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This study focused on assessing the usefulness of using audio signal processing in

the gaited horse industry. A total of 196 short-time audio files (4 s) were collected from

video recordings of Brazilian gaited horses. These files were converted into waveform

signals (196 samples by 80,000 columns) and divided into training (N = 164) and

validation (N = 32) datasets. Twelve single-valued audio features were initially extracted

to summarize the training data according to the gait patterns (Marcha Batida—MB

and Marcha Picada—MP). After preliminary analyses, high-dimensional arrays of the

Mel Frequency Cepstral Coefficients (MFCC), Onset Strength (OS), and Tempogram

(TEMP) were extracted and used as input information in the classification algorithms. A

principal component analysis (PCA) was performed using the 12 single-valued features

set and each audio-feature dataset—AFD (MFCC, OS, and TEMP) for prior data

visualization. Machine learning (random forest, RF; support vector machine, SVM) and

deep learning (multilayer perceptron neural networks, MLP; convolution neural networks,

CNN) algorithms were used to classify the gait types. A five-fold cross-validation scheme

with 10 repetitions was employed for assessing the models’ predictive performance. The

classification performance across models and AFD was also validated with independent

observations. The models and AFD were compared based on the classification accuracy

(ACC), specificity (SPEC), sensitivity (SEN), and area under the curve (AUC). In the logistic

regression analysis, five out of the 12 audio features extracted were significant (p < 0.05)

between the gait types. ACC averages ranged from 0.806 to 0.932 for MFCC, from

0.758 to 0.948 for OS and, from 0.936 to 0.968 for TEMP. Overall, the TEMP dataset

provided the best classification accuracies for all models. The most suitable method for

audio-based horse gait pattern classification was CNN. Both cross and independent

validation schemes confirmed that high values of ACC, SPEC, SEN, and AUC are

expected for yet-to-be-observed labels, except for MFCC-based models, in which clear
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overfitting was observed. Using audio-generated data for describing gait phenotypes

in Brazilian horses is a promising approach, as the two gait patterns were correctly

distinguished. The highest classification performance was achieved by combining CNN

and the rhythmic-descriptive AFD.

Keywords: audio-feature, convolutional neural network, sound analysis, horse gait, four-beat gaited

INTRODUCTION

The Brazilian gaited horse industry is booming steadily, with
economic increases headed by different activities, including
livestock and horseback riding, gait and endurance competitions,
and equine therapy. Horse breeds such as the Mangalarga
Marchador (MM), the most numerous in Brazil, have become
more common around the world, with a substantial increase
in the number of national registrations and exports of embryos
and live animals [Fonseca et al., 2017; Brazilian Association of
Mangalarga Marchador Horse Breeders—Associação Brasileira
dos Criadores do Cavalo Mangalarga Marchador (ABCCMM),
2019].

In the past few decades, significant progress in the
understanding of the biological and biomechanical mechanisms
associated with gait patterns in different horse breeds has been
achieved. Remarkably, the availability of numerous data sources
has been contributing to the study of different aspects that
directly affect the worldwide gaited horse industry, including
the description of locomotion pattern using kinematic data
(Hobbs et al., 2016), body-mounted sensors data analysis
for both lameness diagnosis (McCracken et al., 2012) and
gait characterization (Olsen et al., 2012; Sapone et al., 2020;
Serra Bragança et al., 2020), blood-assessed gait metabolic
profiles (Wanderley et al., 2010; Lage et al., 2017), and gait
genetics, based either on traditional pedigree data (Rustin et al.,
2009; Bussiman et al., 2020) or high-throughput genotyping
technologies (Kristjansson et al., 2014; Fonseca et al., 2017;
Jäderkvist et al., 2017).

