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Feed efficiency is an important trait to dairy production because of its impact on

sustainability and profitability. Measuring individual cow feed intake on commercial farms

would be unfeasibly costly at present. Thus, developing cheap and portable indicators

of feed intake would be highly beneficial for genetic selection and precision feeding

management tools. Given the growing use of automated sensors on dairy farms,

the objective of this study was to determine the relationship between measurements

recorded from multiple wearable sensors and feed intake. A total of three different

wearable sensors were evaluated for their association with dry mater intake (DMI). The

sensors measured activity (sensors = 3), rumination (sensors = 1), ear temperature

(sensors = 1), rumen pH (sensors = 1) and rumen temperature (sensors = 1). A range

of 56–340 cows with assorted sensors from 24 to 313 days in milk (DIM) were modeled

to evaluate associations with DIM, parity, and contemporary group (CG; comprised

of pen and study cohort). Models extending upon these variables included known

energy sinks (i.e., milk production, milk fat/protein and metabolic body weight), to

characterize the association of sensors measures and DMI. Statistically significant (i.e.,

P < 0.05) regression coefficients for individual sensor measures with DMI ranged from

9.01E-07 to −3.45 kg DMI/day. When integrating all measures from a single sensor

in a model, estimated regression coefficients ranged 8.83E-07 to −3.48 kg DMI/day.

Significant associations were also identified for milk production traits, parity, DIM and CG.

Associations tended to be highest for timepoints around the time of feeding and when

multiple measurements within a sensor were integrated in a single model. The findings

of this study indicate sensor measures are associated with feed intake and other energy

sink traits and variables impacting feed efficiency. This information would be helpful to

improve feed and feeding efficiency on commercial farms as proxy measurements for

feed intake.
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INTRODUCTION

Feed expenses are the largest production cost on dairy farms
(USDA–ERS, 2017), making feed consumption and efficiency
economically important traits in the dairy industry. Moreover,
feed efficiency has a substantial impact on the sustainability of
the dairy industry (von Keyserlingk et al., 2013; Food Agriculture
Organization of the United Nations (FAO), 2018). Feed efficiency
has been meausred in many ways, with some of the most
prominent measures including gross feed efficiency (GFE) and
residual feed intake (RFI). The GFE measurement is the ratio of
energy output to input, while RFI is the difference between actual
and predicted feed intake. The RFI calculation has often been
prefered over GFE, due to the fact it is theoretically uncorrelated
with other important traits due to the nature of its calculation
(Kennedy et al., 1993). In order to determine GFE and RFI,
individual animal feed intake needs to be collected. Prediction of
feed efficiency for genetic selection requires large scale collection
of individual animal feed intake data or correlated trait data (e.g.
body weight) collection to improve selection accuracy. Currently,
collecting individual animal feed intake is prohibitive on
commercial farms because of the cost of specialized equipment
and additional labor. Given these complications, it would be
beneficial to establish low cost, portable proxies for individual
animal feed intake to develop prediction equations for feed
consumption and efficiency.

Current prediction equations for feed efficiency estimate only
a portion of variability in the true feed efficiency of an animal.
Simple regression equations have been established that utilize
body weight (BW), days in milk (DIM) and milk production
traits (i.e., milk yield, fat, and protein) as predictors of dry matter
intake (DMI) for commercial animals (Tempelman et al., 2015;
Hardie et al., 2017; Dórea et al., 2018). However, if an animal
mobilizes body energy reserves to meet production demands
rather than increasing DMI, these models will result in poor
prediction of DMI (Dórea et al., 2018). Additionally, a multitude
of health and reproductive problems may occur due to rapid
negative energy balance (Roche et al., 2009; Remppis et al.,
2011; Contreras, 2019). Current prediction models are based
on mid-lactation data; whereas metabolic energy demands differ
substantially across DIM (Spurlock et al., 2012; Koltes, 2013).
The ability to monitor and record behavioral measurements such
as activity, rumination and body temperature with sensors may
provide additional information about individual animal’s health
and metabolic status beyond what is captured in current models.

Limited research has been conducted to evaluate the
relationship between wearable sensor data and feed intake, with
varying results across technologies. Lam et al. (2017) reported
that more efficient cows spent a larger proportion of the day
in lower ruminal pH ranges determined by a rumen bolus.
Rumen temperature corrected for drinking events varied less
in more efficient lactating Holsteins (Fischer et al., 2018), but
no difference in rumen temperature was found in beef steers
(Lam et al., 2017). Different production systems also appear
to impact associations with feed intake. Lawrence et al. (2012)
reported activity did not differ between more and less feed
efficient Simmental X Holstein–Friesian animals when they were

housed indoors, but the same group of animals differed in
lying time when on pasture. Even within the same type of
measurement (i.e., activity), results have been variable. Hafla et al.
(2013) reported that high and low RFI animals did not differ in
activity measured via a pedometer; however, Connor et al. (2013)
reported a positive correlation between pedometer activity and
RFI. Recently, Martin et al. (2021) predicted DMI with models
including activity and rumination data, which outperformed
models including only traits related to lactation and body size in
mid-lactation cows. Additionally, Olijhoek et al. (2020) reported
that activity accounted for approximately 7 percent of DMI.
Many questions remain regarding the use of different wearable
sensor as proxies for variation in feed intake.

The objectives of this study were (1) to characterize
the association of wearable sensors with production traits
and lactation characteristics (i.e., DIM, parity, etc.); and (2)
to determine if automated, wearable sensor measures were
associated with feed intake in lactating Holstein cattle.

MATERIALS AND METHODS

Animal Husbandry
This study was approved by the Iowa State University (ISU)
Institutional Animal Care and Use Committee (IACUC) under
protocol 18–174. A total of 465 Holstein cows, ranging in parity
from first to sixth and days in milk (DIM) from 24 to 278 days
at the start of data collection, were selected for use. Animals were
housed in a free stall barn and received the standard total mixed
ration (TMR) fed at the ISU dairy farm. TMR fed consisted of
corn silage, alfalfa hay, whole cottonseed, molasses, ground corn,
soybean meal and hulls, dried distiller grains, and a mineral and
protein mix. Animals were milked three times a day in CG one
through three and two times a day in all others. The change in the
number of milkings per day was due to management decisions
on farm to better reflect industry standards. Animal health was
monitored and attended to by ISU veterinary personnel.

