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Generating porcine embryos in vitro is a critical process for creating genetically modified

pigs as agricultural and biomedical models; however, these embryo technologies

have been scarcely applied by the swine industry. Currently, the primary issue with

in vitro-produced porcine embryos is low pregnancy rate after transfer and small litter

size, which may be exasperated by micromanipulation procedures. Thus, in this review,

we discuss improvements that have been made to the in vitro porcine embryo production

system to increase the number of live piglets per pregnancy as well as abnormalities in

the embryos and piglets that may arise from in vitro culture and manipulation techniques.

Furthermore, we examine areas related to embryo production and transfer where

improvements are warranted that will have direct applications for increasing pregnancy

rate after transfer and the number of live born piglets per litter.

Keywords: pig, porcine embryo, in vitro, pregnancy rate, micromanipulation

INTRODUCTION

In vitro-produced (IVP) embryos are essential for employing assisted reproductive technologies
to establish porcine models. Recent development of genome editing techniques has fueled
considerable interest in expanding porcine models for biomedical and agricultural purposes. As
pigs have similar physiology and more relevant body and organ sizes to humans compared to
other laboratory species, porcine models can be used to understand disease progression and to
test relevant doses of therapeutics or medical devices. To date, several porcine biomedical models
have been generated, including those for cystic fibrosis (Rogers et al., 2008), cardiovascular disease
(Turk et al., 2005), cancer (Schook et al., 2015; Hendricks-Wenger et al., 2021), phenylketonuria
(Koppes et al., 2020), immunodeficiency (Suzuki et al., 2012; Lee et al., 2014), viral infection (Lei
et al., 2016), and xenotransplantation (Lai et al., 2002). Moreover, gene editing has been used to
improve carcass traits (Lai et al., 2006) of pigs and to confer resistance to viruses that plague the
swine industry (Whitworth et al., 2016, 2019).

The majority of porcine embryo production systems are comprised of three main steps: oocyte
maturation, in vitro fertilization, and embryo culture. Initially, oocytes are aspirated from ovaries
(gilt or sow) and go through the in vitromaturation process. The oocytes that reach the metaphase
II (MII) stage are selected for in vitro fertilization (IVF). Afterwards, presumptive zygotes are
cultured in vitro prior to embryo transfer. Intensive studies have been conducted to develop porcine
embryo culture media (Lee et al., 2013; Spate et al., 2015; Redel et al., 2016b; Chen et al., 2018), and
the development of different culture systems has dramatically impacted when embryo transfers
are able to be performed. Moreover, the embryo production system is essential for designing
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porcine models. To create genetically modified pigs,
manipulation of oocytes and embryos is required. The most
common methods for introducing mutations into target genes
or transgenes are microinjection of the CRISPR/Cas9 system
(mRNA or ribonucleoprotein complex) into the porcine zygote
or transfection of fetal fibroblasts to generate donor cells for
somatic cell nuclear transfer (SCNT) (Figure 1). Both methods
are routinely used to produced genetically modified pigs;
however, SCNT is technically demanding which can lower
the efficiency of obtaining live piglets. After the manipulation
procedures, embryos are cultured and subsequently transferred
into a surrogate gilt. Gene editing of embryos by microinjection
results in pigs with heterogeneous mutations, while SCNT results
in pigs with the same mutation as the donor cell (Figure 1).

Although IVP of embryos has proven to be beneficial and
has been adopted for species, such as cattle, small ruminants,
and horses, the swine industry has been reluctant to adopt
these technologies. Similar to other species, in vitro-produced
porcine embryos exhibit reduced quality and ability to establish
a pregnancy after transfer compared to their in vivo-derived
counterparts (Macháty et al., 1998; Bauer et al., 2010). Thus, a
considerable amount of effort has been devoted to improving
each step of the IVP process, which is the main focus of this
review. Furthermore, developmental and epigenetic aberrations
have been noted after in vitro culture (IVC) of porcine embryos,
possibly resulting in abnormalities during gestation and after
birth. Other issues, including polyspermy, embryo transfer
procedures, and cryopreservation, are discussed as barriers to
widespread use of IVP porcine embryos.

ADVANCES IN IN VITRO MATURATION

Oocyte maturation is a complex process that involves the
coordination of events that together allow the oocyte to
resume meiosis, undergo successful fertilization, and support
normal embryo development and subsequent development to
term (Gilchrist and Thompson, 2007). Detailed underlying
mechanisms and signaling events that promote oocyte
development in vitro are not fully understood. In vivo, the
immature oocyte and surrounding cumulus cells (CCs) maintain
an intimate relationship which allow the oocyte to gradually
acquire meiotic and developmental competence (Gilchrist et al.,
2008). The bi-directional communication between the oocyte
and its surrounding CCs is critical in activating the necessary
signaling pathways needed for competence to be attained.
Starting the in vitro embryo production (IVP) process with the
most competent oocytes is critical as the oocyte’s intrinsic quality
sets the stage for proper embryo development (Lonergan et al.,
2003).

