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Maternal stress, such as maternal obesity, can induce severe gestational disease

and hormonal disorder which may disrupt fetal organ maturation and further cause

endangered early or future health in offspring. During fetal development, glucocorticoids

are essential for the maturation of organ systems. For instance, in clinical applications,

glucocorticoids are commonly utilized to pregnant womenwith the risk of preterm delivery

to reduce mortality of the newborns. However, exposure of excessive glucocorticoids at

embryonic and fetal developmental stages can cause diseases such as cardiovascular

disease and muscle atrophy in adulthood. Effects of excessive glucocorticoids on

human health are well-recognized and extensively studied. Nonetheless, effects of these

hormones on farm animal growth and development, particularly on prenatal muscle

development, and postnatal growth, did not attract much attention until the last decade.

Here, we provided a short review of the recent progress relating to the effect of

glucocorticoids on prenatal skeletal muscle development and postnatal muscle growth

as well as heart muscle development and cardiovascular disease during life course.

Keywords: cardiovascular disease, fetal programming, glucocorticoids, maternal stress, muscle development

INTRODUCTION

Early life events are critical to growth performance and health throughout the life course of
an animal including human beings. Unfavorable maternal environmental changes are associated
with many types of abnormalities including cardiovascular disease, obesity, insulin resistance,
and metabolic syndrome in offspring later life, which is known as the disease origins of adult
disease or developmental programming (Barker et al., 1993; Friedrich, 2002; Boney et al., 2005).
Developmental programming is defined that challenges during critical developmental windows
cause deterministic consequences in developmental and health trajectory in later life. It is also called
fetal programming since it occurs during embryonic and fetal development (Kwon and Kim, 2017).
The study of fetal programming can be traced back to around a century ago (Cox et al., 2012),
however, the concept was just defined by Dr. Barker about half century ago (Barker and Osmond,
1986). Since then, many studies in humans and animal models support the hypothesis that poor
nutrition in utero, maternal stress (e.g., depression, anxiety, fatigue, toxic exposure), exogenously
administered hormones (e.g., synthetic glucocorticoid, sGC), and other factors could change
fetal structure, function, and metabolism, leading to a long-last effects on offspring throughout
the whole life. Moreover, metabolic syndrome such as cardiovascular disease in humans and
offspring growth performance in livestock are the mostly reported consequences of those adverse
factors (Nathanielsz, 2006; Barker, 2007; Gicquel et al., 2008; Beauchamp et al., 2015; Sand et al.,
2019; Davies et al., 2021). Therefore, understanding of the underpinning mechanisms of fetal
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programming could provide cues to develop intervention
strategies for poor postnatal growth performance in domestic
animals and adult chronic diseases in humans caused bymaternal
stresses (Cox et al., 2012).

Glucocorticoids are the major stress hormones secreted by the
adrenal gland in response to stress, which is regulated by the
hypothalamic-pituitary-adrenal (HPA) axis (Gicquel et al., 2008).
In the canonical signaling pathway, glucocorticoids function
through binding glucocorticoid receptor (GR), which mainly
localizes in the cytoplasm of cells and forms a protein complex
including hsp90, hsp70, and p23 in the absence of the hormones.
After binding with glucocorticoid, GR is dissociated from the
complex and its nuclear localization signals are exposed. After
GR is transported into nucleus, it regulates gene expression via
direct binding with the glucocorticoid response element (GRE)
of the targeted genes, or interacting with other transcriptional
factors such as AP1, NF-κB, and STATs (Oakley and Cidlowski,
2013; Vitellius et al., 2018). Glucocorticoids play a very wide
role in postnatal life including the regulation of homeostasis,
growth, cell proliferation and differentiation, apoptosis, and
metabolism (Fowden and Forhead, 2004; Grad and Picard, 2007;
Cain and Cidlowski, 2015). However, glucocorticoids are also
critically important in prenatal life in which these hormones
are essential for the development and maturation of fetal organ
systems such as respiratory system, neural system, endocrine
system, gastrointestinal system, renal system, and muscle
system (Agnew et al., 2018; Song et al., 2019a). A myriad of
studies demonstrated that excessive endogenous glucocorticoids
resulting from maternal stress or exogenous glucocorticoids due
to antenatal treatment to reduce preterm delivery in pregnancy
result in reduced birth weight, fetal growth restriction and
adverse effects in adult life such as heart disease, metabolic
syndrome, hypertension, and diabetes mellitus (Asztalos, 2012;
Carson et al., 2016; Kemp et al., 2016; Agnew et al., 2018). In
this short review, we mainly focused on discussing effects of
glucocorticoids on striated muscle development and function
including skeletal muscle and cardiac muscle. We first discussed
the endogenous glucocorticoids synthesis and metabolism in
fetuses. Then we discussed effects of glucocorticoids on prenatal
skeletal muscle development and postnatal muscle growth as well
as prenatal heart muscle development and adult heart function.
Lastly, we summarized the mechanism of glucocorticoids in
the regulation of muscle reprogramming and provided some
perspectives on future directions.