Brazilian gaited horse breeds are characterized by exhibiting
a natural smooth four-beat gait, termed “marcha”, which is
classified into two main groups according to the animal leg
movements: lateral (marcha picada—MP) or diagonal (marcha
batida—MB). These two gait phenotypes show remarkable
differences related to the speed, range of motion, step frequency
per unit of time, leg dissociation movements, among other
factors (Wanderley et al., 2010), which are generally assessed
subjectively based on visual inspection. Although kinematic
analysis of camcorder data has been considered an alternative
to the traditional subjective assessment, this approach can be
laborious and time-consuming, as it involves a frame-by-frame
inspection (Nicodemus andClayton, 2003; Bussiman et al., 2018).

Some differences between MB and MP are acoustic-
perceptible which motivated us to investigate the suitability of
audio signal processing (ASP) as a complementary method for
describing the horses’ gait patterns. ASP refers to the set of
computational, mathematical, and engineering methods focused
on the manipulation and information retrieval of digital audio
signals for different purposes. Successful applications of ASP

include speech emotion recognition (Mustaqeem Kwon, 2020),
music genre classification (Ghosal and Kolekar, 2018), and
disease diagnosis (Miranda et al., 2019), just to name a few.

Under the gaited horse industry perspective, when compared
to traditional methods for evaluating and classifying gait types
(human subjective evaluation, sensors, and video monitoring,
among others), the sound-enabled analysis might be a novel and
cost-effective high-throughput phenotyping for horse breeding
purposes. In this context, the first step toward this goal is to assess
if audio-generated data can be used to accurately classify different
gait types. As the information extracted from audio signals can be
highly complex, using advanced classification algorithms such as
machine learning and deep learning techniques may be of great
importance for exploring hidden non-linear patterns in the data,
and thus, enhancing the classification accuracy.

This study aimed to investigate the usefulness of audio
signal processing in phenotyping schemes of gaited horses.
Therefore, we assessed the performance of machine learning
(support vector machine and random forests) and deep learning
(multilayer perceptron neural networks and convolutional
neural networks) algorithms for classifying two common
phenotypes (MB and MP) exhibited by Brazilian gaited horses
according to different features datasets extracted from digital
audio signals.

MATERIALS AND METHODS

Audio Data Acquisition and Edition
A total of 196 short-time audio files were extracted from
Brazilian horses gaiting videos, publicly available on the
Youtube platform and other social media. The full-length
audios were manually labeled into 0 or 1 values by a
trained evaluator according to the gait type (MB or MP,
respectively). The original extracted audio files had a sampling
rate (SR) ranging between 44 and 48 kHz, besides, all were
monophonic and had 16-bit depth. All recordings were
edited using the freely available Audacity© audio software
(www.audacityteam.org), retaining only a short-length audio
content (4 s) aiming to exclude uninformative noises (e.g.,
background music, riders/owners voices, and background
environment sound). All audio files were then converted
to the .wav format. These 4 s-length segmentations were
performed following the “Fair use on Youtube” guidelines
(www.support.google.com/youtube/answer/9783148).
Furthermore, all information regarding horse riders/owners
as well as animal identification were recoded to avoid any
non-authorized exposure.

After the editing procedures, all audios were integrated
and processed using librosa (McFee et al., 2015), a python
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library. The audio files were imported and down-sampled
using the librosa.load function, considering an SR of 20 kHz
(i.e., 20.000 samples per second). This process generated a
one-dimensional real-valued vector of size equal to 80 k for
each file, containing the time series of the audio amplitude
values (waveform). Finally, the imported audio time series were
decomposed into harmonic and percussive components using
the librosa.effects.hpss functionality. This function automates the
following pipeline (McFee et al., 2015): (a) convert the audio time
series into sliding windows, considering 2048 samples per frame
and overlapping of 75%, resulting in 157 windows frames; (b)
apply the fast Fourier transform into the windowed segments
of the signal to convert it from time to frequency domain. This
algorithm is known as short-time Fourier transform (STFT)
and generates the spectrum of frequencies of the audio signal
over time, the spectrogram; (c) Use the spectrogram as input
in the median-filtering mask for harmonic/percussive separation
(Fitzgerald, 2010); (d) convert separately the complex-valued
spectrograms of the percussive and harmonic components back
to the audio signal time series using the inverse-STFT.

