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Environmental perturbations during gestation can alter fetal development and postnatal

animal performance. In humans, intrauterine growth restriction (IUGR) resulting from

adaptive fetal programming is known as a leading cause of perinatal morbidity and

mortality and predisposes offspring to metabolic disease, however, the prevalence and

impact in livestock is not characterized as well. Multiple animal models have been

developed as a proxy to determine mechanistic changes that underlie the postnatal

phenotype resulting from these programming events in humans but have not been

utilized as robustly in livestock. While the overall consequences are similar between

models, the severity of the conditions appear to be dependent on type, timing, and

duration of insult, indicating that some environmental insults are of more relevance to

livestock production than others. Thus far, maternofetal stress during gestation has been

shown to cause increased death loss, low birth weight, inefficient growth, and aberrant

metabolism. A breadth of this data comes from the fetal ruminant collected near term or

shortly thereafter, with fewer studies following these animals past weaning. Consequently,

even less is known about how adaptive fetal programming impacts subsequent progeny.

In this review, we summarize the current knowledge of the postnatal phenotype of

livestock resulting from different models of fetal programming, with a focus on growth,

metabolism, and reproductive efficiency. We further describe what is currently known

about generational impacts of fetal programming in production systems, along with gaps

and future directions to consider.

Keywords: in utero, intergenerational, nutrient restriction, postnatal, ruminant

INTRODUCTION

Postnatal growth and performance of mammalian species is largely influenced by fetal growth and
development, with deviations from normal resulting in modification of typical growth patterns
and aberrant metabolism after birth. Hales and Barker (2001) first explained this phenomenon
with their thrifty phenotype hypothesis in humans, that credits adaptive fetal responses aimed at
sparing nutrients as the epidemiological explanation for postnatal metabolic dysfunction and adult
disease. Since then, a concerted effort has been made to understand how external factors during
gestation alter the in utero environment, resulting in adaptive fetal growth and function (Gluckman
and Hanson, 2004; Flinn et al., 2020). When these responses are not corrected before birth, they
will result in lifelong impacts, which is referred to as developmental or fetal programming. These
adaptations frequently result in a condition known as intrauterine growth restriction (IUGR)
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which remains the second leading cause of perinatal morbidity
and mortality in humans (Alisi et al., 2011). Improved neonatal
care for infants across the developed world, along with increased
understanding of IUGR has led to decreased infant mortality in
humans (Goldenberg and Culhane, 2007), however, the impacts
and management of adaptive fetal programming in livestock
species needs further understanding.

In production settings, fetal programming in livestock is
likely the result of poor fetal nutrition during gestation.
Common industry practices such as breeding peripubertal dams
contributes to these environments, as this causes competitive
allocation of nutrients between the fetus, placenta, and the still
growing dam. Other production standards such as selection
for milk yield or lamb prolificacy (Gootwine et al., 2007), the
presence of multiple fetuses, poor pasture conditions, as well
as environmental perturbations throughout gestational periods
can also contribute to poor fetal nutrition (Redmer et al.,
2004; Wu et al., 2004, 2006; Reynolds et al., 2010; Yates
et al., 2018). Reduced energy reserves and decreased vigor
at birth in conjunction with reduced birthweight leads to a
significant disadvantage throughout the first few months of life
(Dwyer et al., 2016). Similar to IUGR-born children, livestock
experiencing compromised fetal growth are at increased risk of
perinatal morbidity and mortality, while also being predisposed
to metabolic and organ dysfunction (Brown et al., 2015),
cardiovascular disease (Wu et al., 2006; Reynolds andVonnahme,
2017) and poor body composition (De Blasio et al., 2007; Gibbs
et al., 2019). Approximately 8% of products from the U.S.
livestock industry are lost annually due to a lack of management
techniques for low birthweight animals (Wu et al., 2006),
necessitating further understanding of the etiology and long-
term consequences of adaptive fetal growth. Current research
in livestock largely focuses on perinatal mechanistic changes
with fewer studies following the postnatal animal. Consequently,
there is a gap in knowledge that falls after weaning and in
the production and performance of subsequent generations. In
this review, we highlight current knowledge regarding postnatal
growth, metabolic, and reproductive consequences of adaptive
fetal programming as seen in various ruminant models. We
further present the limited knowledge of intergenerational
programming in ruminants along with areas of focus for
future research.