Feed Intake Phenotype Collection
The Calan Broadbent Feeding System (American Calan R©,
Northwood, NH) was utilized to measure individual feed intake
on each cow. Data were collected in 10 CG, with data for each
CG occurring within one season (i.e., Summer or Fall depending
on the CG). Each CG included a one to three day Calan gate
training period prior to the start of data collection, based on the
animal’s previous Calan gate experience. Contemporary groups
(CG) encompassed pen and study cohort, and consisted of 12
to 48 cows (based on pen size) on trial for a total of 40 to 74
days. Cows were fed a weighed amount in the morning in cohort
one, and morning and afternoon in all other cohorts, with prior
feeding refusals removed just before a feeding. Feed weights for
individual cows were regularly adjusted to prevent underfeeding,
with a goal of 5 to 10% refusals to maximize intake. Feed delivery
amount and refusals were weighed and recorded in order to
determine daily feed intake for each animal. Feed samples were
analyzed weekly for dry matter and monthly composite samples
were evaluated for nutrient content (Dairyland Laboratories, Inc.,
Arcadia, WI). Nutrients measured included: crude protein, acid
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detergent fiber (ADF), neutral detergent fiber (NDF), lignin,
starch, fat, and ash. These monthly samples were analyzed to
ensure consistency in nutrient content throughout the study.
Information obtained from these analyses were used to determine
animals’ dry matter intake for subsequent statistical analyses.

Milk, Body Weight, and Body Condition
Score Collection
Milk weights were recorded daily for each milking (BouMatic
LLC., Madison, WI). Milk samples were taken weekly from
each milking within a single day for component analysis
(Dairy Lab Services, Dubuque, IA; AgSource, Menomenie, WI).
Components reported included percent of fat, protein, and
lactose. Components from all milkings in a day were averaged
in order to obtain the daily average fat, protein and lactose
percentage. These percentages were used in combination with
daily milk yields from the week samples were taken to determine
daily kilograms of fat, protein, and lactose. All animals were
weighed on a weekly or bi-weekly basis, and their body condition
was scored utilizing the rubric from Elanco Animal Health five-
point scale at the same time (Elanco Animal Health, 1997).

Descriptive Statistics
Summary statistics, including mean, standard deviation,
minimum, first and third quartile, and maximum values, were
evaluated for data recorded during the study. These include milk
yield (kg/d), fat, protein and lactose yields from sampling days
(kg/d), body weight (BW, kg), body condition score (BCS), DMI
(kg/d) and residual feed intake (RFI). RFI was calculated using
the model described in Hardie et al. (2017). Briefly, the model
included the fixed effects of parity (primiparous or multiparous),
energy corrected milk (sum of energy in fat, protein, and lactose
in milk), change in body weight and metabolic BW (MBW
= BW0.75) as energy sinks. The DIM was fit as a fifth order
Legendre polynomial (Hardie et al., 2017).

Automated Sensor Data Collection
A summary of all sensor measurement intervals and
measurements within a sensor are provided in Table 1.
Sensor types analyzed included two ear tag and one rumen
bolus technologies. The first ear tag (CowSense from Quantified
Ag R©; CS) utilized an accelerometer to measure activity and an
infrared beam directed down the ear canal to measure inner-ear
temperature (◦C). The CS tags reported activity data hourly
and temperature at 20-min intervals, and data was received as
raw values. The second ear tag (Allflex Heatime R© Pro+; SCR)
used an accelerometer to record activity and rumination, and
data were reported every 2 h. Lastly, the rumen bolus (SmaXtec
Premium Bolus; RB) recorded activity via an accelerometer,
temperature (◦C), and pH every 10 mins. Each rumen bolus
was calibrated per the manufacturer’s instruction prior to being
applied to a cow. Data from both CS and RB were preprocessed
by the companies. Rectal temperatures were taken once monthly
in contemporary groups one to three to compare with sensor
measurements of temperature.

Sensor Data Cleaning
Daily average and daily total sensor measures were examined in
order to identify and remove inaccurate readings from sensors
suspected of failing to record accurate measurements. Edits to
remove unreliable data were conducted based on the following
rules. First, for all sensor measures, data were checked to
ensure there were no missing observations within a day (i.e., a
datapoint was recorded for each interval of measurement). Then,
all reported readings of zero were removed, as daily average
sensor measures of zero are biologically unrealistic. Next, a
working range of each sensor measure was determined for each
cohort, based on the mean and standard deviation of animals
deemed healthy via veterinary records. Sensor failure was defined
as an animal with a daily average sensor reading outside ±

three standard deviations from the mean of the healthy cohort,
including missing values, for more than five consecutive days.
If such case occurred, data collected during the period of sensor
failure was removed, starting three days prior to the determined
onset of the sensor failure period. By doing so, measures from
sensors that drifted (i.e., declined in measurement values over
time) prior to failure were also removed. This was done to remove
sensors that were potentially inaccurate near the failure period. If
an animal had less than ten days of data for a sensor measure
after data cleaning, all of the animal’s data was omitted from
statistical analyses to prevent inclusion of faulty data and limited
information per cow.

Sensor-type specific edits were required for SCR ear tag
data. The data cleaning procedures described above were
applied; however, a complete concordance was found between
measurements outside of three standard deviations and health
events. Based on this observation, data filtering for SCR was
altered so that only sensors with daily average measurements of
zero or exhibited no variation in measurement (i.e., that were
believed to have failed) were removed.

Statistical Analyses
Daily averages of CowSense activity (CSACT) and temperature
(CSTEMP), rumen bolus activity (RBACT), rumen pH (RBPH)
and temperature (RBTEMP), and SCR activity (SCRACT) and
rumination (SCRRUM) were calculated in RStudio (Rstudio Inc.,
Boston, MA) in order to determine their association with daily
DMI values. Additionally, daily total activity for all sensors and
daily total rumination were calculated by summing all measures
recorded in a single day. Average sensor measurements were
calculated as the average measurement for the interval a sensor
reported data (e.g., if a sensor reported a measurement every 2 h,
an average sensor measurement in this study would report the 2-
h average for a day). All models discussed were fit using PROC
GLIMMIX in SAS 9.4 (SAS Inst. Inc., Cary, NC).

Correlation and Covariance Between Sensor

Measures
To analyze the similarity of measures from different sensors (e.g.,
CSTEMP vs RBTEMP), Pearson and Spearman correlations of
measures were calculated. For the temperature measurements,
correlation with rectal temperature was also evaluated.
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TABLE 1 | Summary of sensor information after data filtering.