GLUCOCORTICOID SYNTHESIS AND
METABOLISM IN THE FETUS

Regulation of fetal glucocorticoid synthesis and metabolism is a
complex process, involving the HPA axis, the catalytic enzymes
and the placenta. In humans, cortisol, one of the major forms
of glucocorticoids peaks at 8–9 weeks of pregnancy, and then
declines until undetectable at about 14 weeks of pregnancy
(Parker et al., 1995; Goto et al., 2006). The serum cortisol levels
stay low until the appearance of the surge in late gestation
(Mesiano et al., 1993; Parker et al., 1995; Narasaka et al., 2001;
Goto et al., 2006; Solano and Arck, 2020). The first peak of

serum cortisol level is corresponding to the expression of the
HSD3B2, an enzyme that is responsible for the critical timing of
cortisol synthesis early in gestation. The surge of serum cortisol in
late gestation is a coordination of increased HSD3B2 expression,
elevated fetal cortisol production, and maternal cortisol crossing
the placenta (Parker et al., 1995; Narasaka et al., 2001; Busada
and Cidlowski, 2017). Cortisol peak appears at earlier stage of
pregnancy which is important to promote the implantation of
embryo and the decidualization of the uterine wall, as well as
suppresses the maternal immune rejection to embryo (Busada
and Cidlowski, 2017), whereas the surge at late gestation of fetal
life is vital to the maturation of lung and many other organ
systems which is crucial to survive for a life after birth (Solano
et al., 2016; Busada and Cidlowski, 2017).