The audio signal of the percussive component for each file
was then kept for further analyses. This pre-processing was
applied as a denoising step before the audio-feature extraction.
The resultant smoothed waveform data frame had dimensions
equal to 196 × 80,000, considering all audio files, which were
subsequently divided into training (N = 164) and validation (N
= 32) datasets.

Audio-Feature Extraction and Reshaping
As a first step, the raw waveforms in the training dataset were
used for extracting several single-value audio features aiming to
describe the gait types (MB and MP) according to statistical,
spectral, and rhythmic attributes. Spectral-based features were
extracted from the spectrogram, obtained by applying the
Fourier transform at successive windowed overlapping segments
of the audio signal (Rao, 2008). All audio features were
extracted using librosa (McFee et al., 2015) or other general-use
python libraries. A python script exemplifying this process can
be found at https://github.com/alvesand/sound-analysis-with-
librosa.

In brief, the audio features initially analyzed are:
Signal minimum: the most negative value in the waveform

time series; Signal maximum: the highest value in the waveform
time series; RMS: the root-mean-square for each time frame
in the waveform time series. The time-series RMS array was
then averaged for each sample; ZCR: the zero-crossing rate
for the audio time series, computed by counting how many
times the amplitude signal changed, divided by the total number
of amplitude samples; Tempo: An estimate of global tempo
(beats per minute) for the audio sample; AOS: the average
value of the onset strength envelope, which is computed with
the spectral flux operation in the log-power Mel spectrogram
(Böck and Widmer, 2013). Centroid: estimates the frequency
value for each time frame in which the spectrogram energy
mass is concentrated. For each audio sample, the centroid values
were averaged as a global measure for the spectral centroid.
Spectral contrast: it considers the differences between the

spectral peak and valley in each sub-band (Jiang et al., 2002).
The average of the Spectral Contrast array was then computed
for each sample. Spectral bandwidth: roughly speaking, it gives
a weighted standard deviation of the spectrogram frequency
values at each time frame. Roll-off: gives the frequency value
below which a specified percentage of the total spectrogram
energy per time-frame is concentrated. Two percentage values
were defined for approximating the minimum and maximum
frequencies per time-frame, Roll-off (15%) and Roll-off (85%),
respectively; MFCC[1]: Computed by averaging the array with
the first component of the Mel-frequency cepstral coefficients
(MFCC). The MFCC concept is further explained in the
next section.

Using the glm function in the R statistical package (R
Core Team, 2020), a multiple logistic regression analysis was
performed by fitting these 12 audio features as covariables
and gait type as the response variable in a generalized linear
model with a logit link. Based on the significance of the
estimated z-scores from the regression covariables, the MFCC,
Onset Strength, and Tempo features were kept for further
analyses. Multi-dimensional arrays of the selected features were
developed for capturing time-frame-specific variations. The
following sections provide some key concepts on these audio
features and the process of creating the input vectors for the
classification algorithms is also described.

Mel-Frequency Cepstral Coefficients
The MFCCs have been extensively used as a product obtained
from feature extraction mechanisms, in areas such as speech
recognition in humans (since they are proposed to represent
human sound perception), animal vocalizations, audio
information retrieval, and for detecting the health status of
several animal species (Lee et al., 2006; Chung et al., 2013).
MFCC offers a compact representation of the evaluated sounds
for subsequent analysis. The Mel scale results from a non-linear
transformation of the frequency scale to linearly approximate
the human perception ability to small changes in pitch at both
low and high frequencies (Dhonde and Jagade, 2015; Aslan and
Akin, 2018).

