin.org 4
with clinical signs of fever, nasal discharge and dyspnea. Coughing is
recognized as the principle clinical symptom of respiratory diseases
in animals (Opriessnig et al., 2011; Berckmans, 2014; Carpentier
et al., 2018). It is body’s defense mechanism against respiratory
infections and is presented by sudden expulsion of air from the
airways which is characterized by a typical sound (Gutierrez et al.,
2010). Previous studies have analyzed the cough sounds
characterized by acoustic features like amplitude, frequency, and
duration to monitor and detect respiratory diseases in animals
(Table 2). The cough sound analysis technology makes use of
microphones to collect/record the data. The microphones are non-
contact, affordable and do not influence animal behavior.
Microphones convert changes in sound pressure into electrical
signals, which are then captured by specific audio equipment and
processed as digital signals in standard computers (Matthews et al.,
2016). The detection and recognition of cough sounds for
identification of respiratory diseases has been performed
successfully under both laboratory and field conditions (Chedad
et al., 2001; Guarino et al., 2008; Silva et al., 2008; Vandermeulen
et al., 2016). Classification and detection of cough sounds from sick
animals under laboratory conditions offers better control over the
quality of the sound recorded as the sound is recorded individually
from each animal. In field or real-life commercial farm conditions
the presence of ambient noise interferes with the recorded sound
(Guarino et al., 2008). Additionally, the sounds are recorded from a
group of animals and not individually, which leads to decreased
clarity and increased overlapping of the sounds (Carpentier et al.,
2018). Ferrari et al. (2010) demonstrated that it is possible to
distinguish cough sounds from other sounds common in stables
like metal rack noise etc. The researchers reported a significant
difference in the duration, amplitude and fundamental frequency of
both the sounds. Further studies have also developed online cough
monitors (Exadaktylos et al., 2008; Guarino et al., 2008). The online
cough monitors utilize algorithms for real time continuous
monitoring of cough sounds. The real time monitoring aids
decision making process, and helps in localization of sick
livestock from healthy (Exadaktylos et al., 2008). Gutierrez et al.
(2010) classified pig wasting diseases based on differences in
acoustic features of the cough. Chung et al. (2013) extended
existing classification of pig wasting diseases further using widely
used feature of sound analysis, Mel Frequency Cepstrum Coefficient
(MFCC) in combination with Support Vector Data Description
(SVDD) and Sparse Representation Classifier (SRC) to detect and
TABLE 1 | Examples of studies using contact sensors for respiration rate estimation.

Animal Method Reference

Cattle (Steer) Thoracic belt Eigenberg et al. (2000)
Pigs Eigenberg et al. (2002)
Cattle, Sheep, Goat,
Poultry

Spirometry mask Maia et al. (2014)

Cattle (Nellore cattle) Thermistors Milan et al. (2016)
Cattle (Holstein-Friesian) Differential pressure

sensor
Strutzke et al. (2019)

Cattle Force sensitive resistor Atkins et al. (2018)
TABLE 2 | Examples of studies using cough sound analysis for monitoring
respiratory diseases.

Animal Environment No. of animals Reference

Pigs Laboratory 4 Chedad et al. (2001)
Pigs Field 350 Silva et al. (2008)
Piglets Laboratory 6 Exadaktylos et al. (2008)
Calves Field 28 Ferrari et al. (2010)
Pigs Field 36 Gutierrez et al. (2010)
Pigs Field 36 Chung et al. (2013)
Pigs Field 44 Guarino et al. (2008)
Calves Field 62 Vandermeulen et al. (2016)
Calves Field 139 Carpentier et al. (2018)
June 2022 |
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classify pig wasting diseases. The authors reported a 94% accuracy
in detection and 91% accuracy in classification of the wasting
diseases. Carpentier et al. (2018) proposed an algorithm to detect
coughing events in calves under field conditions. The authors
developed a novel labelling technique which took the quality of
the reference data into account. The coughs were given a label
between number 1 and 5, where 1 indicated very unclear cough and
5 indicated very clear cough. The coughs with label greater than or
equal to 3 were considered as coughs the algorithm should be able to
detect. This approach helped the researchers to eliminate the need
for calibrated reference labels. The algorithm was robust and could
easily be adapted into different calf compartments under
different conditions.