In addition to glucocorticoid synthesis that determines
the critical window of fetal glucocorticoid exposure,
glucocorticoid metabolism controls gradients, or concentration
of glucocorticoid in the fetus. Two enzymes 11β-hydroxysteroid
dehydrogenase type 1 (11β-HSD1) and 2 (11β-HSD2) play
a primary role in glucocorticoid metabolism and are highly
expressed in the uterus, placenta and fetal tissues (Solano
et al., 2016; Sand et al., 2019). The enzyme 11β-HSD1
primarily converts the inactive form of glucocorticoid 11-
dehydrocorticosterone or cortisone to active form corticosterone
in rodents or cortisol in human or livestock (Jamieson et al., 1995;
Ricketts et al., 1998; Lamadé et al., 2021), while the 11β-HSD2
performs the opposite role as the 11β-HSD1 (Brown et al., 1993;
McMullen et al., 2012; Chen et al., 2021). Interestingly, studies
in mouse model showed that the 11β-HSD1 global depletion
in dams did not influence fetal development, suggesting the
role of 11β-HSD1 is not critical for normal fetal development
(Kotelevtsev et al., 1997). However, studies in a sheep model
with inhibition of 11β-HSD1 indicated that regulation of local
cortisol concentration was essential for fetal development
(Brooks et al., 2015). These contradictory studies in different
animal models suggest that further investigation of the function
of 11β-HSD1 is warranted in fetal development. In contrast,
the enzyme 11β-HSD2 plays an essential role in controlling
the mobilization of high gradient of maternal glucocorticoid
into low concentration of serum glucocorticoid in the fetus
(Krozowski et al., 1995; Meyer and Novak, 2021) (Figure 1).
This gradient of glucocorticoid concentration from maternal to
fetal serum allows the fetus not to be exposed to high maternal
glucocorticoid level (McMullen et al., 2012). Studies showed
that the defect of the 11β-HSD2 in mice usually resulted in the
exposure of the fetuses to high level of corticosterone (another
major form of glucocorticoids) in utero (Kotelevtsev et al., 1999),
and also the chronic maternal stress such as poor maternal
nutrition could facilitate maternal serum corticosterone to
overcome the 11β-HSD2 barrier and elevate the fetal serum
corticosterone level in a rat model (Bingham et al., 2013). The
consequences of the elevated fetal corticosterone levels can lead
to retarded fetal and placenta growth as well as reprogramming
of the fetus to predispose to high risk of metabolic syndrome
throughout the life in animal models and in humans (Ferrari
et al., 1996; Bingham et al., 2013; Reynolds et al., 2013). In
addition, the change of the activity of the 11β-HSD isoforms
1 and 2 in the placenta can also cause the abnormal exposure
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of maternal glucocorticoids and thereby lead to abnormal gene
expression and altered patterns of growth and development
(McMullen et al., 2012). For example, treatment of 11βHSD2
inhibitor carbenoxolone on pregnant dams in rats had the
similar effect with maternal low protein diet; both treatments
led to the reduced birth weight, and hypertension in offspring
(Langley-Evans, 1997). The life-long trajectory of muscle growth
and development could be one of the consequences regulated by
antenatal glucocorticoids exposure (Jobe, 2020).

EFFECTS OF GESTATIONAL
GLUCOCORTICOID ON PRENATAL
MUSCLE DEVELOPMENT AND
POSTNATAL MUSCLE GROWTH

Skeletal muscle is formed during embryonic development. The
formation of muscle cells or muscle fibers (also known as
myogenesis) is a complex process and tightly regulated by
myogenic regulatory factors (Myf5, MyoD, Myogenin, Mrf4), and
many other genes (e.g., paired box transcription factors 3 (Pax3)
and 7 (Pax7), Meox1/2, Foxc1/2) and signaling pathways (e.g.,
Wnt, FGF, IGF, HGF, BMP, Shh, Notch, p38 MAPK, NFAT)
(detailed information can be referred to Bryson-Richardson
and Currie, 2008; Eng et al., 2013; Chal and Pourquié, 2017;
Asfour et al., 2018). There are two stages of myogenesis
during prenatal muscle development, primary myogenesis, and
secondary myogenesis. In livestock, for example, in swine fetuses,
primarymyogenesis occurs within about 38 days of gestation, and
the secondary myogenesis takes place between 46 and 95 days
of gestation (Wigmore and Stickland, 1983). During the primary
myogenesis, primary muscle fibers are formed at early gestation
stage which account for about 20% of total muscle fibers formed
during prenatal myogenesis. Secondary muscle fibers are formed
using primary muscle fibers as templates at fetal development
stage. Secondary muscle fibers take up ∼80% of total muscle
fibers (Yan et al., 2013b). It is widely accepted that muscle fiber
numbers are fixed after birth and postnatal muscle growth is
mainly dependent on hypertrophy of existing muscle fibers (Yan
et al., 2013b; Reynolds et al., 2019). In this regards, reduced
muscle fiber number during prenatal muscle development will
negatively impact postnatal muscle growth performance.

