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Early development is a critical period during which environmental influences can have

a significant impact on the health, welfare, robustness and performance of livestock. In

oviparous vertebrates, such as birds, embryonic development takes place entirely in the

egg. This allows the effects of environmental cues to be studied directly on the developing

embryo. Interestingly, beneficial effects have been identified in several studies, leading to

innovative procedures to improve the phenotype of the animals in the long term. In this

review, we discuss the effects of early temperature and dietary programming strategies

that both show promising results, as well as their potential transgenerational effects.

The timing, duration and intensity of these procedures are critical to ensure that they

produce beneficial effects without affecting animal survival or final product quality. For

example, cyclic increases in egg incubation temperature have been shown to improve

temperature tolerance and promote muscular growth in chickens or fatty liver production

in mule ducks. In ovo feeding has also been successfully used to enhance digestive

tract maturation, optimize chick development and growth, and thus obtain higher quality

chicks. In addition, changes in the nutritional availability of methyl donors, for example,

was shown to influence offspring phenotype. The molecular mechanisms behind early

phenotype programming are still under investigation and are probably epigenetic in nature

as shown by recent work in chickens.

Keywords: programming, bird, temperature, nutrition, in ovo, embryo

INTRODUCTION

Early development is a critical period during which the environment influences the health, welfare,
robustness and performance of livestock (Ho et al., 2011; Reed and Clark, 2011). Long-term effects
of the early environment, i.e., during embryogenesis or the first days of life, have been demonstrated
in cattle (Reynolds and Vonnahme, 2017), sheep (Reynolds et al., 2010), pigs (Feeney et al., 2014),
fish (Panserat et al., 2019), and birds (Feeney et al., 2014; Loyau et al., 2015) among others. The
oviparous vertebrate model differs from the others due to an embryonic development outside
of the dam. Therefore, the embryo can be easily manipulated, opening up new opportunities for
phenotypic programming to improve poultry production.

Embryonic incubation conditions have been studied since the mid-20th century to find optimal
incubation parameters for poultry production. The concept of programming has emerged more
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recently with the demonstration of beneficial effects of different
stimuli such as temperature (Loyau et al., 2015), nutrition (Uni
et al., 2005; Cherian, 2011) or changes in maternal diet (Hynd
et al., 2016; Baéza et al., 2017). The purpose of this review is
to provide a concise description of the advancement of this
concept in four poultry species (broiler chickens, quails, ducks
and turkeys) with a particular interest on two main embryonic
programming strategies, nutrition and temperature.

NUTRITIONAL PROGRAMMING

STRATEGIES

The Maternal Nutrition as a Lever to

Program the Progeny’s Phenotype
Several maternal nutritional strategies have been developed to
modulate egg nutrient content to obtain higher quality chicks
in terms of robustness, growth and body composition. The
links between hen nutrition and management, egg composition
and subsequent animal behavior, performance, and disease
susceptibility are well-established (Aigueperse et al., 2013). The
breeder hen’s diet can modulate the levels of other essential
nutrients, which in turn can impact the fitness of hatched chicks
and their phenotype later in life (for reviews, see Rühl, 2007;
Morisson et al., 2017).

Fatty acids are essential for embryonic development, bird
growth, the development of the central nervous system and
the immune system (Noble et al., 1984; Ding and Lilburn,
1996; Wang et al., 2004; Cherian, 2015; Koppenol et al., 2015;
Thanabalan and Kiarie, 2021). The balance of fatty acids (FA)
can be modulated via the hen’s diet. Ducklings from ducks
fed with a FA ω3-enriched diet have a higher live weight at
hatch (D0), D28 and D56 and a lower feed conversion ratio for
the growing period (Baéza et al., 2017). Reduced hyperactivity
and stress responsiveness in ducklings were also observed.
Supplementation with FA ω3 LC also reduced the frequency and
severity of pecking in ducklings.