Cough sound analysis has become an important tool to
interpret the behavior, health condition and well-being of the
animals (Gutierrez et al., 2010). It offers a remote, non-invasive
and economic method to detect and monitor respiratory diseases
in animals before they become too severe. However, some of the
limitations of the cough sound analysis are: (i) most of the
algorithms developed for cough identification rely on a reference
dataset. The reference dataset requires manual observation and
annotation of the recorded sounds. This can be time consuming
and subjective to the observer’s experience (Carpentier et al.,
2018). (ii) The quality of the sound recorded is influenced by
environmental conditions, number of animals and the distance
of the microphone from the animal.

2.3.2 Thermal Imaging
Similar to sound analysis, thermal imaging or Infrared
thermography (IRT) has been used as a non-invasive, safe, and
remote method to monitor respiration in animals. IRT uses
thermal cameras to measure the infrared radiation emitted by the
surface of the object, which is then converted into electrical
signals and a map illustrating the temperature distribution is
generated (Incropera, 2007). Studies have shown that IRT
technology can detect thermal biometric changes in animals.
These thermal biometric changes could be caused due to changes
in blood flow as a response to changes in environmental or
physiological conditions (McManus et al., 2016).

At the onset of respiratory diseases animals radiate heat to
maintain a normal core body temperature which can be
measured using IRT (Stewart et al., 2017). Schaefer et al.
(2007) demonstrated that IRT technology could diagnose
bovine respiratory disease at an earlier stage as compared to
conventional methods. The authors also used IRT as a tool to
detect respiratory diseases in calves (Schaefer et al., 2012). The
orbital area (eye plus one centimeter surrounding the eyes) of the
calves was monitored for observing radiated temperature
changes. The data was collected automatically by mounting the
infrared camera on a motor capable of rotating in two directions.
This system was installed at the water station and IRT images
were captured every time the animal visited water trough to
drink water. The results indicated a significant increase in eye
temperature with the onset of respiratory disease. An efficiency
of 93% in detecting bovine respiratory disease onset was
reported. Stewart et al. (2017), used continuous IRT imaging of
Frontiers in Animal Science | www.frontiersin.org 5
nostrils of cows to detect thermal changes caused due to
breathing. During breathing cycle, inhalation brings in external
air and cools the nostrils, whereas exhalation expels air from the
body and warms the nostrils. The authors recorded the time
taken to complete 10 breaths and converted it into breaths per
min (respiration rate). The results reported a high correlation
between respiration rate measured using IRT and respiration rate
determined by observing flank movements in both real time and
video recordings. Similar methodology was adopted by Mutlu
et al. (2018) and Lowe et al. (2019) to measure respiration rate in
mice and calves respectively. In a study conducted by Barbosa
Pereira et al. (2019), the authors developed an algorithm that
could accurately estimate respiration rate of anesthetized pigs.
Jorquera-Chavez et al. (2019, 2021) employed IRT to calculate
respiration rate of cattle and pigs. The algorithm developed
calculated respiration rate based on changes in pixel intensity
values in the selected region of interest. In case of cattle, nose was
selected as region of interest, and eye and ear were selected as
region of interest for pigs. The results reported that in
comparison to visual observation, the respiration rate of cattle
calculated by IRT was underestimated. In the study involving
pigs, significantly higher temperatures were observed in pigs
infected with respiratory diseases as compared to healthy pigs.

IRT has been used to detect respiratory diseases in animals
(Table 3). It provides a non-invasive method to estimate the
respiration rate. However, IRT technology is expensive, and is
impacted by sunlight, wind, humidity and dirt (McManus et al.,
2016; Barbosa Pereira et al., 2019). The distance between the
animal and thermal camera also affects the accuracy as
temperature distribution can only be measured accurately
within several meters (Minkina and Chudzik, 2004). IRT
technology detects changes in temperature of the region of
interest example nose, mouth etc. Thermal images can only be
captured if the animal is facing towards the camera. This can be a
limitation and may require the animals to be sedated or restrained
before performing IRT (Mutlu et al., 2018; Barbosa Pereira et al.,
2019). This is not feasible in large scale commercial farms.

2.3.3 Laser and Radar Sensors
Laser and Radar sensors have been utilized to remotely measure
respiration rate in livestock animals. Pastell et al. (2007) used a
laser distance sensor to measure respiration rate of dairy cows.
The respiration rate was monitored by measuring the flank
TABLE 3 | Examples of studies using IRT technology for monitoring
respiratory diseases.