The critical time window that affects the number of muscle
fibers is during the fetal developmental stage because themajority
of muscle fibers are formed during this stage (Allen et al.,
1999; Yan et al., 2013b). Numerous evidence have shown that
environmental changes in uterus, particularly, poor maternal
nutrition influences prenatal skeletal muscle development and
postnatal muscle growth in different species because skeletal
muscle has less priority for nutrient partitioning by comparing
to other organs like brain, heart, liver, gut, and placenta (Zhu
et al., 2006; Du et al., 2010). Thus, skeletal muscle development
is especially vulnerable to nutrient availability (Reynolds et al.,
2019). Studies in young and old sheep demonstrated that
both maternal over- and under-nutrition resulted in reduced
secondarymuscle fiber numbers and an increase in the secondary
to primary fiber ratio in late gestation fetal lambs as well as

reduced muscle mass and muscle fiber cross-section area (Zhu
et al., 2004, 2006; Fahey et al., 2005; Daniel et al., 2007; Huang
et al., 2010; Yan et al., 2013a; Reed et al., 2014; Hoffman et al.,
2016; Gauvin et al., 2020). Studies in pigs also showed that
nutrition was a major factor for birthweight and muscle mass
(Karunaratne et al., 2005; Jia et al., 2016). The larger offspring
resulting from sufficient nutrition hadmoremuscle fibers (Dwyer
et al., 1994; Rehfeldt and Kuhn, 2006; Musser et al., 2007; Tilley
et al., 2007). Meanwhile, studies in rodents and guinea-pigs
also showed the similar effects of poor maternal nutrition on
muscle fiber number from young offspring (Dwyer et al., 1995).
Several comprehensive reviews have summarized consequences
of maternal nutrition on skeletal muscle development which will
not be detailed here (Brameld and Daniel, 2008; Du et al., 2010;
Rehfeldt et al., 2011).

The mechanisms of poor maternal nutrition in fetal
development have been extensively studied. Some studies in
sheep reported that both maternal nutrition restriction and
maternal over-nutrition during early- to mid-gestation elevated
fetal and newborn plasma cortisol concentrations (Smith et al.,
2018; Ghnenis et al., 2021). Although glucocorticoid is a well-
known catabolic protein acting on skeletal muscle, only few
studies reported the effect of glucocorticoid exposure on fetal
muscle growth and development. One study using rats as model
showed that in utero dexamethasone (a synthetic glucocorticoid)
exposure reduced fetal skeletal muscle mass (Gokulakrishnan
et al., 2012). In this study, the author concluded that fetal
exposure to dexamethasone reduced fetal growth independent of
its effects on maternal food intake, but maternal food intake was
additive, while other reports in rats indicated that the retarded
fetal growth due to exposure to dexamethasone administration
was because of the secondary impact of decreased maternal
food intake (Woods and Weeks, 2005; Woods, 2006). Later,
a follow-up study from the same group in rats found that
precocious exposure to dexamethasone in utero led to the
relatively lower number of Pax7+ muscle progenitor cells but
not distribution of these cells. The Pax7 induces the expression
of myogenic regulatory factor genes Myf5 and MyoD (Olguín
and Pisconti, 2012), and starts to express in dermomyotome of
mature somites. The Pax7+ cells in mouse embryonic day 12.5
restrictedly differentiate to lineage of muscle cell (Lepper and
Fan, 2010). After birth, Pax7+ cells can also be activated and
fused themselves to adjacent myofiber to promote hypertrophy
or regeneration (Chal and Pourquié, 2017). This study concluded
that the effect of in utero dexamethasone exposure on fetal
myonuclear accretion was independent of mild restriction of
maternal food intake (Gokulakrishnan et al., 2017). These
findings demonstrate how gestational glucocorticoid contributes
to postnatal muscle growth because satellite cells are important to
postnatal muscle fiber hypertrophy. A recent study in pregnant
ewes infused with cortisol indicated that chronic increases in
maternal cortisol concentrations, as in maternal stress, altered
gene expression that is associated with mitochondrial function
and metabolism in skeletal muscle (Joseph et al., 2020). They
did not observe significant changes of insulin signaling which is
a potential target in skeletal muscle of in utero glucocorticoids
exposure (Jellyman et al., 2012), but significantly changed free
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FIGURE 1 | A schematic model to illustrate the mechanism that maternal glucocorticoids impact the programming of fetus. GC, Glucocorticoid; 11β-HSD2,