The MFFCs computing process can be summarized as follows
(Rao, 2008; Serizel et al., 2017):

(a) The sound signals obtained from horse gaits are
fragmented into short blocks known as frames, assuming that
frequencies are stationary in short-time audio segments. This
step is crucial to apply a Fourier transform on the generated
frames. A windowing approach is applied to reduce spectral
leakage. This process is used to avoid the signal discontinuity
created after framing the original sound. The audio signals
were converted into overlapping windows considering a constant
number of samples per window (n_fft) and the hop size for
sampling the next window (hop_length); (b) Compute the STFT
over each window, yielding the magnitude spectrogram; (c)
Apply the Mel filter bank to the power spectra obtained in the
previous step and sum the energy within each filter; (d) Compute
the logarithmic for the filterbank energies; and, (e) Apply the
discrete cosine transform (DCT) on the log Mel filterbanks to
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compute the cepstral coefficients:

MFCC =
√

2

Nmfcc

Nmfcc
∑

m=1

Xm (i) cos

(

cπ
(

m− 1
2

)

Nmfcc

)

,

whereNmfcc is the number of log filterbank energies, Xm is the log
energy in the mth Mel frequency band and, c is the index for the
ith cepstral coefficient (for i = 1, 2, 3, . . . Nmfcc). In this study we
set n_fft = 2048, hop_length = 512 and Nmfcc = 13, generating
a two-dimensional feature map for each audio file with the
frequencies’ magnitudes in the Mel scale over 13 MFCCs and 157
time-frames (100ms length windows with approximately 75% of
overlapping samples). MFFCs were computed using the librosa
function librosa.feature.mfcc, a step-wise summary of the whole
process is shown in Figure 1.

Finally, the thirteen 1 × 157 arrays (MFCC1, MFCC2,
MFCC3, . . . , MFCC13, representing the 13Mel coefficients) were
concatenated into a one-dimensional vector of size 2041 and
used as the input information for the classification algorithms
in preliminary analyses. Due to the observed overfitting
in the training phase for all tested models, an additional
feature selection step was performed using the Random Forest
(Supplementary Figure 1). After feature selection, only values
related to MFCC1 and MFCC4 were kept for further analyses,
resulting in 314 input features for each audio file.

Onset Strength
In ASP, the term onset refers to the beginning of a sound event,
the strength of each onset can be modulated as the change in
the spectral energy distribution, by taking the differences between
two consecutive short-time spectra in a frame-wise manner and
summing all positive deviations (Böck andWidmer, 2013). In the
librosa library the OS at time t is determined with a modified
version of the spectral flux (SF) function (Böck and Widmer,
2013):

SF
′=max

[

0, S (f, t)−S(f, t− µ)
]

where S
(

f , t
)

is the log-power Mel spectrogram at time bin t
and frequency f ; µ is a time lag parameter for computing the
differences (by default, µ = 1). To compute S

(

f , t
)

, the steps “a”
to “d” from the previous section are followed, using by default
256 Mel frequency bands. The SF algorithm produces an array
with 154 features (the onset strength envelope), which was used
as the input dataset in the classification algorithms. According
to McFee and Ellis (2014), the OS envelope provides a useful
way to visualize the relevant information throughout the audio
by representing the amount of spectral energy change at each
frame. It has a paramount role in computing the likelihood that
a prominent change has occurred at a given time frame (e.g., a
horse gait event).

Tempogram (TEMP)
The tempo is a terminology commonly adopted in the music
industry, it refers to the speed or pace of a given musical piece,
measured in beats per minute (BPM). The tempogram is a feature
matrix encoding the tempo variation over some time intervals,

as the pace can vary locally. In the librosa library, a cyclic
tempogram is obtained by computing local autocorrelation of the
onset strength envelope, in which octave equivalent tempi classes
are considered for avoiding pulse level ambiguity (Grosche et al.,
2010). The time-wise tempi prevalence in the audio signals is
represented with a correlogram matrix, where the rows are the
BPM classes and the columns are the time-frame classes. We
set the onset autocorrelation window size equal to 157. This
was done for considering the 4-s length prevalence in the audio
files (157 × hop_length / SR ≈ 4 s). The TEMP dataset was
then obtained by column-wise averaging the square matrix (the
tempogram), resulting in 157 input features per file.