Oocytes remain under meiotic arrest because of high levels
of oocyte secreted cyclic adenosine monophosphate (cAMP)
(Mehlmann et al., 2004). The act of removing a cumulus
oocyte complex (COC) from its follicular environment and
placing it into culture will lead to spontaneous resumption of
meiosis. This is likely due to the physical disruption of gap
junctions, which leads to a reduced influx of cyclic guanosine

monophosphate (cGMP) from the CCs. Cyclic GMP plays an
important role as an inhibitor of cAMP hydrolysis (Norris
et al., 2009; Vaccari et al., 2009), and the reduction of cGMP
in oocytes prematurely removed from follicles may cause
oocytes to resume meiosis and complete nuclear maturation.
However, the premature progression of meiosis often results
in defective cytoplasmic maturation, therefore compromising
development (Sela-Abramovich et al., 2006). Phosphodiesterases
are a group of enzymes that hydrolyze cyclic nucleotides
which can lead to a decrease in cGMP and cAMP levels
and results in the resumption of meiosis. Treatment of COCs
removed from follicles with phosphodiesterase inhibitors, such
as milrinone, has shown promising results in improving
oocyte nuclear and cytoplasmic competence (Roy et al.,
2021). Furthermore, cAMP negatively regulates maturation
promoting factor (MPF), and decreases in cAMP levels with
concomitant increases in MPF is critical for successful meiosis
(Yu et al., 2008). Upon fertilization, intracellular calcium
oscillations in the oocyte cytoplasm promote degradation of
MPF and allow meiosis to be completed (Madgwick et al.,
2004).

Another issue often encountered during in vitro maturation
(IVM) is improper activation of the mitogen activated protein
kinase-3 and−1 (MAPK3/1) signaling pathway, which is a direct
result of a decreased response to luteinizing hormone (LH).
Oocytes derived from small or medium sized antral follicles often
respond poorly to LH as the CCs surrounding oocytes from
immature follicles do not possess adequate LH receptors (Eppig
et al., 1997). In vivo, acquisition of an appropriate numbers of LH
receptors in CCs followed by the LH surge activates a signaling
cascade that promotes oocyte maturation, which incorporates
actions of epidermal growth factor (EGF)-like factors and the
downstream MAPK3/1 pathway (Shimada et al., 2003, 2006;
Hsieh et al., 2007). Activation of MAPK3/1 plays an integral
role in successful oocyte maturation and is needed for optimal
cumulus cell expansion (Su et al., 2003; Fan et al., 2009; Yuan
et al., 2017). To improve the response of COCs to LH in vitro,
follicle stimulating hormone (FSH) is added to the medium to
increase in LH receptor numbers, and EGF is supplemented
to promote CC expansion and maturation (Prochazka et al.,
2003; Kawashima et al., 2008). Recently, addition of three
cytokines, fibroblast growth factor 2 (FGF2), leukemia inhibitory
factor (LIF), and insulin like growth factor 1 (IGF1) together
(termed “FLI”) during maturation improved oocyte competency
by influencing the induction of MAPK3/1 activation in the
cumulus cells (Yuan et al., 2017). Supplementation of FLI into
porcine oocyte maturation medium dramatically increased the
number of porcine oocytes that completed nuclear maturation,
doubled the number of embryos that reached the blastocyst
stage, and quadrupled the number of piglets born compared
to the traditional form of oocyte maturation (Yuan et al.,
2017). The FLI matured COCs showed a dramatic increase in
cumulus cell expansion, decreased the number of transzonal
projections as time in culture increased, and demonstrated a
difference in the timing of MAPK3/1 activation in cumulus cells.
Effectiveness of this novel maturation system has been validated
for pigs (Procházka et al., 2021) and has been incorporated into
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FIGURE 1 | Schematic of in vitro production of porcine embryos, manipulation procedures, and surgical transfer to obtain live-born piglets. (1) Follicular contents are

aspirated from follicles (3–6mm in diameter) by using an 18-gauge needle attached to a 10-mL disposable syringe. (2) Cumulus-oocyte complexes (COCs) with at

least two layers of cumulus cells to be placed in maturation medium. (3) Oocytes are denuded and are inspected for extrusion of the first polar body (metaphase II), as

an indicator of maturation. (4) Microinjection: (4a) Matured oocytes are fertilized in vitro and (4b) zygotes are injected with the CRISPR/Cas9 system. (4c) Zygotes are

cultured for 5–6 days to reach the blastocyst stage. (5) Somatic cell nuclear transfer (SCNT): (5a) The first polar body and metaphase plate are extracted from the

oocyte. (5b) An edited donor cell is injected into the perivitelline space. (5c) The oocyte and donor cell are electrically fused followed by artificial activation. (5d) The

cloned embryo is cultured for 5–6 days to reach the blastocyst stage. (6) The embryos are surgically transferred into the ampullary-isthmic junction of a gilt. (7a) Piglets

derived from microinjected embryos have varying edits to the target gene(s) as denoted by different colors. (7b) Cloned piglets have the same mutation(s) as the donor

cells used for SCNT as denoted by the same color.

maturation systems for cattle and sheep (Stoecklein et al., 2021;
Tian et al., 2021).

A recent study also suggests that FLI provides necessary
signals to promote oocyte maturation without the presence of
gonadotropins, specifically LH and FSH. Porcine oocytes placed
into a maturation medium supplemented with FLI and without
LH and FSH were able to complete nuclear maturation at an
equivalent frequency but with only negligible CC expansion
(Redel et al., 2021). The findings go against a conventional
dogma that CC expansion is necessary or a marker for successful
oocyte maturation. Results in the study suggest that FLI can
drive oocyte competence in the absence of gonadotropins and
has a downstream role in enhancing CC expansion when
gonadotropins are present (Redel et al., 2021). More research
is needed to completely understand the mechanisms by which
FLI is promoting oocyte maturation and if other players can be
supplemented to continue to improve our IVM system.