11β-hydroxysteroid dehydrogenase type2; HPA axis, hypothalamic-pituitary-adrenal axis.

radicals and cell apoptotic pathways (Joseph et al., 2020).
Another study in sheep showed that the gene expression of
the myosin heavy chain isoform IIX, was upregulated by
cortisol infusion (Davies et al., 2021). This finding implies that
gestational glucocorticoids may also affect the fiber type of fetal
muscle in addition to fiber number (Gicquel et al., 2008). They
also observed that in mitochondrial metabolism, mitochondrial
content, biogenesis markers, substrate-specific respiration rates,
abundance of electron transfer system complex I and adenine
nucleotide translocator in skeletal muscle were increased in
a muscle-specific manner when sheep fetuses were infused
with cortisol during gestation (Davies et al., 2021). Although
studies have been done extensively in adult muscle development

and growth, few studies have been done in regard to the
effects of gestational glucocorticoid on fetal muscle development.
Therefore, further investigation will be guaranteed in the field
in future.

EFFECTS OF PRENATAL
GLUCOCORTICOIDS ON HEART MUSCLE
DEVELOPMENT AND ADULT HEART
DISEASE

It is well-known that glucocorticoids are critical for the
maturation of organs and tissues before birth and elevated
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glucocorticoid level at late gestation is essential to prepare
for birth (Schwab et al., 2012; Rog-Zielinska et al., 2013a;
Fowden et al., 2016). However, a handful of evidence have
shown that excessive prenatal glucocorticoid exposure results
in long-term adverse cardiovascular diseases (Fowden et al.,
2016). Clinically, antenatal glucocorticoid therapy is commonly
used in women who have the risk of preterm birth during
pregnancy. Glucocorticoid treatment for preterm birth reduces
respiratory distress syndrome, cerebral hemorrhage and
necrotising enterocolitis as well as incidence of neonatal death
(Fowden et al., 1998; Agnew et al., 2018; McGoldrick et al., 2020).
Unfortunately, about half of women who had the antenatal
glucocorticoid treatment did not go preterm, and conversely,
they deliver babies at or near term (Razaz et al., 2015; Kemp
et al., 2016; Makhija et al., 2016; Grzeskowiak et al., 2018). This
will cause potential exposure of babies to excessive synthetic
glucocorticoids in utero, and thus result in potential short-
or long-term adverse effects associated with cardiovascular
function. Researches have been conducted to understand how
excessive prenatal glucocorticoids (endogenous or exogenous)
reprogram heart muscle and impact cardiovascular health during
life course.