Animal Distance of camera
from the animal

No. of animals Reference

Calves 133 Schaefer et al. (2007)
Calves Schaefer et al. (2012)
Cows 1.0 m 22 Stewart et al. (2017)
Mice 6 Mutlu et al. (2018)
Calves 1.0 m 5 Lowe et al. (2019)
Pigs 17 Barbosa Pereira et al. (2019)
Cattle 1.5m 10 Jorquera-Chavez et al., 2019
Pigs 1.0 46 Jorquera-Chavez et al., 2021
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movement by pointing the laser sensor at the cow’s side. Doppler
radars have been used for obtaining accurate respiration and
pulse rate signals in dairy cows (Li et al., 2017). Two antenna
beams were directed to the belly and neck of the cows. The
obtained respiration and pulse rate were validated by a
veterinarian with help of a stethoscope.

2.3.4 Machine Vision Technology
In recent years, machine vision technology has generated
considerable interest for its application in animal industry.
Machine vision technology has been used to track animals,
detect abnormal behaviors, identify sick animals etc. (Kashiha
et al., 2014; Nasirahmadi et al., 2017; Nasirahmadi et al., 2019).
Similar to sound and IRT technology, machine vision technology
is non-invasive method of monitoring. Additionally, the method
is largely cheap, causes no discomfort to animals, does not rely
on batteries, and is suitable for both indoor and outdoor
conditions (Nasirahmadi et al., 2017). In this article, the
authors review the studies using machine vision technology for
respiration monitoring in animals.

Machine learning is defined as the ability of the machine to
learn from experience without being explicitly programmed.
Machine vision technology requires datasets to learn or gain
experience. The data can be obtained using different types of
cameras (e.g. depth cameras, charge couple device cameras etc.)
depending on the application. The raw data is then annotated to
mark certain features which are then used for training the model.
Training is followed by applying algorithms developed to
perform the required task. Statistical and mathematical models
can be used to evaluate the performance of the model. Al-Naji
et al. (2019) used machine vision to calculate the respiration rate
of exotic animals (like Giant panda, African lions, Sumatran
tiger, Koala, Red kangaroo, Alpaca, little blue penguin, Sumatran
orangutan and Hamadryas baboon). The videos were recorded
using a digital camera (Nikon D610, Nikon Inc., Tokyo, Japan)
when the animals were not moving much to avoid any noise in
the data. The respiration rate was calculated by detecting
intensity variation of the signal from abdominal thoracic
region of the animals. Wu et al. (2020) investigated the use of
a combination of semantic segmentation and Phase based video
magnification (PBVM) technology to estimate respiratory rate of
standing resting cows. PBVM is a technology developed with aim
of revealing temporal variations in videos that are not visible to
the naked eye. In this method, the input video is decomposed
into different spatial bands and temporal filtering is applied. The
filtered bands are then amplified and added back to the original
signal to get the output video (Wadhwa et al., 2013). This
technique has been used to amplify human skin color
variations due to blood circulation, estimate breathing rate of a
baby, and to amplify low magnitude motion (Wadhwa et al.,
2013). PBVM technology was used to amplify the weak
respiratory movements of the standing resting cows. The data
was recorded using a digital camera fixed on tripod at a distance
of 3m from the cows. About 3000 images were randomly selected
and manually labelled from the recorded videos to train the
model to detect cows from the background. The abdomen of the
cow was selected as region of interest to perform amplification.
Frontiers in Animal Science | www.frontiersin.org 6
The reported accuracy of respiration rate estimation using
PBVM technology ranged from 80% to 100%, with a mean
accuracy of 93.04%.

Machine vision technology is an improvement over thermal
imaging and sound analysis technology as this technology does
not require expensive equipment, restraining of animals, and is
not impacted by changing environmental conditions.