Sensor Measures

(Unit)

Measurement

frequency

Animals (N) Parity Contemporary groups (CG) Parity total

1 2 3 4 5 6 7 8 9 10 11 12

CS ear tag Activity (AUb) ∼1 h 100 1 16 23 4 43

2 18 12 4 34

3+ 10 9 3 22

Inner

ear temperature

(◦C)

∼20 mins 100 1 16 23 4 43

2 18 13 4 35

3+ 10 9 3 22

Rumen bolus Activity (AUb) 10 mins 57 1 24 4 28

2 14 4 18

3+ 9 2 11

Temperature

(◦C)

56 1 24 3 27

2 14 4 18

3+ 9 2 11

pH (pH units) 57 1 24 4 28

2 14 4 18

3+ 9 2 11

SCR ear tag Activity (◦C) 2

h

340 1 2 32 36 5 29 7 20 27 25 27 209

2 0 7 4 3 3 6 8 8 9 9 56

3+ 1 9 6 3 17 0 7 13 14 5 75

Rumination

(mins)

340 1 2 32 36 5 29 7 20 27 25 27 209

2 0 7 4 3 3 6 8 8 9 9 56

3+ 1 9 6 3 17 0 7 13 14 5 75

CG Totala 47 48 12 48 48 12 50 14 48 48 48 48

aContemporary group total of animals with feed intake data.
bActivity unit; activity units were an arbitrary measurement that were developed through proprietary algorithms developed by the companies of each sensor.
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Additionally, covariances of sensor measures with production
and other energy sink traits were determined.

Sensor Associations With Lactational Characteristics

and Systematic Effects
In order to determine if sensor measures were impacted by
contemporary group or parity, the following model was utilized.

SMi = µ + Xi + εi, (1)

Within equation [1], SMi is one of the sensor measures; µ is the
overall mean; Xi is either parity (1, 2, 3+), DIM or contemporary
group (10); and εi is the random residual associated with the
response variable. This model was applied 11 times for each
x-value; one for each of the sensor measures (average and
total daily sensor measures). The least squares means of sensor
measures partitioned by parity and contemporary groups were
also analyzed.

Adjustment of Sensor Measures for Environmental

and Maturity Effects
Sensor measures were adjusted for systematic effects of CG,
parity, and days in milk (DIM) to make sensor values more
fairly comparable for animal level variation without the impact
of these known systematic effects. For each sensor measure, the
following model was fit in order to determine the adjusted sensor
measure (ASM).

SMijk = µ + CGi + Parj + DIMk + εijk (2)

Within equation [2], SMijk, is the daily average sensor measure;
µ is the overall mean; CGi and Parj are the class effects of the ith
contemporary group and jth parity and DIMk is the fixed effect
of days in milk. The residual of the model, εijk, was considered to
be the ASM.

Sensor Association Analyses With Production Traits
Since feed intake is influenced by energy sink traits, the
associations between sensor measures and milk yield, fat and
protein yield, MBW and BCS were evaluated with model [3].
The adjusted sensor measures were utilized as the independent
variable in model [3];

Yi = µ + ASMi + εi, (3)

where Yi is either milk yield (kg), fat yield (kg), protein yield (kg),
MBW or BCS; µ is the overall mean; ASMi is one of the adjusted
sensor measures (i.e. for daily total or average activity, pH,
rumination, or temperature for each appropriate sensor); and εi

is the random residual associated with the response variable. A
total of eleven models were fit for each response variable, one for
each sensor measure evaluated.

Sensor Association Analyses With Feed Intake
In order to determine the association between the 11 traits
measured by the sensors and DMI the following model was fit.

DMIijkl = µ +MYij + Fatij + Protij + Lacij +MBWij

+BCSij + DIMij + ASMij + Park + CGl + εijkl, (4)

where DMIijkl is the response variable; µ is the overall mean;
MYij, Fatij, Protij, Lacij, MBWij, BCSij, DIMij and ASMij are
the fixed effects of the ith cow’s milk, fat, protein and lactose
yield, metabolic body weight, days in milk and adjusted sensor
measure(s) from the jth day, respectively; Park and CGl are the
class effects of the kth parity (1, 2, 3+) and lth contemporary
group; and εijkl is the random residual associated with DMIijk.
This model was evaluated seventeen times, with one model
for each individual sensor measurement (11) and one for each
wearable sensor type, including all measurements within sensor
(6). Individual sensormeasures were comprised of seven averages
of measurements collected at specific time intervals and four
summed daily totals (see Table 1). Models including all measures
within a single wearable sensor type were fit twice for each sensor
type (one with average value(s) and one with total).

Evaluation of Sensor Associations in Relation to

Feeding Time
To evaluate if sensor measures closer to feeding time were
more important (i.e., more highly associated) with feed intake,
sensor measures before, during and after feeding were analyzed.
Feeding times were recorded for five of the eight contemporary
groups with SCR measurements and only data from animals that
were healthy for the entirety of the trial were utilized in this
analysis (n = 139 healthy animals with SCR data). The SCR
activity and rumination measurements reported from four time
periods, including the 2-h period prior to feeding, the 2-h period
including feeding time and the two, 2-h periods following feeding
were associated with DMI using the following model.

DMIijkl = µ + ASM_Priorij + ASM_Fedij + ASM_Post1ij

+ASM_Post2ij + Park + CGl + εijkl (5)

Within equation [5], DMIijkl is the response variable; µ is
the overall mean; ASM_Priori, ASM_Fedi, ASM_Post1i and
ASM_Priori are the fixed effects of the ith cow’s adjusted sensor
measure (SCRRUM, SCRACT or both) from one of the 4 two-
hour time periods (prior to feeding, during feeding, first post-
feeding period and the second post-feeding period) on the
jth day; Park (1, 2 or 3+) and CGl are the class effects of
the kth parity (1, 2, 3+) and lth contemporary group; and
εijk is the random residual associated with DMIijk. Moreover,
the impact of the inclusion of energy sinks (i.e., milk weight,
fat, protein, and lactose (kg), MBW (kg), BCS and DIM) in
the model on sensor effect estimates was evaluated. These
models were assessed separately for the AM and PM feedings,
as there were differences in daily management practices (e.g.,
milking times) surround the two daily feedings. Lastly, the model
was assessed including only a single period, rather than all
four concurrently.

RESULTS

Descriptive Statistics
Supplementary Table 1 provides a summary of the descriptive
statistics for the feed intake and lactation traits. Additionally,
summary statistics for unadjusted and adjusted sensor measures
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FIGURE 1 | A graphical summary of all statistically significant sensor measure associations with management and physiological factors (contemporary group, days in

milk, parity), production traits (milk, fat and protein yield), body weight and body condition score (BCS) and feed intake (dry mater intake; DMI) traits. Three wearable

sensor types including: CowSense (CS) ear tag, SCR ear tag, and rumen bolus, were used to collect 2, 2, and 3 individual measurements, respectively. Black filled

boxes indicate significant associations (p < 0.05) with the trait listed in the column for an individual sensor measurement type at one of two measurement intervals.