Outcomes of IVM are highly influenced by the oocyte source,
specifically depending on whether the oocytes are derived from
either prepubertal gilts or sexually mature sows. Bagg et al.
(2007) observed that ovaries from gilts have increased numbers
of follicles that are 3mm in diameter, whereas ovaries from
sows have more follicles ranging from 4 to 8mm. Oocytes
derived from small follicles (3mm) gave rise to blastocyst-stage
embryos with decreased cell numbers compared to larger follicles
of either source, indicating lower developmental quality (Bagg
et al., 2007). Although both oocyte sources have been used to

generate embryos that result in live piglets, oocytes from gilts
have also been shown to be less responsive to FSH during
maturation, in turn decreasing progression to MII, and exhibit
decreased development to the blastocyst stage compared to sow-
derived oocytes (Marchal et al., 2001). However, improvements
in porcine maturation systems, such as the addition of FLI,
have dramatically increased oocyte quality and subsequent
developmental competence of gilt-derived oocytes (Yuan et al.,
2017). Understanding these key pathways will assist us in
designing an optimal IVM system that enhances availability of
in vitro-matured porcine oocytes.

HISTORY OF PORCINE EMBRYO CULTURE

The process of embryo transfer in pigs necessitates embryo
culture, if even for a brief period. The ability to maintain viable
gametes or embryos in vitro is one of the enabling technologies
that facilitates genetic manipulation of pigs and is central to
advancements in our understanding of reproductive biology.
Prior to the 1990s, zygotes, 2-cell stage embryos, compactmorula,
and blastocyst-stage embryos could be recovered from a donor
sow and transferred into a surrogate to produce offspring.
Culture from the zygote to the blastocyst stage followed by
production of offspring was a rare occurrence (Davis and Day,
1978). While there were a few reports of development through
the 4-cell stage (e.g., Menino and Wright, 1982), there was a
so-called in vitro “block” to development that occurred during
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the 4-cell stage. A similar “block” to development was observed
in most mammalian species that corresponded to the stage at
which significant amounts of RNA synthesis first began after
fertilization. Embryos could be cultured before and after this
critical stage while retaining viability but could not be cultured
through it and maintain viability. Researchers working on mice
screened every available strain and discovered that the C57 BL/6
strain could develop in vitro through this stage (block occurs
at the two-cell stage). Likely a result of a unique tolerance to
hyperosmolarity (Hadi et al., 2005), the C57 BL/6 became the
standard for embryo culture and manipulation experiments.
For those of us who worked on other mammals, such as
pigs, achieving development from the zygote to blastocyst stage
required approaches whereby zygotes were placed in a co-
culture environment (White et al., 1989), medium supplemented
with oviductal fluid (Archibong et al., 1989), embedded in agar
cylinders and cultured in a sheep oviduct (Prather et al., 1991), or
in vitro in an organ culture system (Krisher et al., 1989).

Gradually, different formulations were described whereby
embryos could be routinely cultured from the zygote to blastocyst
stage, such as NCSU23 (Reed et al., 1992), Whitten’s Medium
(Beckmann and Day, 1993), porcine zygote medium (PZM)
(Yoshioka et al., 2002). One such culture medium was modified
Tyrode’s Lactate without bicarbonate and buffered with HEPES
(TL-HEPES) (Hagen et al., 1991). The discovery that TL-
HEPES would support development from the zygote stage to
the blastocyst stage was stumbled upon quite serendipitously.
One Friday afternoon, zygotes were collected from a gilt that
was supposed to provide 4-cell stage embryos. The zygotes were
flushed from the oviduct by using TL-HEPES. Since the wrong
stage of embryos was collected and there was no use for them,
the zygotes were left in the flushing medium and placed in a
humidified warm air incubator. The next week when old culture
dishes were being removed from the incubator, it was noticed that
the zygotes had become blastocyst stage embryos (RSP, personal
observation). About that time, there was much debate regarding
which components of the culture system were either inadequate
or toxic to the developing embryo (reviewed by Petters andWells,
1993). So, it was shown with TL-HEPES as the base medium
that, contrary to some reports, neither glucose nor glutamine
inhibited development (Hagen et al., 1991). Since TL-HEPES
does not require a CO2 atmosphere for buffering the pH, it has
been widely used as a holding or embryo transfer medium for
porcine embryos over the past 30 years (Redel et al., 2019). It
was not until the 1990s that the first reports of embryo culture
in pigs, whereby zygotes were rinsed from one sow’s oviduct,
identified microscopically, cultured to the blastocyst stage, and
then transferred to the oviduct of another sow with resulting
pregnancies, were published (Beckmann and Day, 1993).

While the “block” to embryo development had been a major
topic of scientific papers for over a half century, the “block”
seems to have disappeared (Prather, 2010). In retrospect, the fine
tuning of the culture system by altering the osmolarity (Baltz and
Tartia, 2010) and using highly purified water may have caused the
“block” to “disappear.” The “block” that was once a major hurdle
to advancements in our understanding of early embryonic events.
While culture systems are certainly not ideal, they have evolved

to the state of functionality that permit widespread repeatability
and application of embryo related technologies.

Incorporation of powerful technologies such as RNA-
sequencing now allow us to understand embryo requirements
in vitro and improve standard medium formulations. For
instance, the transcriptional profiles of in vivo-matured and
-fertilized, in vitro-cultured blastocyst stage porcine embryos
predominantly exhibited an upregulation of transcripts related to
amino acid transport and metabolism pathways compared with
their in vivo-derived counterparts (Bauer et al., 2010). Transcript
abundance of the arginine transporter, solute carrier 7A1
(SLC7A1), was increased in vitro-cultured embryos, indicating
a potential deficiency of arginine, and supplementation of
arginine to embryo culture increased developmental parameters
and resulted in the birth of live piglets (Redel et al., 2016b).
Similarly, RNA-sequencing data let to supplementing glutamine
to current culture system, and improved embryo development
in vitro and led to successful term development after transfer
(Chen et al., 2018). The same notion was used to supplement
glycine in culture, and benefits of the supplementation was
observed in vitro. (Redel et al., 2016a). However, 11 surrogates
failed to become pregnant after receiving embryos cultured
in supplemental glycine, indicating that in vitro measures of
quality do not necessarily translate into in vivo developmental
competence. These studies demonstrate that the adaptation of
new technologies enable us to interpret the status of porcine
embryos under culture conditions and assist us to continuously
advance the culture systems.