FETAL PROGRAMMING

Since the placenta is the sole mediator of nutrient transport
between dam and fetus, developmental programming is often the
result of placental insufficiency due to placental stunting (Cox
and Marton, 2009). In livestock, placental stunting can occur
as the result of environmental perturbations, poor nutritional
management or illness leading to maternal stress that increases
body temperature and repartitions blood flow away from the
uterus (Wallace et al., 2005; Greenwood and Cafe, 2007). Impact
on the placenta is dependent upon timing and duration of
maternal insult (Painter et al., 2005; Van Eetvelde et al., 2016).
Maternal stress maintained during early to mid-gestation, when

peak placental growth is taking place, is more likely to cause
placental stunting than during late gestation when it may instead
lead to a direct fetal insult. As the disparity between fetal nutrient
and oxygen requirements and those supplied by the placenta
grows, the fetus will begin to elicit a series of responses aimed
at sparing nutrients for vital organs (Hales and Barker, 1992,
2001; Redmer et al., 2004; Poudel et al., 2015). These responses
are first mediated through stress systems that contribute to the
redirection of blood flow to prioritize delivery to vital organs at
the expense of skeletal muscle and other visceral tissue growth
(Galan et al., 1999). Brain sparing activity in conjunction with
impaired skeletal muscle growth results in an asymmetric growth
pattern (Galan et al., 1999; Macko et al., 2013) and by term,
fetal growth can be reduced by up to 50% compared to their
uncompromised counterparts. Along with growth disparities,
developmental adaptations contribute to a multitude of tissue
specific metabolic dysfunction within the pancreas (Limesand
et al., 2006; Leos et al., 2010), adipose tissue (Chen et al., 2010),
skeletal muscle (Yates et al., 2016; Rozance et al., 2018; Cadaret
et al., 2019a), liver (Thorn et al., 2009; Brown et al., 2015),
heart, and brain (Poudel et al., 2015) of the fetus. Although
these developmental adaptations occur to increase survivability
in utero, they elicit life-long growth and metabolic changes that
can impact favorable production traits and reduce efficiency
in livestock.

MODELS OF DEVELOPMENTAL
PROGRAMMING APPLICABLE TO
LIVESTOCK PRODUCTION

Clinical cases of developmental programming can be studied
in humans, but animal models have become increasingly useful
to understand fetal pathophysiological and mechanistic changes
throughout gestation (Anthony et al., 2003; Barry et al., 2006).
The ovine model of IUGR is widely accepted as an ideal
model (reviewed by Beede et al., 2019), due to similarities with
human gestational milestones, as well as relatively comparable
developmental stages to other ruminants such as cattle (Anthony
et al., 2003). The tendency for singletons or twins, in addition
to the average size of offspring, make sheep a more ideal
model compared to the small litter-bearing species of rodents
that are often used for human studies. Lastly, sheep tend to
be more tolerable to surgical manipulation during gestation,
with fetal size large enough to allow surgical catheterization
to monitor maternofetal gas and nutrient transfer (Morrison,
2008). For these reasons, more literature exists about the effects
of fetal programming in sheep, but these models have also
been extended to cattle. Although the information provided
by animal models is useful in improving perinatal morbidity
and mortality rates in humans, in many cases it can also be
applicable to livestock settings. With the help of ruminant
models of developmental programming, producers can optimize
nutrient intake in both critical pre and postnatal settings to
improve growth for various food animals. The degree to which
developmental programming occurs varies based on the model
(Anthony et al., 2003), however, each animal model allows for

Frontiers in Animal Science | www.frontiersin.org 2 April 2022 | Volume 3 | Article 778440

https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/animal-science#articles


Vautier and Cadaret Fetal Programming Long-Term

greater insight into mechanisms of developmental and postnatal
growth and metabolic efficiency. In this section, we will cover
ruminant models and, when not available, rodent models of
developmental programming that mimic naturally occurring
insults within production systems including heat stress, maternal
inflammation, nutrient restriction, maternal obesity, and fetal
exposure to glucocorticoids.

Heat Stress
Induction of fetal growth restriction through maternal exposure
to high ambient temperatures has created a long-standing
animal model for developmental programming. This model
has been refined in the ovine, consistently producing placental
insufficiency-induced IUGR (PI-IUGR) and entails placement
of ewes into conditions ranging from 35 to 40◦C with ∼35%
relative humidity, for 50 consecutive days (Beede et al., 2019).
Treatment begins around the 40th day of gestation to coincide
with peak placental growth, ultimately causing placental stunting
(Hay et al., 2016; Limesand et al., 2018). PI-IUGR has been
established through many studies, implicating fetal hypoxia and
hypoglycemia as the drivers of adaptive growth (Thureen et al.,
1992; Limesand et al., 2018). As placental stunting occurs prior to
exponential fetal growth, impacts are not observed until the third
trimester when the placenta can no longer meet the demand of
the growing fetus resulting in fetal malnutrition.