The two measurement intervals per individual sensor measurement are: 1) the average for a sensor’s predefined measurement interval across an entire day, and 2) the

daily total sum across all measurement intervals. For each wearable sensor, all individual measurements within that wearable sensor were also combined into a single

model to determine the statistical association with feed efficiency traits (labeled as all sensor measures). 1The number of records per sensor measurement are found in

Table 1. 2Range of sensor measurements adjusted for parity, contemporary group, and days in milk. 3NS = Not significant (P > 0.05). 4Associations with traits other

than feed intake not applicable for the all sensor measures models.

can be found in Supplementary Tables 2, 3, respectively. These
summary statistics are provided in order to show the variation
within traits for the study population. The distribution of parity
and initial DIM can be found in Supplementary Figures 1, 2.
For a summary of sensor measurements recorded, including
frequency of measurements, number of animals with records
after data cleaning and contemporary groups for which sensor
data is available, see Table 1. A summary of all of the statistically
significant sensor associations is provide in Figure 1.

Correlation and Covariance of Sensor
Measures
Pearson and Spearman correlations for total daily activity
measures are presented in Supplementary Table 4 and daily
average temperature measures from CS and RB are provided in
Supplementary Table 5. Pearson correlations ranged from 0.15
to 0.69 for activity measures, with the highest correlation between
the two ear tag activity measures. Spearman correlations were
slightly lower for all activity correlations but followed the same

pattern as the Pearson correlations. Temperature correlations
ranged from 0.23 to 0.40 (Pearson) and 0.21 to 0.37 (Spearman).
The highest Pearson correlation was between rumen bolus and
rectal temperature, whereas the highest Spearman correlation
was between CS and rumen bolus.

Covariances of unadjusted and adjusted sensor measures with
energy sink variables (i.e., milk production, milk components,
MBW and BCS) can be found in Supplementary Tables 6, 7,
respectively. Covariances were generally larger in magnitude
when analyzing unadjusted measures. However, the covariance
of CSACT (average or total) and DMI was larger for the
adjustedmeasures. A number of covariances switched signs when
comparing the covariances of traits with unadjusted or adjusted
sensor measures.

Sensor Associations With Parity and
Contemporary Group Effects
Least squares mean estimates of sensor measures by parity are
presented in Supplementary Table 8 and by contemporary
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TABLE 2 | The association of sensor measuresa with milk yield (kg).

Adjusted sensor

measure

Estimate ± Std. Error P-value

CS activity—avgb 0.00031 ± 0.000031 <0.0001

CS activity—totalc 5.25E-06 ± 0.0 <0.0001

CS temperature 0.18 ± 0.096 0.065

Rumen bolus

activity—avgb
0.94 ± 0.11 <0.0001

Rumen bolus

activity—totalc
0.005 ± 0.00071 <0.0001

Rumen bolus

temperature

−3.57 ± 0.50 <0.0001

Rumen bolus pH −0.52 ± 0.75 0.48

SCR activity—avgb 0.029 ± 0.02 0.15

SCR activity—totalc 0.0024 ± 0.0017 0.15

SCR rumination—avgb 0.25 ± 0.012 <0.0001

SCR rumination—totalc 0.02 ± 0.001 <0.0001

aSensor measure adjusted for parity, days in milk and contemporary group.
bAverage (avg) refers to the daily average across all senor measurement reporting periods.
cTotal refers to the daily summed value for a sensor measurement.

group in Supplementary Table 9. Bar plots of least squares
means estimates by sensor measure can be found in
Supplementary Figures 3, 4. Significant differences (P <

0.0001) were observed between at least one pair of parities
and contemporary groups for all sensor measures except
average CSACT. Of note, activity was higher in first parity
than later parities in all cases except for the rumen bolus,
where activity was lowest in first and highest in third
parity. Supplementary Table 10 provides the differences
in sensor measure by DIM. With the exception of rumen
bolus activity, sensor measures differed across DIM (P
< 0.0005).

Sensor Associations With Energy Sink
Traits: Body Weight, BCS, and Milk Traits
Seven adjusted sensor measures were significantly associated
(P < 0.05) with milk yield (Table 2). The magnitude of
effect was largest for average RBTEMP (−3.57 ± 0.50
kg/◦C) and smallest for total CSACT (5.25E-06 ± 0.00
kg/unit). Significant associations were identified between all
adjusted sensor measures and fat yield, except for CSACT
and CSTEMP, and average rumen bolus pH (Table 3).
Estimated effects for fat yield ranged from −0.14 ± 0.021
kg/◦C (average RBTEMP) to 0.0051 ± 0.00071 kg/unit
(average SCRRUM). All sensor measures except average
RBPH and average SCRACT were associated with milk
protein yield (Table 3). Estimated effects for protein yield
ranged from −0.13 ± 0.014 kg/◦C (average RBTEMP) to
0.031± 0.0029 kg/unit (RBACT).

The total CSACT and CSTEMP, RBPH, average and total
SCRRUM were significantly associated with MBW (P < 0.005;
Table 4). The absolute value of the estimated effect was smallest
for total CSACT 5.23E-07 ± 0.000035 kg MBW/unit) and
largest for RBPH (−6.53 ± 0.70 kg MBW/pH unit). For BCS,

TABLE 3 | The association of sensor measuresa with milk composition traits (kg).

Adjusted

sensor

measure

Fat

Estimate ± Std. Error

Protein

Estimate ± Std. Error

CS activity—avgb 6.62E-07 ± 1.28E-06NS 9.35 E-06 ± 0.0**

CS activity—totalc −8.61E-09 ± 0.0** 1.52E-07 ± 0.0**

CS temperature −0.001 ± 0.0038NS 0.0071 ± 0.0025*

Rumen bolus

activity—avgb
0.039 ± 0.0044** 0.031 ± 0.0029**

Rumen bolus

activity—totalc
0.00022 ± 2.9E-05** 0.00018 ± 0.000019**

Rumen bolus

temperature

−0.14 ± 0.021** −0.13 ± 0.014***

Rumen bolus pH −0.048 ± 0.03NS −0.018 ± 0.020NS

SCR activity—avgb 0.0051 ± 0.0011** −0.00021 ± 0.00075NS

SCR activity—totalc 0.00042 ± 9.5E-05** −0.00002 ± 0.000063NS

SCR rumination—avgb 0.0051 ± 0.00071** 0.0073 ± 0.00046**

SCR rumination—totalc 0.00042 ± 5.9E-05** 0.00061 ± 0.000039**

aSensor measure adjusted for parity, days in milk and contemporary group.
bAverage (avg) refers to the daily average across all senor measurement reporting periods.
cTotal refers to the daily summed value for a sensor measurement.
NSNot significant; P > 0.10.

*P < 0.001.