PREGNANCY RATE WITH IN

VITRO-PRODUCED EMBRYOS

In vitro-produced embryos are known to possess reduced quality
and viability compared to their in vivo-derived counterparts.
Before a reliable embryo culture system was developed, embryos
were transferred at the one-cell stage into a gilt on days 0 or 1
after standing estrus (Lee et al., 2014; Whitworth et al., 2014).
Improvements in the culture system have allowed for transfer
of IVP blastocyst-stage embryos into a surrogate pig without
compromising viability (Lee et al., 2013; Redel et al., 2016b;
Chen et al., 2018). Morula- and blastocyst-stage embryos are
typically transferred into a surrogate gilt on days 3, 4, or 5 after
standing estrus. This asynchronized transfer strategy accounts
for the developmental delay of IVP embryos (Bauer et al., 2010).
Most term pregnancies are allowed to farrow; however, Cesarean
section (C-section) can also be successfully performed. If a
pregnancy is lost during gestation, the majority of loss occurs
between days 25 to 45 by resorption, and in rare cases, the
surrogate will abort the pregnancy after day 45 (Lai and Prather,
2003).

Since 2017, our group has performed four transfers of
unmanipulated IVF embryos cultured in vitro that went to
term with an 100% pregnancy rate and average of 10.3 ± 0.3
live piglets per litter. Based on the fact that 40–60 blastocyst-
stage embryos were transferred in each case, ∼1 in 5 embryos
developed to term, indicating a significant improvement in the
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culture system. However, reports of transfers by using in vivo-
derived embryos indicate that ∼1 in 3 blastocyst-stage embryos
develop to term (Yoshioka et al., 2002; Martinez et al., 2015).
Considering these rates, improvements in the developmental
potential of IVP embryos can still be made to reduce the number
of embryos that need to be transferred.

As discussed above, IVP embryos are essential for
the application of ART. However, application of embryo
manipulation or SCNT often compromises embryo viability,
resulting in a low term development. The full-term pregnancy
rate after transferring IVF embryos injected with CRISPR/Cas9
systems (microinjection) ranges from 40 to 47% (187 transfers
since 2017) with an average of 5.7 ± 0.7 live piglets per litter.
The full-term pregnancy rate after transferring SCNT-derived
embryos generated from numerous cell lines was 20–30% (264
transfers since 2017) with an average of 3.2 ± 0.4 live piglets
per litter. The full-term development from these embryos is
typically lower compared to unmanipulated IVF embryos due
to accumulated damage during embryo manipulation or gene
editing itself. In addition, efficacy of SCNT also highly depends
upon the type of donor cells used for the process (Hao et al.,
2009; Richter et al., 2012; Whitworth et al., 2014). Examples
between in vivo-, IVF-, and SCNT-derived embryo transfers
and resulting litter sizes of live-born piglets can be found in
Table 1, and the success rates of in vivo-derived pregnancies vs.
pregnancies from different in vitromanipulations are depicted in
Figure 2.

Previous embryo transfer reports certainly indicate that the
current IVP system in pigs (both IVM and IVC) has been
improved; blastocyst transfers can be practically applied, and the
number of live piglets is closer to transferring in vivo-derived
embryos. However, embryos and piglets originating from the
IVP system can present abnormalities that are additional barriers
to consider.

ABNORMALITIES OBSERVED IN IN

VITRO-PRODUCED PREIMPLANTATION
EMBRYOS

Development of the embryo culture system now successfully
supports the production of porcine embryos in vitro, and the
embryos are essential for studying early developmental processes
as well as for the application of genetic engineering in pigs.
However, the quality of embryos (e.g., cell number, apoptosis,
epigenetic status) originating in vitro remains inferior to in vivo-
derived embryos. Currently, development of IVF embryos to the
blastocyst stage is ∼40% on day 6 (Redel et al., 2016a; Yuan
et al., 2017; Chen et al., 2020), with significant embryo loss or
arrest at earlier stages. Blastocyst-stage embryos produced in vitro
contain about 40 to 50 cells on day 6 (Redel et al., 2016a; Yuan
et al., 2017; Chen et al., 2018, 2020), which is an improvement
compared to the previous IVP systems (Macháty et al., 1998;
Bauer et al., 2010). However, a significantly lower number of cells
are detected in IVP day 7.5 blastocyst-stage embryos compared
to in vivo counterparts, 50 vs. 80, respectively (Canovas et al.,
2017), presumably contributing to the low term development. In

addition, the ratio of inner cell mass (ICM) to trophectoderm
(TE) cell numbers, a predictive marker of embryo quality (Tao
et al., 1995), is often skewed by IVP. The ICM:TE ratio of
day 6 blastocyst-stage embryos cultured under the previous IVP
system (∼0.15–0.2) was lower than in vivo counterparts (∼0.4–
0.5) (Macháty et al., 1998; Yoshioka et al., 2002). Optimization of
the culture system led to an improvement of the ICM:TE ratio
of IVP embryos (∼0.35–0.4) (Redel et al., 2016a; Jeong et al.,
2017), which is close to the level of in vivo-derived blastocyst-
stage embryos.