Sustained maternal hyperthermia from early to late gestation
results in greater reduction of placental and fetal mass (up to
64 and 30–60% reduction, respectively) compared to exposure
from mid to late gestation (Bell et al., 1989; Galan et al., 1999),
substantially increasing perinatal death (VanWettere et al., 2021).
Developmental adaptations become a permanent change to the
phenotype of the fetus when the insult is not removed in time, but
it is possible for the fetus to experience compensatory growth or
even fully restore placental function when the insult is removed
before 55 days of gestation in sheep (Galan et al., 1999). Despite
these variations, maternal heat stress has been associated with
reduced birth weights, reduced survival rates prior to weaning,
postnatal metabolic dysfunction, and a reduction in carcass
merit in cattle and sheep (Yates et al., 2011; Monteiro et al.,
2016; Limesand et al., 2018; Dahl et al., 2019). Catecholamines
secreted as a response to hypoxia and hypoglycemia impair
insulin secretion and responsiveness contributing to metabolic
adaptations that result in increased adiposity and fat storage
during early postnatal phases of compensatory growth (Limesand
et al., 2006; Yates et al., 2011). Slowed myoblast proliferation
leading to decreased fiber size (Yates et al., 2016), and reduced
capacity for insulin stimulated glucose utilization (Limesand
et al., 2007, 2018; Chen et al., 2010) contribute to altered muscle
development and asymmetric growth patterns manifesting as
poor body composition in animals after birth. There is also
evidence of reduced placental transfer of amino acids (Regnault
et al., 2013), along with decreased circulation of anabolic factors
further suppressing cardiac and skeletal muscle growth (Bartelds
et al., 2000). Additional organ weights such as thymus, spleen,
heart, and liver have been shown to be reduced in newborn bull
calves after gestational heat stress (Ahmed et al., 2021). Dairy
cattle experiencing heat stress in utero can exhibit decreased body

weight for up to 1 year of age, along with greater susceptibility to
illness caused by comprised passive immunity (Tao et al., 2012;
Monteiro et al., 2016; Davidson et al., 2021) putting animals
at greater risk of death. However, perinatal heat abatement
strategies have been shown to improve dairy calf growth and
welfare and may serve as a strategy to prevent or mediate
outcomes of in utero heat stress (Dado-Senn et al., 2020).
Multiple studies have also demonstrated that late gestation heat
stress impacts mammary development, which may contribute to
persistent poor calf performance in future generations (Skibiel
et al., 2018a,b; Ouellet et al., 2020).

Heat stress is known to impact maternal reproductive health
and performance during gestation (recently reviewed by Alves
et al., 2020; Van Wettere et al., 2021), but recent studies in
dairy cattle indicate it may have lasting effects on adult offspring
fertility as well. Indeed, animals whose dams were exposed to heat
stress during gestation had longer days to first service, calving
to conception interval, greater culling rate, and reduced Anti-
Mullerian hormone (AMH) concentrations (Akbarinejad et al.,
2017). A study in dairy cows found that heat stress did not appear
to effect age of first insemination and parturition but did result in
an increase in the number of services per pregnancy, increased
age at pregnancy, and fewer calves survived to their first lactation
(Monteiro et al., 2016). While there is growing research on the
impacts of heat stress on pregnant dairy cows and their progeny
fertility, data in grazing ruminants is missing and remains an area
needing attention.

Maternal Inflammation
Maternofetal inflammatory responses are strongly associated
with hypoxia induced by placental insufficiency from various
causes (Bertucci et al., 2011). One such cause can be sustained
maternal inflammation, like that seen with prolonged illness,
which directly causes fetal inflammation and while not confirmed
yet, likely placental insufficiency (Beede et al., 2019). Periods
of infection, such as those seen with respiratory diseases that
are common in livestock species, result in a febrile response
and systemic inflammation that can last for multiple weeks
(Gifford et al., 2012). Heat stress and lameness can also induce
chronic systemic inflammation when not alleviated (Swanson
et al., 2020). Much of the research around the influence of
inflammation on animal performance is performed outside
of gestational windows yet pregnant animals have increased
susceptibility as their immune system is altered in early gestation
to allow for establishment of pregnancy (Hansen, 2011). Thus,
more data is needed to identify the prevalence of systemic
inflammation during pregnancy in production settings. In
an experimental setting we have implemented a model of
maternofetal inflammation-induced IUGR (MI-IUGR) in the
sheep and rat that involves the administration of the endotoxin
lipopolysaccharide (LPS) to gestating animals, and found similar
results to other models of IUGR (Cadaret et al., 2019a,b). Skeletal
muscle is highly responsive to inflammatory regulation (Frost
et al., 1997), and enhanced cytokine expression in ovine models
of MI-IUGR impairs myoblast function and diminishes muscle
fiber hypertrophy, contributing to decreased total body weight
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in the near term fetus and postnatal lamb (Cadaret et al., 2019a;
Posont et al., 2019). Along with dynamic changes in skeletal
muscle growth, shifts in skeletal muscle glucose metabolism
can be seen as part of the adaptive response to increased
maternal inflammation, as fetal and postnatal MI-IUGR lambs
demonstrate reduced glucose oxidation and impaired insulin
regulation (Cadaret et al., 2019b; Posont et al., 2019). These
responses to maternofetal inflammation persist postnatal and
often result in asymmetric growth, impaired growth capacity, β-
cell function, and metabolic capacity along with low birthweight
pathologies in the sheep.