In low protein feeding programs, not only are egg-laying
rate and egg weight altered, but also the amount of leptin in
the yolk sac and the expression of a number of genes in the
yolk sac, hypothalamus, or muscle of the offspring (Rao et al.,
2009). The chicks have lower hatch weight but faster post-
hatch growth. More recently, it has been shown that feeding
broiler breeders reduced protein diets has a negative impact on
reproductive performance but improved offspring performance
(Lesuisse et al., 2017), even in subsequent generations (Lesuisse
et al., 2017, 2018). Studies testing different levels of digestible
lysine (Ciacciariello and Tyler, 2013) or arginine (Fernandes
et al., 2014) in hen diets have shown positive effects on offspring
such as performance improvement, carcass yield, abdominal fat
content, and bone quality for arginine supplementation.

Mineral and vitamin supplementations have often been
studied to solve defects of mineralization of the skeleton and legs
problems. Vitamins can be enriched in the egg through the hen’s
diet. Vitamin A is produced by the hen from the carotenoids in
the feed. They have antioxidant properties, which are essential
for the embryo. Indeed, in the last stage of incubation, fatty

acid oxidation increases, as does the production of free radicals
and oxidative stress. These processes mainly cause damage to
the embryos (Surai et al., 2016). Vitamin D3 regulates the flow
of calcium through the chorioallantoic membrane. A vitamin
D-deficient diet leads to decreased Ca++ transport across the
chorioallantoic membrane and decreased Ca++ accumulation
in the embryo, as well as increased late embryonic mortality
(malposition, beak unable to break through the shell). Minerals
such as iodine, selenium, magnesium, zinc, copper, iron or
manganese can also be enriched in eggs (Jiakui and Xiaolong,
2004; Chinrasri et al., 2013; Favero et al., 2013; Saunders-Blades
and Korver, 2015; Torres and Korver, 2018; Xie et al., 2019).

Overall, maternal feeding approaches optimize the hen’s diet
through supplementation or restriction of a wide variety of
nutrients. However, it is often difficult to assess whether the
effects of maternal diet on offspring are direct or not.

In ovo Nutrition Programming Strategies
In ovo feeding is a more direct way to influence offspring
phenotype. Several studies have reported the use of in ovo
nutrient supplementation to reduce the hatch window and
improve health, post-hatch immune status, hatchability, hatched
chick weight, growth performance, and meat quality (Uni and
Ferket, 2004; Wei et al., 2011; Kadam et al., 2013; Roto et al.,
2016; Gao et al., 2017; Peebles, 2018; Taha-Abdelaziz et al., 2018;
Jha et al., 2019; Kalantar et al., 2019; Ayansola et al., 2021).
New in ovo strategies also aim to address new challenges such as
finding alternatives to antibiotic use through probiotic injections
(Oladokun and Adewole, 2020). Therefore, in ovo stimulation
of chicken microflora offers a better approach in establishing
intestinal microflora (Alagawany et al., 2021).

At hatching, chicks switch from a yolk FA-based diet to a
complete diet. Injection of carbohydrates and amino acids (AA)
during embryonic development allows chicks to adapt to their
post-hatch diet. Carbohydrates are widely studied because their
concentration within the egg is less than one percent of total
nutrients (Campos et al., 2011). To limit the utilization of FA and
proteolysis of muscle proteins for energy purposes, injections of
carbohydrates alone or combined with other nutrients of interest
have been performed in ovo to increase glycogen storage and
modulate energy status of chicks (Retes et al., 2017). Results
depended on the type of sugar injected, injection site, embryo
developmental stage, and genetics. Smirnov et al. (2006) showed
an effect of carbohydrate injection on intestinal epithelium
development with a 27% increase in villus area at hatching.

Amino acid administration improves hatching weight (Ohta
et al., 2001) which persists up to 56 days of age in some studies
(Al-Murrani, 1982). In ovo injection of AA such as arginine,
considered an essential amino acid in birds, has been used
to improve post-hatch growth performance via regulation of
protein synthesis through the mTOR pathway (Yu et al., 2018).
Arginine also stimulated myogenin gene expression in cultured
chicken tissues (Li et al., 2016b). Moreover, in ovo injection
of sulfur AA (methionine plus cysteine) resulted in improved
embryonic development, IGF-I and TLR4 gene expression,
antioxidant status and jejunum histomorphometry of newly
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hatched broiler chicks exposed to heat stress during incubation
(Elnesr et al., 2019; Elwan et al., 2019).