Regulation of DNA methylation is a major epigenetic event
that occurs during preimplantation development in mammals
and is critical for normal embryo development (Reik et al.,
2001). Fertilized oocytes undergo a massive decrease in global
DNA methylation during the transition from gametes to the
blastocyst stage, except for imprinted genes and some repetitive
elements (Messerschmidt et al., 2014). Artificial intrusions on
natural embryo development, including in vitro maturation of
oocytes, in vitro embryo culture, and varying oxygen tensions, are
expected to influence to the epigenome of IVP embryos (El Hajj
and Haaf, 2013; Gaspar et al., 2015; Sirard, 2017). Porcine IVP
embryos are reported to possess a high level of DNAmethylation
compared to in vivo-derived counterparts (Deshmukh et al.,
2011). The global level of 5-methylcytosine, measured through
immunocytochemistry (ICC), was higher in IVF zygotes than in
vivo-derived zygotes, and the higher DNA methylation level was
maintained in cleavage and blastocyst-stage embryos, suggesting
that IVP embryos may experience impaired post-fertilization
demethylation. A recent study conducted an analysis of the
whole genome DNA methylation status of in vivo-derived and
IVP pig blastocyst-stage embryos at single nucleotide resolution
(Canovas et al., 2017). Consistent with the results of the ICC
assay, whole genome DNA methylation analyses revealed that
global methylation levels, including CpG islands, promoters,
intergenic regions, and repetitive elements, are higher in IVP
blastocyst-stage embryos (∼15%) than in vivo-derived blastocyst-
stage embryos (∼12%). In vitro culture also affects the expression
and methylation of imprinted genes, which is critical for normal
embryo development (Reik et al., 2001). Transcript abundance
of imprinted genes, imprinting related genes, and X-linked genes
differ between IVP and in vivo-derived blastocyst-stage embryos
(Park et al., 2011, 2012; Canovas et al., 2017). Although the
methylation status of differentially methylated regions (DMRs) is
expected to be stable during embryogenesis, IVP pig blastocyst-
stage embryos exhibit aberrant methylation patterns in several
imprinted genes, such as ZAC1, PEG10, and NNAT, compared
to their in vivo counterparts (Canovas et al., 2017). Interestingly,
supplementation of oviductal or uterine fluid to fertilization and
culture media induces shifts in the DNA methylation profiles of
IVF embryos to become more similar to the epigenome of in
vivo-derived embryos, indicating suboptimal culture conditions
contributes to the epigenetic aberrations in porcine embryos
produced in vitro (Canovas et al., 2017).

Incomplete epigenetic reprogramming of donor cell nuclei has
been considered one of the main causes for developmental failure
in cloned animals (Rideout et al., 2001; Mann and Bartolomei,
2002; Bonk et al., 2007). An early study on the DNA methylation
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TABLE 1 | Live-born litter sizes after surgical transfer of embryos from different sources.

Embryo source Genetically

edited

Number embryos transferred (stage) Number live piglets (average ± SD) Reference

In vivo No 30 (Blastocyst) 9.4 ± 0.8 Martinez et al., 2014

No 30 (Blastocyst) 9.2 ± 2.5 Martinez et al., 2015

Yes (NANOS2) 30 (One-cell) 3.5 ± 0.7 Park et al., 2017

IVF No 40 (Blastocyst) 5.0 ± 1.1 Redel et al., 2016a

Yes (NANOS2) 52 (One-cell) 11 (One litter) Park et al., 2017

Yes (CD163,

CD1D, TMPRSS2,

COL6A3, APC,

and PAH)

50 (Blastocyst) 8.6 ± 1.1 Yuan et al., 2017

No 40 (Blastocyst) 10.5 ± 0.7 Chen et al., 2018

SCNT Yes (CMAH) 192–257 (One-cell) 3.0 ± 3.0 Kwon et al., 2013

No 35–58 (Blastocyst) 3.2 ± 2.7 Lee et al., 2013

Yes (RAG2) 180–252 (One-cell)

48 (Blastocyst)

2.0 ± 1.1

6 (One litter)

Lee et al., 2014

Yes (CD1D) 201–239 (One-cell) 4.3 ± 2.5 Whitworth et al., 2014

Yes (CD163) 193–267 (One-cell) 4.6 ± 3.1 Whitworth et al., 2014

No 207–280 (One-cell) 2 (One litter) Lee et al., 2015

Yes (NGN3) 102 (One-cell) 3 (One litter) Sheets et al., 2018

No 42 (Blastocyst) 2 (One litter) Cecil et al., 2020

FIGURE 2 | Success rates of pregnancies from in vivo-derived embryos and in vitro-produced embryos by different manipulation procedures. Under in vivo

conditions, ∼20 oocytes are ovulated each cycle with rates of fertilization and development to the blastocyst stage over 95%. About 50% of the embryos will produce

live piglets. Under in vitro conditions, if 200 oocytes are aspirated from ovaries, ∼150 oocytes will mature to metaphase II (75%). After IVF or SCNT, roughly 30% will

develop to the blastocyst stage for transfer into a surrogate gilt. Different manipulations, IVF with no manipulation, microinjection, and SCNT, result in decreased

percentages of embryos that produce live piglets compared to in vivo conditions.

status of cloned pig embryos found that genome-wide post-
fertilization demethylation also occurs during preimplantation
development (Kang et al., 2001). However, like IVF embryos,
cloned embryos retain relatively higher DNA methylation levels
compared to in vivo-derived embryos during preimplantation
development (Kang et al., 2001; Bonk et al., 2008; Deshmukh
et al., 2011). Suboptimal IVC could be a source for the incomplete
epigenetic reprogramming of cloned embryos as shown in
IVF embryos; however, the abnormal epigenetic status is likely
related to the SCNT process because cloned embryos possess a
higher global DNA methylation level compared to IVF embryos