During normal development, the heart experiences extensive
morphological and geometrical changes shortly before birth
and continuously after birth through cardiomyocyte hyperplasia
and hypertrophy in adaptation to increased mechanical and
functional needs. Glucocorticoid is a ligand of GR, a nuclear
receptor that recognizes and binds to the GREs of the
targeted DNA (Oakley and Cidlowski, 2013). Activated GR
in mouse fetal heart promoted cardiac morphological and
geometrical changes (Rog-Zielinska et al., 2013a,b, 2015). The
GR null mice developed immature and small heart that had
both impaired systolic and diastolic function similar to the
preterm heart (Rog-Zielinska et al., 2013a,b). Interestingly,
another study with specific depletion of GR in only mouse
heart and vascular smooth muscle showed that mice exhibited
systolic dysfunction in late gestation with abnormal sarcomeric
ultrastructure (Rog-Zielinska et al., 2013b) similar to null GR
mice. However, GR specific depleted mice had a normal size
heart, suggesting glucocorticoids regulate heart development
and function in other different ways in addition to GR-
regulated structural and functional changes. Researches also
showed that excessive glucocorticoids due to antenatal synthetic
glucocorticoid (dexamethasone) treatment altered feto-placental
vasculature in human (Elfayomy and Almasry, 2014) which
was supported by a subsequent study in the Hsd11b2 knockout
mice. These mice had antenatal glucocorticoid excess and
intrauterine growth restriction (IUGR) and showed immature
heart development and cardiac dysfunction in late gestation.
Rescue of feto-placental vasculature restored cardiac function
(Wyrwoll et al., 2016). Impact of glucocorticoids on fetal
cardiomyocyte maturation has also been investigated with
in vitro cultures. Mouse fetal cardiomyocytes treated with
corticosterone or dexamethasone showed early maturation
structurally and functionally (Rog-Zielinska et al., 2015).
Studies in mice showed that Fetal heart development and
maturation were impacted by mitochondrial metabolic capacity

(Lai et al., 2008). Glucocorticoids can regulate fetal heart
development and maturation through induction of PGC-1a,
a key regulator for cardiac mitochondrial function through
GR (Rog-Zielinska et al., 2015). Further, glucocorticoids can
promote more active form of thyroid hormone T3 converted
from T4 through inducing deiodinase 1 (D1) and D2 expression
(Forhead and Fowden, 2014). Both glucocorticoids and thyroids
are important hormones for fetal heart development and
maturation by switching myofilament protein isoforms and
increasing atrial natriuretic peptide (ANP) (Van Tuyl et al.,
2004; Chattergoon et al., 2012). According to this mechanism,
elevated glucocorticoid level at early gestation stage before the
HPA axis starts to produce fetal thyroid hormones may have
a compromised maturation of fetal organs by glucocorticoid
along, which may impact more rodent fetal development than in
humans or in sheep because thyroid hormones are synthesized
earlier at mid-gestation in humans or sheep than in rodents at late
gestation (Forhead and Fowden, 2014). This mechanism could
be another important consideration for antenatal glucocorticoid
therapy with a question about whether thyroid hormone should
be administered with synthetic glucocorticoids or not. In
addition, transient hyperoxia in neonatal rodent causes reduced
cell number and increased cell hypertrophy which leads to a
high risk for hypertrophic cardiomyopathy in adult life and
vulnerability to pressure overload (Bertagnolli et al., 2014; Puente
et al., 2014). Studies showed that glucocorticoids played a role in
this process. Administration of dexamethasone to neonatal rats
reduced cardiomyocyte number but increased cardiomyocyte
hypertrophy (Gay et al., 2015).

The relationship between early and/or excessive exposure to
glucocorticoid during pregnancy and impact of life course on
cardiovascular disease is well-recognized. Also glucocorticoid
is a widely accepted gatekeeper for the thrifty hypothesis of
the fetal origins of diseases (Seckl and Holmes, 2007; Fowden
et al., 2016). However, precisemolecular and cellularmechanisms
by which excessive glucocorticoid-induced cardiac remodeling
and functional change in fetal development and its effects on
cardiovascular disease later in life need be further explored.
More information gained from the mechanistic studies will also
help establish new antenatal glucocorticoid treatment protocol
regarding optimal formulation, timing of dosage and efficacy at
different gestational stages.