**P < 0.0001.

TABLE 4 | The association of sensor measuresa with metabolic body weight

(MBW = BW0.75) and body condition score (BCS).

Adjusted

sensor

measure

MBW ± Std. Error BCS ± Std. Error

CS activity—avgb −0.00006 ± 3.5E-05+ −5.92E-06 ± 1.58E-06*

CS activity—totalc 5.23E-07 ± 0.0** −5.35E-09 ± 0.0**

CS temperature 0.43 ± 0.11** −0.0022 ± 0.0049NS

Rumen bolus

activity—avgb
−0.15 ± 0.11NS −0.031 ± 0.004**

Rumen bolus

activity—totalc
−0.00091 ± 0.00069NS −0.00021 ± 2.7E-05**

Rumen bolus

temperature

0.66 ± 0.48NS 0.072 ± 0.02*

Rumen bolus pH −6.53 ± 0.70** −0.16 ± 0.027**

SCR activity—avgb −0.0019 ± 0.026NS −0.00097 ± 0.00088NS

SCR activity—totalc −0.00016 ± 0.0022NS −0.00008 ± 0.000074NS

SCR rumination—avgb −0.046 ± 0.016* 0.000037 ± 0.00055NS

SCR rumination—totalc −0.0039 ± 0.0014* 3.068E-06 ± 0.000046NS

aSensor measure adjusted for parity, days in milk and contemporary group.
bAverage (avg) refers to the daily average across all senor measurement reporting periods.
cTotal refers to the daily summed value for a sensor measurement.
NSNot significant; P > 0.10.

*P < 0.001.

**P < 0.0001.
+P < 0.10.

average and total CSACT, and all rumen bolus measures were
significantly associated (P < 0.0005) (Table 4). Estimates ranged
from −0.16 ± 0.027 unit BCS/ pH unit (RBPH) to 0.072 ± 0.02
unit BCS/◦C (RBTEMP).
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TABLE 5 | Association of sensor measurementsa with dry mater intake from

models including only one type of measurement from each sensor.

Sensor type Adjusted

sensor

measure

Estimate ± Std. Error P-value

CS Activity—avgb 0.000028 ± 0.000014 0.05

Rumen bolus 0.26 ± 0.064 <0.0001

SCR −0.015 ± 0.19 0.10

CS Activity—totalc 9.01E-07 ± 0.0 <0.0001

Rumen bolus 0.0018 ± 0.00044 <0.0001

SCR −0.0013 ± 0.00077 0.10

CS Temperature −0.031 ± 0.04 0.44

Rumen bolus −3.45 ± 0.32 <0.0001

Rumen bolus pH 1.23 ± 0.43 0.0041

SCR Rumination—

avgb
0.11 ± 0.0059 <0.0001

SCR Rumination—

totalc
0.0087 ± 0.00049 <0.0001

aSensor measure adjusted for parity, days in milk and contemporary group.
bAverage (avg) refers to the daily average across all senor measurement reporting periods.
cTotal refers to the daily summed value for a sensor measurement.

Sensor Associations With Feed Intake
Association of Single Measurements Within Sensor

With DMI
Estimates of regression coefficients and the significance of each
individual, single measurement type within a senor with feed
intake are presented in Table 5.

Activity
The average and total measures of CSACT and RBACT were
each significantly associated with DMI (P < 0.05). Estimates
for average measures ranged from −0.000028 ± 0.000014 (CS)
to 0.26 ± 0.064 kg DMI/unit of activity (rumen bolus) for the
average measures. Estimates for the total activity were smaller for
both sensor types. The SCRACT was not associated with DMI
whether it was analyzed as the daily average or total (P > 0.05).

Temperature
The CSTEMP was not significantly associated with DMI (P
> 0.40); however, RBTEMP had a strong association (P <

0.0001). The estimate of this effect on DMI was −3.45 ± 0.32
kg DMI/◦C.

Rumen pH
A significant association (P< 0.005) between RBPB andDMIwas
found. The effect estimate for RBPH was 1.23 ± 0.43 kg DMI/
pH unit.

Rumination
The SCRRUM and feed intake were significantly associated (P <

0.0001) when analyzed as a daily average and total. The estimated
effect of average SCRRUM was 0.11 ± 0.0059 kg DMI/min of
rumination and 0.0087± 0.00049 kg DMI/min of rumination for
the daily total.

TABLE 6 | Association of sensor measurementsa with dry mater intake from

models integrating all types of measurements available for a single sensor type.

Sensor type Adjusted measure Estimate ± Std. Error P-value

CS Ear

tag

Activity—avgb 0.000028 ± 0.000014 0.049

Temperature −0.036 ± 0.041 0.38

CS Ear

tag

Activity—totalc 8.83E-07 ± 0.0 <0.0001

Temperature −0.028 ± 0.04 0.49

Rumen

bolus

Activity—avgb 0.18 ± 0.062 0.0045

Temperature −3.39 ± 0.33 <0.0001

pH 1.71 ± 0.44 <0.0001

Rumen

bolus

Activity—totalb 0.0013 ± 0.00044 0.0038

Temperature −3.48 ± 0.32 <0.0001

pH 1.76 ± 0.43 <0.0001

SCR Ear

tag

Activity—avgb 0.029 ± 0.0094 0.0023

Rumination—avgb 0.11 ± 0.0061 <0.0001

SCR Ear

tag

Activity—totalc 0.0024 ± 0.00078 0.0023

Rumination—totalc 0.0091 ± 0.00051 <0.0001

aSensor measure adjusted for parity, days in milk and contemporary group.
bAverage (avg) refers to the daily average across all senor measurement reporting periods.
cTotal refers to the daily summed value for a sensor measurement.

Models Integrating All Sensor
Measurements Within a Single Wearable
Device Were Associated With DMI
Results for the association of sensor measures with feed intake
when all measurements within a sensor (i.e., multiple measures
from the same sensor) are included in a model are presented in
Table 6. For the CS ear tag, inclusion of all sensor measurements
(CSACT + CSTEMP) within a model, resulted in a significant
association between activity and DMI (average or total, P <

0.05). As in the single sensor model, the estimated effect of
total CSACT was smaller than for the average CSACT. The
CSTEMP was not significant when including average or total
CSACT (P > 0.35). Simultaneous inclusion of all three rumen
bolus measures (RBACT + RBTEMP + RBPH) resulted in all
sensor measures being significantly associated with DMI (P <

0.005). Effect estimates were 0.18± 0.062 kg DMI/unit of activity,
−3.39± 0.33 kg DMI/◦C and 1.71± 0.44 kg DMI/pH unit when
including RBACT, RBTEMP and RBPH, respectively. When total
RBACT was modeled, effect estimates were 0.0013 ± 0.00044 kg
DMI/unit of activity, −3.48 ± 0.32 kg DMI/◦C and 1.76 ±

0.43 kg DMI/ pH unit. Similarly, all SCR measures (SCRACT
+ SCRRUM) were significant (P < 0.005) when included in
the same model regardless of utilizing averages or totals for
each measurement. As observed with other sensors, estimated
effects were smaller when measures were analyzed as the
daily total.