In ovo injection of AA, FA, vitamins, and trace elements
on early post-hatch growth may also impact the development
of lymphoid organs (thymus, bursa, and spleen) and immune
parameters in broilers (Bakyaraj et al., 2012). In ovo vitamin and
mineral administration significantly augmented the hatchability
percentage and body weight of chicks post hatching (Alagawany
et al., 2020; Hassan et al., 2021). The efficacy of vitamins C, E, D3,
and folic acid on embryonic health and development has been
reported in the literature (Peebles, 2018). The use of the yolk by
the embryo for energy purposes results in oxidative processes,
leading to the degradation of polyunsaturated fatty acids in cell
membranes. Vitamins, such as vitamin E or C, protect the embryo
by limiting the negative effects of free radicals (Surai et al., 2016;
Araújo et al., 2018; Peebles, 2018). Results may depend on doses,
ages, and injection sites.

Determining the mechanisms by which egg nutrients regulate
cellular metabolism, signaling, gene expression and function is
critical to improving nutrient utilization, poultry production
efficiency and animal robustness. In birds, most studies only
report phenotypic results of in ovo injections. Only a few recent
studies are beginning to decipher the mechanisms involved in
these phenotypic changes. Epigenetic changes may be involved,
especially when methyl group donors, such as methionine, are
injected (Anderson et al., 2012; Donohoe and Bultman, 2012;
Veron et al., 2018). Thus, manipulation of sulfur AA content can
induce changes in cellular function that may have implications
for the development, long-term growth, and health of the
animal. The early utilization of nutrients like AA can influence
disease resistance and embryo survival (Saeed et al., 2019).
Folate supplementation improved growth performance, immune
function, and folate metabolism of broilers through epigenetic
regulation of immune genes by altering chromatin conformation
and epigenetic marks such as histone methylation (Li et al.,
2016a). Injection of betaine (a component of the methionine
cycle), also considered an effective antioxidant agent and methyl
donor, affects hepatic cholesterol metabolism through epigenetic
gene regulation in newly hatched chicks (Hu et al., 2015).

TEMPERATURE PROGRAMMING

STRATEGIES

Temperature Increases During Egg

Incubation
Thermal manipulation (TM) during embryogenesis has been
studied for over three decades. TM involves altering egg
incubation temperature to improve post-hatch physiological
responses of birds (Iqbal et al., 1990). In particular, fine-tuning
egg incubation temperature has been used to develop strategies
to help chickens better withstand heat later in life (Loyau et al.,
2015). TM has since been studied in several other avian species,
including turkeys for thermoregulation and muscle growth
(Maltby et al., 2004; Piestun et al., 2015), ducks for the lipid
metabolism and liver (Wang et al., 2014; Massimino et al., 2019),

and quail for growth, physiological and metabolic parameters
(Vitorino Carvalho et al., 2020).

Cyclic increases in incubation temperature, mimicking
naturally fluctuating conditions, have been found to improve
thermal tolerance while minimizing hatching defects (Piestun
et al., 2008; Loyau et al., 2015). Because of the interference
between the thermoregulatory system and other body functions,
TM has also been shown to alter a broader range of phenotypes.
For instance, TM has been shown to affect growth in broiler
chickens and quails (Loyau et al., 2013; Vitorino Carvalho
et al., 2020), muscle development in broiler chickens (Collin
et al., 2007; Piestun et al., 2009), skin vascularization in
broiler chickens (Morita et al., 2016) and immunity in Pekin
ducks (Shanmugasundaram et al., 2018). In Pekin ducks,
TM positively impacted muscle fiber diameter and regulatory
pathways of muscle development (Liu et al., 2015; Li et al., 2017).
Interestingly, TM increased liver weight (Liu et al., 2015) and
lipogenesis gene activity in Pekin ducks (Wang et al., 2014). Three
different TM conditions were shown to result in increased fatty
liver weight, lipid amount, and droplets size after the overfeeding
period in mule ducks (Massimino et al., 2019).