POTENTIAL MECHANISMS OF
GLUCOCORTICOIDS IN FETAL MUSCLE
DEVELOPMENT

Fetal glucocorticoid level change occurs in several different
ways. First of all, endogenous glucocorticoids need overcome the
placental barrier through 11βHSD2 expressed on the placenta
from the mother to the fetus (Chapman et al., 2013). However,
studies showed that maternal stress in guinea pigs resulted in
elevated level of cortisol in fetal serum, which subsequently
caused fetal reprogramming including muscle formation and
development (Dauprat et al., 1984) (Figure 1). Due to the low
affinity of placental 11βHSD2 to synthetic glucocorticoid (sGC),
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sGC can readily cross the placenta to increase fetal serum
glucocorticoid to have direct effect on fetal organs (McCabe
et al., 2001). Secondly, glucocorticoids can play a direct role in
regulating placental function (Figure 1). For example, both sGC
and endogenous glucocorticoids promote expression and release
of corticotropin-releasing hormone (CRH) from the placenta.
Subsequently, CRH triggers both fetal and maternal HPA axis
in humans (Torricelli et al., 2011). Further, this mechanism may
differ for some species that do not produce CRH in placenta,
which explains species differences in response to prenatal
exposure to endogenous or exogenous glucocorticoids (Moisiadis
and Matthews, 2014). The third action of glucocorticoids on
placenta is placental growth restriction and altered placental
vascularization and structure (Braun et al., 2013). These changes
due to maternal stress alter fetal serum glucocorticoid level,
and thus elicit many molecular and cellular processes related
to cell growth and apoptosis, metabolism, inflammation, signal
transduction, and transport (Wang et al., 2004) in fetal organ
or tissue development including muscles. For example, one of
the glucocorticoid targeted genes, tripartite motif containing 63
(Trim63), which encodes a E3 ubiquitin ligase muscle RING
finger 1 (MuRF1), were upregulated in muscle atrophy (Waddell
et al., 2008), implying that MuRF1 could be a mediator in fetal
programming controlled by glucocorticoid.

Epigenetics is increasingly accepted as a potential mechanism
of glucocorticoid action on fetal development through the
regulation of gene expression (Moisiadis and Matthews, 2014).

Over the past decades, more and more evidence show that
epigenetics regulates reprogramming of fetal organ systems such
as cardiovascular system. Expression of a handful of genes (e.g.,
Nr3c1/2, Crh, Pomc, and Hsd11b2) in regulating HPA axis can
be regulated through DNAmethylation and histone modification
by glucocorticoids (Newell-Price, 2003; Alikhani-Koopaei et al.,
2004; Weaver et al., 2004; Mueller and Bale, 2008; De Filippis
et al., 2013; Ferreira et al., 2021). DNA methylation is critical
for vertebrate heart development and maturation through a
number of processes such as gametogenesis and hematopoiesis
(Patterson et al., 2010; Smith and Meissner, 2013; Gilsbach et al.,
2014; Martinez et al., 2015). For an instance, DNA methylation
inhibitor 5-AZA suppressed the regulation of dexamethasone
in binucleation at day 4 postnatally and proliferation at day 7
postnatally, resulting in increased cardiomyocyte number at the
heart of day 14 postnatally. This study suggested the relationship
between glucocorticoids and DNA methylation in muscle cell
proliferation and differentiation in a developing rat heart (Gay
et al., 2015). Another study in rats found that maternal stress
like maternal hypoxia reduced GR expression through DNA
methylation and 5-AZA treatment reversed hypoxia-induced
promotor methylation and restored GR expression (Xiong
et al., 2016). Subsequent study from the same group found
that DNA methylation bridged prenatal hypoxia and epigenetic
regulation of GR expression in adult offspring in rats (Lv et al.,
2019; Song et al., 2019b). In addition to DNA methylation,
glucocorticoids can also regulate histone modifications and
miRNAs. Increasing evidence show that miRNAs regulate
generation of glucocorticoids in adrenal gland and in contrast,
glucocorticoids also regulate cell survival, proliferation, and
function partially through regulation of miRNA expression

(Clayton et al., 2018). For example, in humans, miRNA-30c-
5p and miRNA-125b-5p regulated expression of genes involved
in cardiomyogenesis or cardiac function via glucocorticoid-
mediated signaling pathway (Wang et al., 2014).