(Kwon et al., 2008; Huan et al., 2014) and impairments in
maintaining methylation imprints (Wei et al., 2011). Indeed,
somatic driven DNA methyltransferase 1 (DNMT1) is known
to interfere with DNA methylation reprogramming in cloned
pig embryos (Song et al., 2017). Reducing DNMT1 abundance
by siRNA or epigenetic modification agents improves DNA
methylation reprogramming and developmental competency of
cloned pig embryos (Xu et al., 2013; Huan et al., 2014, 2015a,b;
Song et al., 2017), supporting the fact that a high level of
DNMT1 is a barrier to the reprogramming of DNA methylation
marks in cloned embryos. Furthermore, treatment of cloned
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porcine embryos with histone deacetylase inhibitors promotes
the DNA demethylation process by reducing DNMT1 expression
levels (Liang et al., 2015), leading to improved developmental
competency (Zhang et al., 2007; Whitworth et al., 2011; Zhao
et al., 2013).

Histone modifications establish molecular landmarks that
differentiate active and inactive chromatin states (Rideout et al.,
2001). Moreover, histone modifications are important factors
that determine successful epigenetic reprogramming of cloned
embryos as an open chromatin state must be achieved in the
somatic donor cell to mimic the early embryo (Whitworth and
Prather, 2010; Ogura et al., 2013). Acetylation and methylation of
lysine residues on the amino-terminal tails of histone H3, such
as H3K9ac, H3K27ac, and H3K4me3, are markers of an open
chromatin state, correlating with the developmental potential
of cloned embryos (Santos et al., 2003; Li et al., 2008). Cloned
porcine embryos possess lower H3K9ac and H3K4me3 levels
than normal fertilized embryos at early developmental stages,
which represents a relatively inactive chromatin state (Zhai et al.,
2018a,b). Conversely, the repressive histone marker, H3K9me3,
is more abundant at early stages in cloned porcine embryos
than those derived by IVF (Zhai et al., 2018a; Jeong et al.,
2020). Patterns of histone modifications representing repressive
chromatic structures serve as a barrier to successful epigenetic
reprogramming of donor cells and correspond to a lower
developmental potential. Indeed, induction of an open chromatin
state in cloned porcine embryos by treatment with histone
deacetylase inhibitors or histone-lysine methyltransferases of
H3K9 leads to improvement of nuclear reprogramming and the
developmental potential (Zhang et al., 2007; Whitworth et al.,
2011; Song et al., 2014; Huang et al., 2016; Jeong et al., 2020;Weng
et al., 2020).

ABNORMALITIES OBSERVED IN
NEONATAL PIGLETS DERIVED FROM IVF
OR SCNT

Different abnormalities have been detected in piglets derived
by the IVP system and manipulation procedures, although
predominantly the reports are related to cloned piglets. High
rates of stillbirths have been noted for pregnancies carrying
clones (Estrada et al., 2007; Schmidt et al., 2015; Ao et al., 2017;
Cecil et al., 2020), and increased mortality within the first few
days after farrowing is often observed with cloned pigs (Ao et al.,
2017). Birth weight may be a predictor of survival probability
for cloned piglets as those that died within 4 days after birth
weighed ∼28% less than those that survived for more than 4
days (Ao et al., 2017). As a contributing factor to perinatal
mortality, abnormal umbilical cord vasculature and low placental
weight as well as placental malformations have been observed
for cloned fetuses and piglets, likely impairing nutrient transport
and gas exchange (Lee et al., 2007; Ao et al., 2017). Regarding
placentas of cloned neonatal piglets, presence of infarcts
and villous hypoplasia may be the result of upregulation of
apoptotic signaling pathways, which were detected by proteomic
analyses (Lee et al., 2007). To overcome issues with stillbirths,

lack of mammary development in surrogates carrying clones,
and delayed initiation of parturition, a C-section is typically
performed on day 116 of gestation (Carter et al., 2002; Whyte
et al., 2011). Delivery by C-section has been shown to decrease
post-natal mortality over vaginal delivery by 20% (Schmidt et al.,
2011).

Anatomical abnormalities can also be present in cloned piglets
and are occasionally seen in piglets derived by IVF. Examples
of abnormalities that can be observed by external examination
include macroglossia, cleft palate, macrocephaly, flexor tendon
contracture, polydactyly, kyphosis, and umbilical hernia, among
others (Carter et al., 2002; Schmidt et al., 2015). Some of
the abnormalities, such as flexor tendon contractures, can be
corrected with physical therapy (Carter et al., 2002), but most
abnormalities often lead to loss of the affected piglet. Internal
abnormalities of the digestive tract include short or absent
intestines and small or absent gall bladder (Schmidt et al., 2015).
Cloned piglets can also have various heart and circulatory system
defects that may lead to congestive heart failure (Carter et al.,
2002; Schmidt et al., 2015). Lastly, issues of the reproductive
system have been observed in cloned piglets, such as absent
gonads, cryptorchidism, and enlarged gubernaculum (Schmidt
et al., 2015).

Analysis of muscle tissues from normal and abnormal cloned
piglets revealed numerous differentially expressed genes, such
as those for the MAPK signaling pathway, the hypertrophic
cardiomyopathy pathway, and imprinting, as well as altered
DNAmethylation patterns that could be involved in abnormality
manifestation (Li et al., 2014). Although developmental
abnormalities observed in SCNT-derived piglets are potentially
linked to incomplete or faulty reprogramming of the donor
cell nucleus after SCNT, the overall IVP system is suggested to
contribute to the abnormalities as well.