Several factors must be considered when implementing a
thermal incubation strategy, the most important being the
timing and the cyclicality of the treatment and the level of
temperature increase (Loyau et al., 2015). For example, early
days of embryogenesis and continuous temperature increases
should be avoided, as they are associated with hatching defects
(Massimino et al., 2019; Vitorino Carvalho et al., 2020). Breeding
age and genetics contribute to the effectiveness of TM (Yalçin
et al., 2005). Increasing the relative humidity in the incubator
is another important parameter to prevent dehydration during
temperature elevation (Loyau et al., 2015). Therefore, incubation
parametersmust be finely tuned to tip the balance toward positive
rather than negative effects. This may explain why this seemingly
straightforward procedure is not yet widely used in hatcheries.

One way to refine practices is to understand the mechanisms
underlying the effects of TM. With advances in next-generation
sequencing, genome-wide gene expression and epigenetic data
have shed the light on some central and peripheral molecular
effects of TM. In 35-day-old chickens and quails, TM has been
shown to have a limited effect on gene expression in muscle
and hypothalamus under normal rearing conditions (Loyau
et al., 2016; Vitorino Carvalho et al., 2021). However, when
animals were subjected to heat exposure at the same age, a much
stronger gene expression response was found in the TM group
compared to the control group. This may be explained by the
involvement of epigenetic marks that are imprinted during the
embryonic heat exposure and may trigger a differential response
when the animals are again exposed to heat. This hypothesis is
supported by the identification of several hundred differential
peaks of histone marks altered by TM in the hypothalamus of
35-day-old chickens (David et al., 2019). In ducks, TM has been
shown to affect the gene expression level of methylation enzymes
(Yan et al., 2015), suggesting that incubation temperature may
influence DNA methylation in ducks during early development.
In addition, several studies have shown the involvement of heat
shock proteins (HSP) and factors (HSF) that protect cells from
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deleterious effects of stress such as misfolding and apoptosis
(Costa et al., 2020). Interestingly, a recent study showed that TM
altered the basal expression of HSP108, HSP90, HSF-1 and HSF-
2 during late embryogenesis and the first week of life, but also the
mRNA expression dynamics of these HSPs and HSFs during heat
stress (Al-Zghoul and El-Bahr, 2019). HSPs were also identified
as differentially expressed in genome-wide studies (Loyau et al.,
2016; Vitorino Carvalho et al., 2021) but did not appear to be
altered at the epigenetic level (David et al., 2019), suggesting that
other mechanisms may be involved in TM lifelong memory.

Temperature Decreases During the Egg

Incubation
Exposure of eggs to low incubation temperatures has several
impacts on chick physiology, but also on long-term health and
welfare traits. The young broiler chick is particularly sensitive
to cold after hatching (Collin et al., 2003), and later in life,
fast-growing broilers placed in a cold environment may develop
an accumulation of fluid in the peritoneal cavity called ascites
(Decuypere et al., 2000). While continuous incubation of eggs
at low temperatures below 36◦C results in degraded hatchability
and increased pre-hatch incubation time (Kühn et al., 1982;
Black and Burggren, 2004a,b), fine decreases in incubation
temperatures have been proposed to stimulate subsequent cold
tolerance in birds (Nichelmann and Tzschentke, 2002; Shinder
et al., 2009; Akşit et al., 2013). Exposure to cold at the end of
incubation did not alter hatchability but resulted in an increase in
internal temperature at 3 days of age compared to control broilers
chicks. This improved performance with a 5–10% increase in
body weight at 14 and 35 days of age in standard temperature
rearing (Shinder et al., 2011) and a 4% increase in female weight
at 40 days of age, whereas no such change was observed in males
(Nyuiadzi et al., 2020). The authors demonstrated beneficial
effects of embryonic thermal programming on broiler health,
with 19 and 26% reductions in mortality and incidence of
ascites, respectively, compared to control chickens under ascites-
inducing conditions. Less intense but cyclic cold embryonic
thermal programming decreased mortality and ascites incidence
during growth of chicks from old breeders (Shinder et al.,
2011). Such treatment induced an increase in body weight but
a degradation in feed efficiency and a better cold tolerance of
broilers when subsequently subjected to cold (Akşit et al., 2013).
Loyau et al. (2014) reported that at hatching, the same embryonic
cold exposure conditions resulted in a 9-fold increase in catalase
activity in the liver of treated chicks compared to controls.
This suggests that cyclic embryonic cold exposure stimulated
antioxidant defenses in chicks, presumably in response to a
transient increase in cold-induced tissue oxidation risk during
incubation (Mujahid and Furuse, 2009).