The Relationship of Sensor Measures With
DMI in the Time Periods Near Feeding Time
Estimated regression coefficients of SCR sensor measures with
daily DMI varied across the time periods before, during and after
feeding time (Figure 2). Larger effect estimates were typically
observed when energy sink variables were not included in models
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(results including energy sink variables not shown). When sensor
measures were included individually, SCRACT was significant
in all periods (A.M. and P.M.) around feeding except in the
A.M. Post1 (i.e., the period immediately following feeding); P >

0.15). The regression coefficient for SCRACT varied from −0.05
± 0.008 kg DMI/unit for the period prior to the A.M. feeding
(P < 0.0001) to 0.033 ± 0.01 kg DMI/unit for P.M. Post1 (i.e.,
the period directly after the P.M. feeding; P < 0.0001). The
SCRRUM measure was significant for the A.M. Prior, Post1 and
Post2 periods, and the P.M. Prior and Fed periods. The effect
was smallest in the A.M. Prior period (i.e., period before feeding;
0.0081 ± 0.0019 kg DMI/unit; P < 0.005) and largest for the
period during the P.M. feeding (0.019 ± 0.0029 kg DMI/unit;
P < 0.0001).

Associations at the time periods around feeding were also
assessed for single sensor measurements, either 1) individually
in a model (results not shown); or 2) integrated with all other
periods simultaneously in a model. Significance and sign of
regression coefficient estimates were the same regardless of
modeling method, except for SCRACT from the A.M. Post1
and Post2 periods (i.e., 0–2 and 2–4 h after feeding period).
Whenmodeled individually, SCRACT in the Post1 period tended
toward significance (P < 0.10) and was not significant (P > 0.10)
in the Post2 period. However, when molded simultaneously with
all four periods, SCRACT in Post1 was not significant (P > 0.20)
and was significant in Post2 (P < 0.0001).

With the inclusion of both SCRACT and SCRRUM
concurrently, all measurements from the A.M. periods,
excluding SCRRUM during feeding (P > 0.90), were significant.
For A.M. adjusted sensor measure models, the largest magnitude
of effect was estimated for SCRACT in the period prior to feeding
(−0.47 ± 0.0081 kg DMI/unit; P < 0.0001) and smallest for
SCRRUM in the time period prior to feeding (0.0062± 0.0027 kg
DMI/unit; P < 0.005). In the model including P.M. measures,
with the exception of SCRRUM in both Post periods (P > 0.25),
all sensor measures were significant (P < 0.05). The SCRACT
in Post 1 (i.e., the period after feeding) had the largest effect
estimate (0.034 ± 0.01 kg DMI/unit; P < 0.001), whereas the
smallest was for SCRRUM in the period during feeding (0.018 ±
0.0029 kg DMI/unit; P < 0.0001).

DISCUSSION

Significant associations were identified between multiple traits
and variables impacting feed efficiency and automated sensor
measurements (Figure 1). All sensor measures were significantly
different between at least two parities and CG comparisons,
and the majority had significant differences over DIM. This
indicates that it is likely important to account for parity, CG and
DIM differences anytime sensor data is analyzed. Additionally,
significant associations were identified between sensor measures
and production traits. With the exception of CSTEMP, all sensor
measures were found to be associated with DMI; however, the
association depended on whether other sensor measures were
included within the same model.

FIGURE 2 | Estimated effects of adjusted activity (red) and rumination (yellow)

in the period prior to feeding (Prior), the period during which feeding occurs

(During) and the two consecutive periods following feeding (Post1 and Post2).

Line type denotes whether single sensor measures (activity or rumination) or

both sensor measures (activity and rumination) were included in the model.

The shape of the points indicates the significance level of the estimate.

The degree of data processing, and adjustment of sensor
data for covariates impacts the strength of association with
various traits. Thus, the information a sensor was designed to
detect likely impacts the trait associations that can be identified.
Importantly, some sensor measures (SCR and RBmeasures) used
in this study were preprocessed by the manufacturer, while other
measures (CS) represented raw data. The rumen bolus and SCR
measures are preprocessed by proprietary algorithms. Therefore,
the data from these technologies may have been optimized for the
detection of specific events and, as such, adjusted for a variety of
parameters that created noise in detecting these events. Possible
optimization or adjustment could be for estrus detection, heat
stress, or environmental or cow-specific factors. For example,
activity data for the rumen bolus utilized in this study was
processed in an attempt to factor out rumen motility, so that
activity reflected cowmovements rather than rumenmovements.
In addition to data preprocessing, some sensors utilize activity
data from the accelerometer to classify a specific behavior. This
is the case with the SCR ear tags, where accelerometer data is
used to determine rumination time. Consideration should be
given to how this may impact the independence of activity and
rumination, and how best to model these data.
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Sensor Measures Differ by Parity, DIM,
and CG
All sensor measures differed across CGs, parity and DIM.
Differences in sensor measures across CG may relate to
differences in weather and/or season, management practices (e.g.,
number of milkings per day), ration changes impacting drymater
or nutrient content, or other subtle management changes related
to differences in personnel.

For both ear tag technologies, total activity of parity one cows
was highest and parity two the lowest (Supplementary Figure 3).
Conversely, total activity recorded by the rumen bolus was lowest
in parity one and highest in parity 3+ (Supplementary Figure 3).
Differences in activity across parities is supported by findings of
previous studies. For example, Neave et al. (2017) found that
lying times differed slightly between parities in the transition
period. Additionally, Solano et al. (2016) found that lying
behavior differed between primiparous and multiparous cows
and DIM. Differences in activity across parity and DIM is logical
due to changing energy demands, amounts of feed consumed,
changes in physiology and aging of animals.

Few studies have identified differences in temperature, pH
and rumination for parity, DIM or CG. Analyses in this study
found that RBTEMP did not differ between parity one and two
but was slightly lower in parity 3+ (Supplementary Figure 3).
Rectal temperatures have previously been found to vary between
parities and across DIM (Bewely et al., 2008; Wenz et al.,
2011) and reticular temperature was significantly impacted
by DIM (Bewely et al., 2008). The RBPH was not different
between parity one and 3+ but was higher in parity two
animals (Supplementary Figure 3). This may be due to a lack
of animals in the parity 3+ category (N = 11), compared to the
parity 1(N = 28) and 2 (N = 18) categories. Lastly, SCRRUM
was highest in parity two animals and lowest in parity one
(Supplementary Figure 3).