IMPROVEMENTS REQUIRED TO EXPAND
THE USE OF IN VITRO-PRODUCED
PORCINE EMBRYOS

Application of ART, such as IVF, embryo transfer, and SCNT,
facilitates rapid genetic improvements and are heavily used
parts of the livestock industry. Regarding the cattle industry,
the number of transfers by using IVP cattle embryos increased
7.3% from 2018 to 2019, pointing to a heavy reliance on these
technologies (Viana, 2020). However, application of ART is
limited in the swine industry, partially due to difficulties in
embryo production. In vitro production of porcine embryos has
not been adopted by this industry for several reasons. Since
pigs have litters and a short generation interval, there is less
incentive to incorporate ART to facilitate genetic improvements
as compared to cattle who have single offspring and longer
generation intervals. In pigs, establishment of pregnancy is only
possible when at least two embryos are present in each uterine
horn (Dziuk, 1968). Thus, a large number of IVP embryos must
be transferred into a surrogate for a pregnancy to be established.
Conventionally, a minimum of 150 one-cell stage embryos or 30
blastocyst-stage embryos are transferred into a single surrogate
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pig. Other barriers hindering incorporation of IVP embryos in
the swine industry include high rates of polyspermy, lack of
non-surgical oocyte recovery or embryo transfer procedures, and
unsuccessful cryopreservation.

Reducing Polyspermy
In vitro fertilization of porcine oocytes matured in vitro results
in high rates of polyspermy that decreases development to the
blastocyst stage and the number of cells in the ICM (Han et al.,
1999b). The penetration of more than one spermatozoon often
leads to developmental arrest of IVF embryos, thus impeding
the use of IVF for pig production purposes. In pigs, the
block to polyspermy is a two-step mechanism; the fast block
occurs at the oocyte plasma membrane and the slow block
occurs at the zona pellucida after cortical granule exocytosis.
Specifically, the fast block is associated with shedding of folate
receptor 4 (JUNO) from the oocyte plasma membrane which
acts as the receptor for Izumo sperm-egg fusion 1 (IZUMO1)
on the sperm head (Bianchi et al., 2014). The slow block is
triggered by sperm-induced release of ions (i.e., calcium and zinc)
followed by cortical granule exocytosis (Abbott and Ducibella,
2001; Tokuhiro and Dean, 2018). The released cortical granules
induce cleavage of zona protein 2 (ZP2), leading to increased
zona hardening (Boccaccio et al., 2012; Burkart et al., 2012).
Moreover, zinc released after sperm penetration can bind ZP1,
which contributes to further crosslinking of the zona pellucida
(Nishimura et al., 2019). Zona hardening has also been shown
to be influenced by lectins and glycosidases in the mouse (Dolci
et al., 1991), and treatment of porcine oocytes with different
lectins decreased sperm binding to the zona pellucida (Hwang
et al., 2002). Factors responsible for proper zona hardening are
present within the oviductal fluid of pigs, partially explaining why
this process is diminished during IVF (Mondéjar et al., 2013).
Although polyspermy generally results in developmental arrest
during preimplantation stages, accessory sperm heads have been
detected within phagolysosomes of porcine embryos, suggesting
that embryos possess a mechanism to degrade unnecessary
spermatozoa for survival of the embryo (Xia et al., 2001). In
fact, polyspermic porcine embryos could develop to term after
transfer, and the piglets had the correct number of chromosomes
(Han et al., 1999a).

Oocyte quality is known to be correlated with incidence
of polyspermy and in vitro-matured oocytes present lower
quality and higher rates of polyspermy. Components of porcine
oviductal fluid, such as oviductal glycoprotein 1, osteopontin,
and plasminogen, have been shown to reduce the number
of penetrating sperm (Hao et al., 2006; Coy et al., 2008,
2012). A recently developed porcine IVF system increased the
pH from 7.4 to 8.0, which is physiological for the oviductal
ampulla, added oviductal fluid, and installed a barrier between
gametes to promote sperm chemotaxis (Soriano-Úbeda et al.,
2017). The system decreased sperm penetration by 21.8%;
however, monospermy of the fertilized oocytes increased from
26.4 to 88.7% in the new system. Similarly, a porcine IVM
system with the presence of C-X-C motif chemokine ligand
12 (CXCL12), vascular endothelial growth factor A (VEGFA),
and Wingless-type MMTV integration site family member 5A

(WNT5A), increased nuclear maturation, development to the
blastocyst stage, and retraction of transzonal projections with
decreased incidence of polyspermy (Liu et al., 2020). Retraction
of transzonal projections can promote cortical granule migration
and exocytosis (Galeati et al., 1991).

As previously mentioned, addition of FLI to the porcine
oocyte maturation system improved developmental competence
of subsequent embryos. Moreover, oocytes matured in the
presence of FLI presented decreased transzonal projections
during IVM (Yuan et al., 2017). It is not clear whether the
improved efficiency of IVM by using FLI is related to its ability to
reduce polyspermy by decreasing transzonal projections as this
has yet to be evaluated.

Non-surgical Embryo Transfer
The ability to conveniently transfer IVP embryos into surrogates
is warranted for broad incorporation of IVF and SCNT
technologies into the swine industry. However, unlike other
livestock species, such as cows, routine non-surgical transfers
in pigs have been limited due to the complexity of the
female reproductive tract. Since the spiral shape of the cervix
complements the male anatomy, passing a catheter through the
cervix to reach the uterus is challenging as well as the fact
that the uterine horns are long and narrow compared to other
species. For transfer of IVP embryos in the research setting, a
midventral laparotomy is performed to expose one ovary and
oviduct, and the embryos are deposited in the ampullary-isthmic
junction. Successful pregnancies have been established when
morula and blastocyst-stage embryos are surgically transferred
into a surrogate gilt (Chen et al., 2018, 2021; Koppes et al., 2020;
Pfeiffer et al., 2020); however, this procedure is time-consuming
and requires specialized skills, thus limiting the use of IVP
embryos in the swine industry.