The above-mentioned studies indicate that machine vision
technology can be successfully adopted to monitor respiration
rate in animals. However, both Al-Naji et al. (2019) andWu et al.
(2020) made use of tripod to position the camera close to the
animals (at distance of 3-40m and 3m respectively) to collect the
data. This type of camera positioning setup is not feasible in
commercial farms. Most of the commercial farms have camera
located at the top or at the corner of the ceiling. Moreover, the
recordings were captured when the movement of the animals
was relatively stable. The position of the camera and movement
of animals might impact the accuracy of the algorithms. The
dataset collection and annotation is time consuming and
laborious task. To the authors knowledge only 1 dataset
containing pig images from a commercial farm is available in
public domain (Psota et al., 2019). More research is needed
before large scale commercial application of machine vision
technology can be made feasible.
3 FINDINGS

Finding 1: Human observation method is the most commonly used
method of respiration rate estimation in commercial farms. This
method requires minimum investment in terms of equipment (only
a stopwatch). However, in terms of time the investment is very high.
Proper training of the observer is also critical for the accurate
estimation of respiration rate. This technology has also been used by
researchers to validate the contact sensor technology.

Finding 2: The performance and durability of contact sensors
is subject to the livestock behavior and environmental factors.
The performance of contact sensors is compromised in the
presence of dust, dirt, precipitation, sunlight etc. Damage to
the sensors due to biting by other livestock is also a common
issue. Additionally, not all practitioners are trained to properly
mount the sensors on the livestock. Improving the robustness of
contact sensors and decreasing the per head cost could lead to
wider acceptance and usage in commercial farms.

Finding 3: The non-contact sensor technology is increasingly
becoming popular as it does not interfere with farm activities.
However, non-contact sensor technology requires the use of
cameras for recording the livestock behavior. The video
recordings are affected by factors such as lighting conditions in a
pen, dirt, occlusion etc. Moreover, processing the video data is
computationally intensive and requires access to storage capacity,
high processing systems (such as GPUs), and high-speed internet
which may not be feasible at all commercial farms. The complexity
of non-contact sensors poses a challenge to their widespread
adoption. Developing a mobile phone-based application capable
of real time monitoring would significantly improve acceptance by
the animal practitioners, especially in rural areas.
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4 CONCLUSIONS

To summarize, three techniques to monitor respiration and
sounds for livestock animals were synthesized from the
research literature: traditional (human observation), contact
methods (physical interaction), and non-contact methods
(non-physical interaction). The current state of each of these
three technique categories was surveyed for 23 different studies.
The most significant finding from this work is the inconsistency
in reporting of important study data (e.g., distance of camera
from animals in camera-based studies) and the comparison of
new methods against traditional or other established approaches.
This suggests there might be suboptimal understanding and an
inherent inability to make comparisons when new methods for
monitoring respiration and sounds are proposed.

Observation of respiration rate and sounds in commercial
livestock farms occurred most commonly through direct human
observation. Additional equipment usage was minimal but this also
requires an opportunity cost of time expended by the observer as
well intermittent and transient observation points when compared
against continuous monitoring techniques. Additional training
requirements were also found to be necessary for human
observers which might lead to errors through either
misinterpretations or inconsistencies among observations.

The deployment of both contact and non-contact sensor
technologies can be impacted by the environment in which they
are placed. Common occurrences in livestock production facilities
are dust and moisture, both of which can impact electronic and
optics of these sensors. Similar to the considerations for livestock
size and housing practices, so toomuch the type of animals and how
they are housed be considered due to the different wants an animal
might behaviorally interact with a sensor (e.g., chewing or biting).
But in this comparison, when considering contact and non-contact
technologies, non-contact sensors (cameras) would help resolve
many of these issues since they could be more remotely located
from the animals.

One area of concern in comparing techniques across multiple
types of livestock is reconciling differences in animal physiology
and the layout of production facilities. For example, cattle and
Frontiers in Animal Science | www.frontiersin.org 7
swine are different in size and might be housed in different
numbers in a production facility; this might result in the need for
different techniques in the observation approaches. However, the
main responsibility of the observer, human or artificial, for all
livestock and facilities includes data acquisition for decision-
making, providing a commonality for comparisons.

This survey suggests that more work is needed to realize
sensor-based techniques for respiration and sounds, specifically
in terms of integration and flexibility, for decision-making
opportunities in livestock production systems. A set of data
capture design recommendations should be developed and
tested to support optimal levels of integration and flexibility. In
the future, it is anticipated that both contact and non-contact
technologies, across the entire scale of livestock production
systems, will permit more customization for automation and
human decision-making; therefore, understanding how to
optimize respiration and sound data capture will be important
for increasing productivity and reducing manpower in
livestock operations.
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