Since the MI-IUGR model is relatively new, factors outside of
skeletal muscle growth and glucose metabolism have not been
addressed in the literature. Hence, there is a lack of knowledge
about the relationship between maternofetal inflammation and
reproductive competency in progeny. While not in a ruminant
species, a preliminary study in rats found that chronic maternal
inflammation decreases the proportion of preantral follicles and
AMH in offspring from LPS treated dams (Shalom-Paz et al.,
2017). To our knowledge, no other studies exist in any species
related to maternofetal inflammation, providing a gap in the
literature around the role of inflammatory pathways in the
programming of reproductive competency and efficiency.

Maternal Nutrient Restriction
Nutrient imbalance is an especially common precursor of
maternal stress in animals. Rangelands of grazing livestock
can have large fluctuations in quantity and quality of forage,
leaving these animals predisposed to prolonged periods of
undernutrition (Anderson, 1993; Bohnert and Stephenson,
2016). Models of maternal nutrient restriction have not
consistently indicated placental stunting; although, the direct
reduction in maternal nutrient status results in reduced placental
uptake and decreased blood flow (Vonnahme, 2012). As
such, fetal growth restriction may not always be evident, but
adaptations to this insult can be seen at various gestational
timepoints (Painter et al., 2005), providing greater insight to the
tissue specific adaptive fetal mechanisms. Undernutrition during
early gestation is more subdued compared to mid-late gestation,
especially if animals are realimented by late gestation, and any
growth deficits can likely be overcome by proper nutrition after
birth (reviewed by Kenyon and Blair, 2014; Bell and Greenwood,
2016). Since it is considered relatively easy to implement this
model, considerable research has focused on both the fetal and
postnatal consequences of developmental programming due to
maternal undernutrition. To mimic low forage quality, gestating
animals will often be fed a diet consisting of ∼50–70% of their
nutritional requirements (Vonnahme et al., 2003; Ford et al.,
2007;Martin et al., 2007; Beede et al., 2019) for differing lengths of
time, inducing a series of fetal developmental adaptations varying
in severity based on the degree of malnutrition.

Multiple studies using maternal undernutrition have shown
programmed growth and development of the fetus in utero
and postnatal, along with alterations to normal placental
development (Vonnahme et al., 2007; Funston et al., 2010;
Vonnahme, 2012), sometimes paired with reduced placental
weight (Heasman et al., 1999). When ewes were fed a

diet composed of 50% National Research Council (1985)
requirements from days 28 to 78 of gestation, fetal weight
was reduced by ∼7.5% (Vonnahme et al., 2003). A similar
study implemented the same diet restrictions and reported a
decrease in birth weights, and significant catch-up growth with
nutrient restricted (NR) lambs weighing more at 4 months of
age and at slaughter (280 days) than control lambs (Ford et al.,
2007). Compensatory weight gain may be attributed to increased
plasma leptin concentrations that often favor fat deposition over
muscle growth, as indicated by increased backfat thickness (Ford
et al., 2007). Like other models, undernutrition is associated
with hypoinsulinemia, hypoglycemia, and increased cortisol that
promotes the development of glucose intolerance and insulin
resistance (Ford et al., 2007; Cripps et al., 2008). Vulnerability
of skeletal muscle to changes in nutrient availability additionally
contributes to changes in body composition (Funston et al.,
2010). Zhu et al. (2006) found damage to skeletal muscle
development, evident by reductions in skeletal muscle mass,
muscle fiber number, and Type IIa oxidative fibers. This
coincided with reductions in GLUT 4 receptors in lambs
slaughtered after 120 days of age, which indicates alterations
to insulin sensitivity and glucose utilization in skeletal muscle
(Zhu et al., 2006). Metabolic changes, reductions in loin muscle
area, and increased fat mass (Lemley et al., 2012) of young
sheep and cattle can persist throughout weaning and at slaughter
compromising the weight and quality of carcasses (Larson et al.,
2009). One model in dairy heifers, while not direct nutrient
restriction, found that heifers born from dams lactating during
gestation showed decreased milk production, survivability, and
metabolic efficiency compared to heifers born to dams that were
not lactating (Gonzalez-Recio et al., 2012) likely due to the
competition of nutrients between the fetus and milk production.

Growth and metabolic adaptations occur concurrently to
reproductive changes in NR offspring (reviewed by Chavatte-
Palmer et al., 2014). Early gestational nutrient restriction in
cattle followed by protein supplementation reduced healthy
antral follicle count, prepubertal follicle size, and primordial
follicle density at nearly 2 years of age (Sullivan et al., 2009).
Similarly, early gestational nutrient restriction in cattle results
in reductions in AMH concentrations along with diminished
ovarian reserve (Mossa et al., 2013). In ewes, maternal nutrient
restriction prior to or during folliculogenesis results in delayed
ovarian reserve development (Rae et al., 2001). Other studies
in ewes have exhibited impaired pituitary function in nutrient
restricted offspring, influencing endocrine regulation of cellular
proliferation, and reproductive function (Kotsampasi et al.,
2009b; Long et al., 2021). Additionally, nutrient restriction in the
first 95 days of pregnancy in ewes was shown to reduce ovulation
rate in female progeny, independent of growth restriction or
endocrine dysregulation (Rae et al., 2002) impacting fertility of
adult female offspring born from nutrient restricted dams.