Non-surgical embryo transfers have been accomplished in
pigs (averaging 2.5min per procedure) by using an artificial
insemination spirette to guide a modified flexible catheter for
deposition of the embryos in the uterus (Li et al., 1996; Martinez
et al., 2004). After 24 transfers of in vivo-derived embryos, 17
surrogates became pregnant (71%) and farrowed an average of
6.9±0.7 piglets. The type of female, gilt or sow, did not impact
success of the transfer, but more insertion force was needed to
pass through the cervical canal of the gilts compared to the
sows, as expected (Martinez et al., 2004). One major risk factor
associated with this method is the possibility of puncturing the
uterine wall with the catheter which could lead to infection.
Furthermore, the number of embryos transferred is important
as non-surgical transfer of 30 in vivo-derived blastocyst-stage
embryos resulted in a farrowing rate of 38.9% (5.7 ± 2.4 piglets
per litter) while transfer of 40 blastocyst-stage embryos resulted
in a farrowing rate of 72.7% (9.9 ± 2.1 piglets per litter)
(Martinez et al., 2015). Although the reports certainly encourage
the use of non-surgical embryo transfer in pigs, only in vivo-
derived embryos have been used in these studies. As pointed out
previously, developmental potential of in vivo-derived embryos
far surpasses IVP embryos, and the need for non-surgical
transfers is primarily related to IVP embryos. Reports on the
effectiveness of non-surgical embryo transfer using IVP embryos
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should clarify whether the technology can be effectively used in
the industry.

Cryopreservation
While cryopreservation of cells from pigs, such as fibroblast
cells, is straightforward, cryopreservation of porcine gametes
and embryos has been a challenge. Successful cryopreservation
of boar sperm is season-, breed-, boar- and ejaculate-specific.
Because of this variability, most artificial insemination in the
swine industry is performed with fresh semen. For those
ejaculates where sperm survive the cryopreservation, frozen
semen results in a 20–30% decrease in farrowing rate with
reduced litter sizes as compared to fresh semen (Silva et al., 2015).

Successful cryopreservation of embryos is even more
challenging. The most consistent success is achieved after
centrifugation of the early embryo and micromanipulation
removal of the lipids prior to culture to the blastocyst stage
and subsequent cryopreservation (Nagashima et al., 1995).
Counterintuitively, removal of the lipids enhances development
of the embryo rather than hinders it (Li et al., 2006), questioning
the role of lipids in porcine embryo development. Transferring
163 delipidized, vitrified blastocyst-stage embryos into two
surrogates resulted in a total of 10 piglets between the two
pregnancies, confirming that these procedures are compatible
with development in vivo (Li et al., 2006). Since the lipid removal
procedure by micromanipulation is very labor intensive, a
similar strategy was developed that separated the lipids through
centrifugation but did not remove them from within the zona
pellucida as a high-throughput method of cryopreservation for
IVP embryos (Spate et al., 2013). An alternative method uses
solid surface vitrification, whereby 50 oocytes or zygotes are
moved through a series of equilibration and vitrification media
and placed onto a cooling surface, such as aluminum foil, sitting
on top of liquid nitrogen before being transferred to cryovials
(Somfai and Kikuchi, 2021).

While there are a few reports of more conventional
cryopreservation, those reports of successful cryopreservation
of early pig embryos have not been widely repeatable, and the
industry has not adopted the transfer of frozen embryos as a
method of improving genetics or moving genetics around the
world. In vivo-derived embryos survive cryopreservation better
than IVP embryos. As discussed previously, this difference in
survival may be a result of inherent developmental competence
as oocytes derived from sexually mature animals are more
developmentally competent than from sexually immature
animals. Tajima et al. (2020) reported 35 embryo transfers that
used 553 embryos resulting in 14 litters and 59 piglets (59/553 =
10%), and Hirayama et al. (2020) reported 12 embryo transfers
with 180 embryos resulting in 8 sows farrowing and 37 piglets

(20%). However, in both cases, it is not clear how many embryos
were cryopreserved as only the number transferred is reported.
Thus, the percentages may overestimate the efficiency based on
the number of embryos frozen. Maturation in the presence of
FLI increased the quality of oocytes derived from prepubertal
gilts, and similar improvements on the maturation and culture
conditions may enhance the survivability of pig embryos after
cryopreservation as has been reported for cattle (Stoecklein et al.,
2021). Improvements in cryopreservation for porcine gametes
and embryos will considerably enhance the applicability of in
vitro technologies for the swine industry, allowing for rapid
transfer of genetics at the national and international levels.

CONCLUSION

Over the years, considerable improvements have been made for
IVP of porcine embryos. Pigs produced through these methods
have been instrumental for advancements in biomedicine and
animal agriculture. However, the success of porcine embryo IVP
has not yet reached a level for this technology to be adopted
by the swine industry as embryo viability is still decreased
compared to in vivo-derived embryos. There have been several
advances in porcine oocyte maturation and embryo culture,
but certain areas require more attention to improve the IVP
process as a whole. Lowering rates of polyspermy in IVP
embryos, developing reliable methods of non-surgical transfer,
and enhancing cryopreservation success of gametes and embryos
are among some of the areas where improvements can be made
and would be critical for use of IVP by the swine industry.
Altogether, improvements in each step of IVP of porcine embryos
will lead to the ultimate goal of increasing the pregnancy rate and
number of live piglets from each pregnancy.
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