These medium- to long-term effects of short cold exposures
during incubation have been shown to trigger heat production
through modifications in thermoregulatory mechanisms via a
change in neuronal receptors sensitivity in the hypothalamus
(Nichelmann and Tzschentke, 2002), and an increase in plasma
triiodothyronine T3 concentration (Kamanli et al., 2015). Finally,
the impacts of cold exposure during incubation on subsequent

chick behavior were reported by Bertin et al. (2018). The
authors analyzed the effect of acute decreases in temperature
during days 12–19 of incubation on the expression of fear-
related behaviors in broilers. At hatching, this treatment
affected neurodevelopmental plasticity in the brain with higher
expression of corticotropin-releasing factor in nuclei of the
amygdala, altering the chicks’ social behavior, novelty perception,
and increasing their fear behavior. However, cold exposures
during incubation under these conditions impaired the health
and welfare of chickens reared in postnatal cold (Nyuiadzi et al.,
2020).

TRANSGENERATIONAL PROGRAMMING

A growing number of studies have suggested that environmental
exposures may be transmitted beyond exposed generations via
“transgenerational epigenetic inheritance” (Jablonka and Raz,
2009). Non-genetic transgenerational inheritance has recently
been shown to occur in birds (Brun et al., 2015; Leroux
et al., 2017). For instance, Brun et al. (2015) showed that
the Muscovy duck diet is capable of affecting traits related to
growth and lipid metabolism in the grand-offspring, via the
sire. In quail, in ovo injection of genistein, a phytoestrogen,
impacted reproductive and behavioral traits after 3 generations
without further injection (Leroux et al., 2017). In a 3-
generation study in broilers, a reduced balanced protein diet
induced transgenerational effects, including feather condition,
polydipsia and frustration-related behavior (Buyse et al.,
2020).

While these examples illustrate the existence of non-genetic
inheritance of embryonic exposure in birds, the magnitude of
these effects remains to be assessed in most cases. Although
“epigenetic heritability” has been estimated at very low values for
several egg quality traits in meat-type quails (Paiva et al., 2018b),
an epigenetic heritability of 0.10 for the weight at 7 days of age
has been reported (Paiva et al., 2018a). Concurrently, very little
is known about the molecular mechanisms involved, especially
in poultry (Guerrero-Bosagna et al., 2018). These may include
alterations in sperm miRNAs and lncRNAs (Wu et al., 2019),
or putative RNA modifications, DNA methylation, and retained
histones (Matsushima et al., 2019).

CONCLUSIONS AND PERSPECTIVES

To face future challenges, including fluctuations due to
climate change and changing farming systems, breeders are
under pressure to increase performance and productivity,
but also to ensure resilience and reduce resource use and
environmental impact. In this context, epigenetic programming
is an underestimated lever, as maternal or embryonic nutritional
and thermal programming offers promising prospects to
improve poultry performance and welfare. Programming the
environment of animals (e.g., optimizing the way they are
housed and fed) can indeed promote non-genetic factors
that may be passed on the subsequent generations. This
aspect is particularly important in the poultry industry where,
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generally, production farms are located all over the world,
including in warm climate regions, while breeding farms
are concentrated in a few temperate locations. Identifying
environmental changes in ancestors that affect offspring
traits through the transmission of epigenetic marks would
therefore allow breeders to produce commercial animals
better adapted to local production environments. In order to
implement such fine-tuned practices in the field, additional
research is needed in this challenging area to account for
the potential variability of breeders and the response of
their offspring.
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