In male ruminant offspring, gestational nutrient restriction
results in declines in both the number of Sertoli cells
and the diameter of seminiferous tubules without changes
in hypothalamic-pituitary-gonadal (HPG) regulation or testis
weight (Kotsampasi et al., 2009a;Martín et al., 2012). Fortunately,
age of puberty in both sexes appears largely uninfluenced by
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maternal undernutrition (Rae et al., 2002; Sullivan et al., 2009).
However, as gonadal development and growth appears to be
vulnerable to gestational nutrient restriction, more research is
needed to evaluate if these transient changes impact lifelong
reproduction, as reproductive efficiency is a major driver of ranch
productivity and profitability.

Maternal Overnutrition
Another popular model for inducing adaptive fetal programming
involves the over feeding of adolescent ewes. When over
nourished, the adolescent body will preferentially allocate
nutrients toward maternal growth, compromising fetal growth
and development (Anthony et al., 2003). To achieve maternal
obesity, many models supply diets ranging anywhere from 140
to 200% of the NRC requirements at varying stages of pregnancy
(Swanson et al., 2008; Tong et al., 2009; Carr et al., 2012). One of
the major limitations of this model is maternal age, as mature
animals vary in outcomes between fetal growth restriction or
overgrowth, making growth impacts difficult to determine (Tong
et al., 2009). Fortunately, themodel still provides insight into fetal
programming caused by maternal obesity which can be seen in
ruminant animals.

Similar to the previous models of fetal programming, the
severity of insult varies based on the timing and duration of
the insult. Wallace et al. (1999) discovered that early dietary
interventions provided opportunity to recover fetal growth, but
those insults persisting through later gestational stages resulted
in permanent adaptations. It was also determined that reductions
of maternal dietary intake from high to moderate throughout
mid-gestation enhanced fetal growth, while increased dietary
intake at the same time leads to reductions in both placental and
fetal growth (Wallace et al., 1999). Continued overnourishment
prompts fetal hypoxia and hypoglycemia due to impaired uterine
arterial and umbilical venous blood flow (Wallace et al., 1999,
2002), reducing placental and fetal mass by ∼45% (Wallace
et al., 2002; Wallace, 2019). By mid-gestation, growth restricted
fetuses also experience low insulin and IGF-1 concentrations and
high lactate concentrations (Wallace et al., 2003), along with
a greater fat deposition (Matsuzaki et al., 2004). On average,
over nourished ewes with reduced placental mass experience a
shorter gestational length and are at greater risk for abortion
or stillbirth (Wallace, 2019). Fetuses that survive gestation and
parturition after maternal overnourishment exhibit asymmetric
growth, along with an increase in weight of major endocrine
organs such as the pancreas and pituitary gland (Wallace,
2019). Offspring with moderately reduced birthweight often
experience rapid catch-up growth, reaching average control size
by weaning (Wallace et al., 2010, 2012), while those with severely
reduced birth weights remain smaller through mid-adulthood
(Wallace et al., 2018). Maternal overnutrition, while seemingly
counterintuitive, decreases the quality and quantity of colostrum,
specifically immunoglobulin G (IgG), causing a lack of passive
immunity and further contributing to decreased survivability
(Swanson et al., 2008). Along with changes to postnatal body
composition, these offspring tend to have altered metabolic
phenotypes including altered glucose metabolism and glucose
intolerance (Wallace et al., 2012, 2014) throughout all life stages

leading to an obese phenotype, particularly in females (Wallace
et al., 2018). The obese phenotypes, as would be expected, result
in greater adiposity and less muscling leading to decreased
carcass merit.

Subsequent female offspring fertility is affected more by
maternal obesity than males, evidenced by diminished ovarian
reserve and development, with major reductions in primordial
follicle number in fetuses from obese ewes (Da Silva et al., 2002,
2003). Reduced ovarian reserve may be attributed to disruption
of meiotic germ cell activity along with altered estrogen and
inhibin feedback from the fetal ovaries and placenta (Da Silva
et al., 2002). Fortunately, female sheep reach puberty at similar
ages to controls and exhibit average estrous cyclicity during
the first breeding season (Da Silva et al., 2001). Contrarily,
male reproduction is un-influenced when determined by number
of Sertoli cells, seminiferous tubules, or pituitary gonadotroph
expression in offspring of over nourished dams compared to their
control counterparts (Da Silva et al., 2003). However, male lambs
from overnourished dams were slower growing, had delayed age
of puberty, smaller testicular volume, and reduced testosterone,
which may influence sperm quality and quantity and reduce
fertility (Da Silva et al., 2001; Wallace, 2019). Overall, this model
has shown that excess maternal nutrition influences male and
female reproductive capacity in some regard, and that these
effects are evident with and without growth restriction.