Sensor Measurements Were Associated
With Production Traits
Activity from CS and RB were significantly and positively
associated with milk yield. Jaeger et al. (2019) observed a
similar relationship where dual-purpose cows with reduced
activity had lower milk production. Jaeger et al. (2019) also
identified a positive relationship between rumination and milk
weight, corroborating the results of this study. The relationship
between rumen temperature and milk yield has not been
investigated previously. Interestingly, the findings of this study
indicate a substantial, negative association between rumen bolus
temperature and milk weight. This observation may be related to
energy lost as heat of fermentation, in turn limiting the amount
of energy toward milk production. Since rumen fermentation
is associated with rumen temperature, one might speculate
that the rumen microbiome may influence the observed rumen
temperature (Johnson et al., 1963; Russell, 1986; Huus and Ley,
2021). Dikmen et al. (2012) did find significant phenotypic
correlations of rectal temperature with 305-day milk fat and
protein yield, but directionality of the estimates was opposite of
those found in the present study for rumen bolus temperature.
However, it is important to note that the sensor temperatures

were measured at different locations and would be expected to
differ from rectal temperature, despite a positive correlation.
This likely indicates different physiological influences on the
temperature observed at the ear, rumen, and rectum.

Limited information is available regarding the association of
sensor measures with MBW and BCS. Jaeger et al. (2019) found
that cows spending a smaller proportion of their day in high-
activity states had increased BCS, and cows that were more
active had lower BCS. This is consistent with the findings of
this study, as significant and negative associations were found
for CSACT and RBACT (average and total) with BCS. Body and
skin temperatures of cows could be affected by body fat content of
cows, potentially related to heat dissipation (Young, 1975). Lastly,
the estimated association effect for RBPH indicates a negative
relationship of rumen pH with MBW and BCS. This relationship
may be driven by feeding behavior. For example, an animal with
more frequent eating bouts or increased feed intake during eating
bouts would have a lower average pH.

Most Sensor Measurements Were
Associated With Feed Intake
Regardless of whether sensor measures were included
individually in a model or simultaneously with other sensor
measures, the largest and smallest regression coefficients for the
same sensor measures (i.e., CSACT had the smallest regression
coefficient in both cases and RBTEMP the largest). Importantly,
SCRACT (as either an average or total) is only significant when
simultaneously accounting for SCRRUM. This could be due to
the use of accelerometer data in predicting rumination and thus
there is a direct connection between activity and the presented
rumination measurement.

The following passages describe the relationships between
single sensor measurements of activity, temperature, rumen pH
and temperature with DMI.

Activity
Directionality of all activity association effects (average and total)
indicate that animals with lower activity consume less feed, after
accounting for differences in milk production traits and body
weight. This finding is consistent with reports in the literature,
which observe association effects of the same sign (Lawrence
et al., 2012; Connor et al., 2013).

Temperature
The estimated associations of both CS and RB temperature with
DMI were negative. Due to the shunting of blood to the gut for
digestion, a negative relationship between ear temperature and
DMI may be reasonable. However, because rumen temperature
increases with the fermentation of feedstuffs, the observed
relationship between RBTEMP and DMI is surprising. The
negative association may be driven by feeding behavior, such as
frequency or size of meals. Consuming feed less frequently may
cause less time spent at higher temperatures, or if an animal
eats less feed the change in temperature may not be as drastic.
Additional consideration should be given to the potential impact
of water consumption since increased drinking bouts and volume
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of water consumed by an animal may reduce the daily average
RBTEMP of a cow.

Rumen pH
There have not been previous studies conducted to evaluate
the relationship of rumen pH overtime with feed intake and
efficiency in dairy cattle. Previous studies in feedlot cattle have
had varying results regarding the relationship of rumen pH and
feed efficiency. Fitzsimons et al. (2014) found that animals with
lower RFI (i.e., more efficient animals) had higher pH, but Lam
et al. (2017) found lower RFI animals spent more time in optimal
and acidotic pH ranges. Moreover, McDonnell et al. (2016) did
not identify a difference in pH between low and high efficiency
animals. In this study, higher average RBPH was associated with
increased feed intake, regardless of whether other rumen bolus
measures were included in the model as well. This relationship
could be caused by differences in feeding behaviors, like that seen
with RBTEMP (i.e., less frequent meals could lead to fewer drops
in pH) or differences in the buffering capacity of individual cows.

Rumination
A positive relationship was found between SCRRUM and DMI,
which is consistent with previous research (Clément et al.,
2014). Due to the relationship between feed consumption and
rumination, a positive estimate makes sense biologically. Despite
the logical connection between rumination and intake, Byskov
et al. (2017) concluded that there was no clear relationship
between the two. This could in part be due to a larger number
of records in the current study or a difference in the method of
determining rumination (i.e., collar and microphone-based vs.
ear tag and accelerometer-based).

Daily Total Measurements Were Generally
Not as Informative as Average
Measurement Value for the Sensor
Measurement Period
Associations between sensor measurements and DMI were
generally larger and more significant when averages for
measurement intervals were modeled compared to daily total
summed sensor measurements. Recent exploration into the
relationship between automated sensor technologies and feed
intake has largely utilized total measures (i.e., the sum in a period
of time), either for an hour, a day or larger windows of time
(Olijhoek et al., 2020; Martin et al., 2021). Much like total daily
steps for a day are measured for humans, total activity measures
may be indicative of energy expenditure of cows (Neilson et al.,
2018). However, results from the current study indicate larger
estimated effect sizes for DMI associations of average activity
and rumination for the interval at which they were reported
(i.e., average of either 10-min, hourly, or 2-h intervals in a
day). Additionally, significance of sensor measure effects did
not change between total and average measures. It is possible
that specific points in the day influences the interval average,
thus leading to larger estimates. Such points could relate to
management factors, feeding behavior or the diurnal cycle cows
tend to follow.