In addition to epigenetic regulation, glucocorticoids also
play a role in the regulation of muscle metabolism. As an
energy consuming tissue, striated muscle particularly requires
the normal mitochondrial activity and glucose metabolism
(Figure 1). The gestational glucocorticoids level in sheep was
found to be closely correlated with the increase in mitochondrial
oxidative phosphorylation capacity of skeletal muscle (Davies
et al., 2020). Gestational exposure of glucocorticoids led to
increased mitochondrial content, biogenesis markers, substrate-
specific respiration rates, and abundance of electron transfer
system complex I and adenine nucleotide translocator in a
muscle-specific manner (Davies et al., 2021). Adverse maternal
environment not only impacted the β-cell development and
growth in fetal pancreas (Gicquel et al., 2008), also altered the
response to insulin in other organs including cardiac and skeletal
muscle through the mediation of glucocorticoids (Norris et al.,
2011; Blanco et al., 2014; Ferreira et al., 2021). Muscle normally
contributes around 75% of the post-prandial glucose utilization
which depends on the embedding of glucose transporters 1
(GLUT1) and 4 (GLUT4) into membrane of myocytes in an
insulin-sensitive manner (dos Santos et al., 2012; Blanco et al.,
2014; Kondash et al., 2020). In both skeletal and cardiac
muscle, expression of GLUT1 and GLUT4 was elevated after
dexamethasone treatment in utero (Meyer and Zhang, 2007;
Wyrwoll et al., 2008; Jellyman et al., 2012; Blanco et al., 2014),
implying that the glucose metabolism of fetal muscle is impacted
by glucocorticoids. However, another research in rats suggested
that dexamethasone exposure indirectly restricted the glucose
availability of fetus, because they found the glucose transport
to the fetus had no significant change but glucose utilization
of maternal tissues was competitively increased (Norris et al.,
2011). Moreover, calcium-handling genes (Meyer and Zhang,
2007; Agnew et al., 2019), oxidative stress related genes (Joseph
et al., 2020), the genes Mstn (Jia et al., 2016), Pik3r1 (Kuo et al.,
2012), Trim63 (Waddell et al., 2008), Bmp4, Tbx3, Acadm, and
Nkx2-6 (Peng et al., 2018), were all found to be regulated by
altered glucocorticoid level during fetal programming. Among
them, gene Pln which encodes a protein regulates the activity of
cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (Kosmidis
et al., 2015), Pik3r1, which mediates the glucose metabolism in
response to insulin in myotubes (Kuo et al., 2012), and Trim63
which is associated with skeletal muscle atrophy (Waddell et al.,
2008) have been proved to contain glucocorticoid response
elements. Some other genes, such asMstn (Jia et al., 2016), Bmp4,
Tbx3, Acadm, and Nkx2-6 (Peng et al., 2018) are controlled by
glucocorticoid through epigenetic modifications.

PERSPECTIVES AND FUTURE
DIRECTIONS

Numerous evidence reported in human and livestock as
well as animal models suggested that glucocorticoids are key
mediators and gatekeeper in fetal programming. The altered
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gestational glucocorticoid levels induced by adverse maternal
environment reprogram the development, growth, and function
of fetal skeletal and cardiac muscle through altered HPA axis.
At the molecular and cellular level, glucocorticoid action is
involved in a complex signaling network including epigenetic
regulation, mitochondrial activity, glucose metabolism, cell
cyclin, and differentiation. However, the molecular mechanism
of the life-course or even trans-generational effect in myocytes
controlled by aberrant glucocorticoid level is far from being
fully understood. Which co-activators of glucocorticoid receptor
participate in the regulation of fetal programming remains to
be defined. Regulation of posttranscriptional process in fetal
programming has not been well-studied yet. A lot of work
still need to be done in future studies. Understanding of
these fundamental questions would help develop intervention
strategies to prevent adverse offspring outcomes. Targeting
to glucocorticoids and their downstream molecules may

provide specific intervention methods to improve farm animal
production and performance as well as human health.
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