Excess Glucocorticoids
As part of a the stress response to nutrient challenge, circulating
cortisol concentrations increase in the dam and fetus (Phillips
et al., 1998; Roussel et al., 2004). Increased cortisol concentrations
are believed to contribute to rapid maturation of organ
systems, which makes late-gestation administration of synthetic
glucocorticoids a common clinical practice to improve neonatal
outcomes in instances of pre-term labor in humans (Seckl, 2001;
Kapoor et al., 2008). However, recent studies have begun to
indicate a correlation between excessive increases in maternofetal
cortisol concentrations and a neonate phenotype similar to
previous models of adaptive fetal programming (Seckl, 2001;
Long et al., 2012), such as reduced birthweight, aberrant
metabolism, and poor body composition.

Studies administering synthetic glucocorticoids in the
early third trimester have revealed associations between
fetal exposure to glucocorticoids and reduced birth weight,
metabolic dysfunction, and endocrine alterations (Long
et al., 2012, 2013a,b). Under normal circumstances, passage
of maternal glucocorticoids to the fetus is minimal due to
the presence of the placental enzyme 11β- hydroxysteroid
dehydrogenase (11β-HSD) type 2, catalyzing the conversion
of maternal cortisol to ketone products, protecting the fetus
from excess glucocorticoid exposure (Seckl et al., 1995; Kapoor
et al., 2008). Synthetic glucocorticoids however cannot be
metabolized by 11β-HSD 2, consequently allowing placental
transfer and increasing fetal glucocorticoid exposure (Kapoor
et al., 2008). Along with a significant decrease in birthweight,
ovine models have indicated alterations in function of the
fetal and postnatal hypothalamic-pituitary-adrenal (HPA)
axis in response to elevated glucocorticoids (Sloboda et al.,
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2002, 2007; Long et al., 2013a). Fetal sheep with repeated
exposure to glucocorticoids throughout gestation have shown
increased circulating adrenocorticotropic hormone (ACTH;
Long et al., 2013a) and cortisol concentrations through increased
pituitary glucocorticoid receptors (Sloboda et al., 2000).
Upon further investigation, it was observed that offspring
exposed to excess glucocorticoids through maternal injection
exhibit greater adrenal sensitivity in early life (until about 1
year of age) (Sloboda et al., 2007), but this decreases with
age. Glucocorticoids also program hormones that regulate
appetite and glucose metabolism in offspring. Lambs from
ewes administered dexamethasone during the last third of
gestation were absent of a postnatal leptin surge, possibly due to
antagonistic elevated cortisol observed concurrently (Long et al.,
2013b). This was paired with increased appetite that resulted in
weight gain in favor of adipose deposition during an ad libitum
feeding trial (Long et al., 2013b). Additionally, these animals
were hyperglycemic and exhibited β-cell dysfunction when put
through a glucose tolerance test (Long et al., 2012, 2013a) which
is a finding in other models of developmental programming
as well.

Glucocorticoids have the ability to act upon various tissue
types including reproductive tissue via glucocorticoid receptors
(Zambrano et al., 2014). Similar to the endocrine changes seen in
the HPA axis, it is believed that glucocorticoids can also program
changes to hormonal function of the HPG axis; however, most
of these studies have been performed in rodents (Zambrano
et al., 2014). Ovine studies have shown alterations tomorphologic
development of testes after prenatal glucocorticoid exposure
(Pedrana et al., 2008), contributing to possible programming
of reproductive development. Studies in female rats exposed to
glucocorticoids prenatal have shown a decrease in follicle number
(Ristic et al., 2008), while studies of human ovaries exposed
to glucocorticoids exhibit a decrease in number of germ cells
along with increased rates of apoptosis (Poulain et al., 2012). As
increased glucocorticoids can be endogenous from maternofetal
stress, induced exogenously as a treatment for impending pre-
term birth, or a method of labor induction, these data encourage
further investigation of the long-term impacts and potential
methods to mediate them.