Associations of Sensor Measures Changed
Sign From the Time Before to After
Feedings and Had the Strongest
Relationship to DMI
In order to assess if the times around feeding are important
in estimating daily feed intake (i.e., DMI), the effect of the
SCRACT and SCRRUM in the period prior to feeding, period
in which feeding occurred and the two periods following feeding
were assessed. Findings from these analyses indicate that some
periods are not significantly associated with daily feed intake
and that estimated effects differ in magnitude and sign by
period (Figure 2). Inclusion of energy sink variables, including
production and body composition traits, generally resulted in
lower estimated effect sizes of sensor measures (results not
shown). These results were not surprising since the energy
sink traits are known to impact feed intake, but they imply
that a portion of the variance in DMI explained by sensor
measures is likely driven by the relationship of sensor measures
and energy sinks. When a single sensor measure type was
included at a time, the estimates ranged from −0.05 ± 0.008 kg
DMI/unit (P < 0.0001; SCRACT prior to A.M. feeding) to
0.033 ± 0.01 kg DMI/unit (P < 0.005; SCRACT in period
immediately following P.M. feeding). Given the range in these
variables observed in the dataset (Supplementary Table 3), such
estimates would result in a reduction of 4.35 kg DMI/day and
an increase of 2.05 kg DMI/day between the animals with lowest
and highest SCRACT prior to A.M. feeding and SCRACT
in Post1 (i.e., period following P.M. feeding), respectively.
Smallest and largest effect values were for the same sensor
measures when SCRACT and SCRRUMmeasures were included
simultaneously; however, the estimate for SCRACT prior to A.M.
feeding was slightly smaller (−0.047 ± 0.0081 kg DIM/unit; P <

0.0005) and SCRACT in Post1 was somewhat higher (0.034 kg
DIM/unit; P < 0.0005). These estimates equate to a reduction
of approximately 1250 kg DMI and an increase of nearly 650 kg
DMI in a 305-day lactation, assuming the association is consistent
across DIM.

Interestingly, the estimated effects of SCRACT associations
with DMI were consistently negative prior to and during the
feeding period and positive in the two periods following feedings.
Directionality of these estimates indicates that the more active
prior to feeding an animal is, the less they eat in a day.
Oppositely, more activity after feeding results in a higher daily
feed intake. This is likely influenced by management practices
but could indicate that feeding behaviors relative to the time of
day are important in determining daily DMI. Estimated effects
for adjusted rumination were positive, regardless of the period.
This is logical, as one would expect the more an animal eats, the
more they will ruminate.

Sensor Variability Is an Important
Consideration in Evaluating Associations
With Traits
Interpretation of sensor associations with DMI need to consider
the overall variation of the specific sensor measurement and
the covariation between sensor and phenotypic measures. For
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example, the estimated effect for CSACT on DMI appears
small; however, this measurement exhibits the highest variation.
Moreover, the expected difference in DMI between the highest
and lowest average CSACT was 1.77 kg DMI/unit of activity per
day (modeled independently or integrated with all CS measures;
Tables 5, 6). Over the course of a 305-day lactation, this would
equate to a difference in 540 kg of feed consumed (DMI) between
these two animals, assuming the association does not change
across different stages of lactation.

The size of the estimated association effect of RBTEMPmakes
it a particularly interesting potential indicator of feed intake.
Limited variation was identified for RBTEMP; however, the
range in rumen temperature was sufficient to observe variability
in DMI. If the association between RBTEMP and DMI was
consistent across lactation, the difference in the highest and
lowest recorded adjusted RBTEMP would equate to nearly
4000 kg of DMI in a 305-day lactation (i.e., multiplying the
range by the regression coefficient of −3.45; Table 5). The
interpretation of this estimate indicates animals with higher daily
average rumen temperature have decreased DMI, after adjusting
for energy sinks. Typically, we would expect that animals
who consume more feed would produce more heat through
fermentation and therefore have a higher rumen temperature.
One explanation for the observed relationship between RBTEMP
and DMI could be due to differences in feeding behavior, eating
less per meal but more frequently (Fischer et al., 2018). This type
of consistent feeding behavior might lead to more consistency
in rumen temperature since there is less fluctuation in rumen
fill. Due to the potential relationship of RBTEMP and feeding
behaviors, RBTEMP may be an indicator of feed efficiency.

Interpretation and Implications of Sensor
Associations With Feed Intake
Significant associations between adjusted sensor measures
(activity, ear and rumen temperature, pH, and rumination)
with DMI were observed when simultaneously accounting for
production traits and systematic effects (i.e., CG, DIM, parity).
This indicates that sensor measures detect variation in feed
intake that is not explained by the typical energy sinks included
in the calculation of feed efficiency measures (e.g. RFI) or
by differences between contemporary groups. Sensor measures
were also associated with all production traits and body weight,
which are known to impact feed intake and efficiency. The
implication of these results is that sensor measures may be
beneficial in the estimation of feed intake or efficiency for
animals without feed intake phenotypes. Not surprisingly, sensor
measures differ by parity, DIM and CG which is important to
consider as it may impact the interpretation of results. These
differences in systematic effects also indicate an opportunity
to use sensor measures to evaluate how physiology (DIM
and CG) and management practices (within CG) impact feed
intake. The broader implication of this study is that sensor
measures have potential to be utilized as proxies for feed
intake that may be helpful to improve the accuracy of genetic
predictions. It is important to acknowledge a few limitations of
this study. Differences in the number of animals, proprietary

data preprocessing and data recording time interval across sensor
types make it difficult to compare results across technology types.

Potential Applications of Sensor Measure
Associations With Feed Efficiency Traits
Analytics used to monitor individual animal feed intake with
automated sensor measurements would be useful to manage
daily feed utilization, animal health, and genetic selection for
feed efficiency on commercial dairies. Daily predictions of feed
intake could allow producers to adjust ration quantities more
precisely, reducing feed waste and associated expenses. Given
the considerable variation observed in sensor measures, they
may have application in estimating genetic merit of animals for
feed efficiency as indicator traits for variability in feed intake, if
heritable, or as monitors of environmental variability to reduce
noise in estimates of genetic effects for feed intake. Each of these
applications could help to improve overall sustainability of the
dairy industry.

CONCLUSIONS

Multiple measurements from automated, wearable sensors,
including CS and SCR ear tags and a rumen bolus were identified
to be significantly associated with feed intake, milk production
traits, parity, DIM, and contemporary groups. Associations of
feed intake with individual or combined measurements within
a sensor were significant with or without inclusion of energy sink
traits across a range of DIM (24 to 313 at start of trial). The
strongest association with feed intake was observed for RBTEMP
(−3.48 ± 0.32 kg DMI/d) when including other RB measures
as covariates. Differences in the sign of the association occurred
around time of feeding, with stronger associations occurring in
the 2 h prior to the A.M. feeding and the 2 h after the P.M.
feeding when there were fewer cows moves and less human
interactions. Average sensor measures for the time interval the
sensor measure was reported appeared more useful than total
daily summed measurement based on model significance and
effect size estimates. This study indicates algorithms monitoring
a portion of the variability in feed intake using sensors has
application on commercial farms. Sensor-based measurements
could be applied in precision feeding and genetic selection
for improved feed efficiency with additional development in
the future.
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