EVIDENCE OF INTERGENERATIONAL
PROGRAMING IN RUMINANT LIVESTOCK

There is compelling human and rodent data to suggest the
outcomes of an adverse in utero environment, persist into
subsequent generations in what is described as intergenerational
or transgenerational programming (reviewed by Aiken and
Ozanne, 2014). Intergenerational programming refers to
conditions in one generation that impact the development,
growth, metabolism, and health in future generations, without
secondary insult. It is important to note that since an adverse
in utero environment impacts a fetus and the developing germ
cells within the fetus, alterations must be sustained into the F3
generation and beyond to be considered transgenerational
(Khatib, 2021). While evidence of intergenerational

programming is available, the mechanism that allows
transmission is poorly understood. Current hypotheses and areas
of investigation include epigenetic mechanisms passed through
the germline, programmed maternal physiological mechanisms,
and persistent environmental influences; however, the answer
is likely a combination of multiple mechanisms (Figure 1;
Drake and Walker, 2004). Most of the transgenerational data
has come from observational human studies or rodents, but,
in recent years some intergenerational studies have extended
to livestock species to characterize the phenotypic changes that
occur between generations. Studies investigating generational
impacts of developmental programming in ruminant livestock
are limited (Table 1), in this section we recapitulate current
findings that hold relevance to animal agriculture and may
serve as areas to target for management practices that mediate
multigenerational programming.

Environmental perturbations can change plane of nutrition
rapidly for grazing livestock, making nutrient availability perhaps
the most common stress livestock can encounter. Studies
completed at the University of Wyoming using groups of
sheep from genetically similar backgrounds but vastly different
production systems (well-nourished university housed sheep
vs. nutrient restricted “nomadic” sheep) provide perhaps the
only evidence of transgenerational programming in ruminants
over ∼ 5 generations (Vonnahme et al., 2006). When both
groups were subjected to a 50% nutrient restriction, nomadic
ewes outperformed university ewes with maintenance of ideal
BCS for a longer period of time, heavier fetuses, and no
difference between fetal measurements. The ability of nomadic
ewes to maintain normal fetal growth is credited to placentome
conversion that maintains fetal nutrient delivery, suggesting
adaptive programming to nutrient restriction that has been
carried over generations (Vonnahme et al., 2006; Jobgen et al.,
2008). Further investigation is needed to understand how
many generations it takes for these adaptations to occur as
nutrient restriction in the first generation generally exhibits
poor fetal outcomes, as described in previous sections of this
review. Indeed, other studies investigating impacts of granddam
nutrition in early gestation found varying results in daughters
and granddaughters lactation performance (Van Der Linden
et al., 2009), birth weight (Kenyon et al., 2014), weaning weights
(Paten et al., 2013), organ morphometrics (Martín et al., 2012),
and reproductive performance (Blair et al., 2010) depending on
timing and duration of insult. It is worth noting that in these
studies ewes were nutrient restricted in early pregnancy then
realimented for the remainder of gestation. Further research
is needed to understand the impacts of restriction in mid-late
gestation across generations.

Intergenerational programming has been observed in models
of overnourished sheep as well, extending to the F2 generations.
Sheep fed 150% of NRC requirements during gestation
had daughters and granddaughters with elevated cortisol
concentrations, hyperglycemia, insulin resistance, and increased
adiposity even when provided a normal diet (Shasa et al.,
2015). Follow-up studies found these effects appear to be
sex specific as male lambs from overfed granddams had
greater body mass compared to female lambs or controls.
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FIGURE 1 | Current proposed hypotheses of the cascade of intergenerational programming in ruminant livestock. Initial maternofetal stress results in developmental

programming in the first generation. While mechanisms are not yet clear, similar phenotypes are propagated into subsequent generations.

Furthermore, females from these overfed granddams had
dysregulated insulin:glucose dynamics compared to male lambs
or controls (Pankey et al., 2017) and these effects may carry
into the F3 generation (Pankey et al., 2021). Alternatively,
Van Der Linden et al. (2010) found that heavier dams
increased lamb birth weight but did not impact female
offspring reproductive performance. However, granddams fed to
maintenance had granddaughters with heavier birth and weaning
weights compared to granddams fed ad libitum regardless of
dam bodyweight.

Pregnant ewes administered synthetic glucocorticoids toward
the end of gestation have shown similar intergenerational
outcomes. Lambs from treated ewes had reduced birthweight,
were structurally smaller than their control counterparts, and had
altered glucose utilization and HPA axis responsiveness (Long
et al., 2012, 2013a). These findings carried over into the F2
progeny showing tissue specific programming in an untreated
population. Focusing on the F2 generation, Long et al. (2013b)
found that F2 lambs did not experience the neonatal leptin peak
and had increased cortisol concentrations which were paired with
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TABLE 1 | Studies showing intergenerational effects of maternofetal stress in ruminant livestock.

References Species F0 maternal insult F1 generation F2 generation F3 generation

Long et al. (2012) Ovine GC ↓ birthweight, morphometrics, β-cell

function, postnatal weight

↑ fasting glucose

↓ birthweight, morphometrics, β-cell

function

↑ fasting glucose

Long et al. (2013a) Ovine GC ↑ basal cortisol, HPA hyperresponsiveness ↑ basal cortisol, ACTH,

HPA hyperresponsiveness

Long et al. (2013b) Ovine GC ↓ birthweight, morphometrics, growth

rates

↓ birthweight, morphometrics, growth

rates, leptin

↑ appetite, weight gain, adiposity, leptin,

glucose, cortisol

Jobgen et al. (2008) Ovine NR ↓ fetal growth, maternal & fetal plasma

amino acids

↑ fetal to maternal concentrations of

polyamines, ND fetal amino acids

Shasa et al. (2015) Ovine ON Absent postnatal leptin surge

↑ postnatal blood cortisol, insulin, glucose

Absent postnatal leptin surge

↑ blood cortisol, glucose, insulin, percent

body fat at birth.

Pankey et al. (2017) Ovine ON Absent postnatal leptin surge

↑ abdominal adiposity, cortisol, leptin

↓ β-cell function

Insulin/glucose dysregulation

Rapid weight gain

↑ insulin resistance

↓ β-cell function

Insulin/glucose dysregulation

Pankey et al. (2021) Ovine ON ↑ cortisol, adiposity

Insulin/glucose dysregulation

Hyperphagia

↑ cortisol, adiposity, weight gain, insulin

resistance

Insulin/glucose dysregulation

Hyperphagia

ND in body

composition.

Van Der Linden et al.

(2009)

Ovine ON ↓ mammary gland weight, growth rates,

lamb weight until weaning, milk yield,

lactose percentage, accumulated CP

yields

↓ growth rates to weaning

Van Der Linden et al.

(2010)

Ovine ON ND in live weight, BCS, breeding

percentage, number of fetuses

↓ birthweight, weaning weight

Blair et al. (2010) Ovine ON ↑ mammary ductal size, secretory cell

area, IGF-1 receptors, accumulated fat

yield, milk net energy

↓ birthweight, proportions of ewes

reaching puberty

Paten et al. (2013) Ovine ON & NR ↓ BCS in late gestation for ewes born from

NR dams. ↓ milk yield, milk fat, and milk

net in ewes born from NR & ON ewes.

↓ body weight until weaning in lambs born

from early gestational ON

↑ body weight until weaning in late

gestation ON

Kenyon et al. (2014) Ovine ON & NR ↓ gestational weight, backfat thickness,

BCS in lambs from NR. ↓ gestational BCS

in lambs from ON

ND in lamb live weight between ON & NR

Laporta et al. (2020) Dairy Cattle HS ↓ survivability, milk yield up to three

lactations.

↓ milk yield through first lactation.

ACTH, adrenocorticotropic hormone; BCS, body condition score; CP, crude protein; GC, glucocorticoid administration; HPA, hypothalamic pituitary axis; HS, heat stress; IGF-1,

insulin-like growth factor 1; ND, no difference; NR, nutrient restrictions; ON, over nutrition. ↑, increased; ↓, decreased.

increased appetite, body weight gain in favor of fat deposition,
and impaired insulin response resulting from glucocorticoid
treatment of their granddams.

The dairy industry has seen evidence of intergenerational
programming in response to heat stress (Ouellet et al., 2021).
Indeed, in a retrospective study, cows exposed to heat stress in
late gestation had daughters that left the herd earlier, had reduced
initial milk yield in their first three lactations, and had differences
in milk components. Effects were also seen in the granddaughters
of these cows as they displayed delayed age at first AI, reduced
initial milk yield in their first three lactations, and differences in
components of the milk (Laporta et al., 2020). Studies in Israel
also found that heat stress during mid-gestation for F0 cows had

negative effects out to the F3 generation for traits associated with
production and calving (Weller et al., 2021). It is believed that
this was possible due to preservation of epigenetic modification
during the F1 progeny development (Klosin and Lehner, 2016;
Weller et al., 2021), however, further research is warranted.

CONCLUSION

Animal models of adaptive fetal programming have become
increasingly useful to understand the pathophysiologic and
mechanistic changes that result in adaptive phenotypes.
The bulk of this research within livestock focuses largely
on the fetal adaptations, while the postnatal life of these
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offspring remains less understood. Future research to
improve the wellbeing and productivity of food animals
requires in depth evaluation of the long-term effects on
production agriculture, including evaluation of growth patterns,
efficiency, longevity, reproductive capabilities, and carcass
traits. While maternal performance is a major driver of herd
productivity and profitability there seems to be a general
lack of information, outside direct maternal nutrition, on
programming influences of reproductive efficiency in the
first and subsequent generations. Current data begins to
illustrate intergenerational programming events in ruminant
livestock stemming from various maternal stressors. As these
studies are limited, more research is necessary to improve
understanding of how various environments and timepoints
impact lifelong performance. Further, larger studies that
provide knowledge better characterizing the relevance and
extent of the impact are warranted, including following
animals into the F3 generation and beyond. Investigations

into current hypotheses of heritable phenotypes that increase
understanding of environmental, epigenetic or programmed
changes in subsequent generations are needed and may
inform production practices. Development of expected
outcomes based on environmental interactions could aid
in identification of compromised animals faster and better
interventional management.
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