Principal Component Analysis
Principal component analysis (PCA) is a multivariate technique
useful for reducing the complexity and dimensionality of data
with a large number of correlated features by projecting them
onto orthogonal vectors of lower dimension named principal
components (PC) (Lever et al., 2017). PCA can be considered
as an unsupervised learning method in the sense that it can
find some pattern in the data without prior knowledge and
without providing any target variable (Lever et al., 2017). A PCA
was performed for the 12 single-value features set and for each
audio-feature dataset—AFD (MFCC, OS and, TEMP), identified
after obtaining the results from the multiple logistic regression
analysis as previously described. This was done as a preliminary
step to potentially find some linear pattern in the audio data
that could discriminate well the gait types. The first two PC
(PC1 and PC2) were computed in the training labels using the
prcomp function and visualized with 2D scatter plots. All analyses
were performed using the R environment and its respective
programming language resources (R Core Team, 2020).

Supervised Machine Learning Algorithms
Random Forest
RF is a supervised ensemble learning method that merges
the concepts of bootstrap aggregation (bagging) and random
split feature selection (Breiman, 2001). The basic unit of the
RF is a decision tree, generally fitted using the Classification
and Regression Trees (CART) methodology. CART is based
on recursive binary splitting of the predictor space at each
internal node of the tree until achieving homogeneous or near
homogeneous classes into the terminal nodes. A decision tree
classifies unobserved data by attributing to it the most commonly
occurring class in the subregion it belongs to, after splitting the
predictor space (Breiman, 2001).

In the RF algorithm, each tree is grown using a bootstrap
sample, obtained by a random sampling process (with
replacement) from the original training dataset. The second
randomness component in the RF algorithm is introduced in the
tree building process. Onlymtry predictor variables are randomly
selected from all p features (with mtry ≤ p) as candidates for
optimizing the splitting rule at each tree node. This trick makes
the algorithm less greedy and decorrelates the trees by giving the
chance of weak predictors to contribute jointly with the other
features for the final learning rule. The information of hundreds
or thousands of trees generated with the different bootstrapped
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FIGURE 1 | Step-wise summary of how to extract Mel-frequency cepstrum coefficients (MFCC) from a .wav file. STFT, short-time Fourier transform; DCT, discrete

cosine transform.

training data sets is then aggregated and, the final classification
is given by majority voting of all ensembled trees, where the
number of trees to grow is a user-defined choice, determined by
the hyperparameter ntree (Chen and Ishwaran, 2012).

The best hyperparameters configuration for each AFD
(MFCC, OS, or TEMP) was set by using a grid-search procedure
on the training data. We assessed different combinations of
values for ntree (200, 500, 1000, 3000), mtry (≈√

p, ≈ 0.1p, ≈
0.3p and ≈ 0.5p, for p representing the number predictors in
each data set) and nodesize (1, 3, 5, and 10). The RF method was
implemented in the randomForest R package (Liaw and Wiener,
2002), available in the CRAN repository (https://cran.r-project.
org/).

Support Vector Machine
In binary classification tasks, the SVM algorithm aims to find
some optimum linear hyperplane by maximizing the decision
margin between the two classes while penalizing misclassified
observations. SVM can deal with nonlinearity by using a function
ϕ (xi) for mapping the input data into a high-dimensional feature
space, where data points are linearly separable.

LetD =
{

yi, xi
}

, i = 1, 2, . . .N, be the training data set, with
yi ǫ {0, 1} representing the class labels for the two horse gait types
(MB or MP) and xi a p-dimensional input vector of real-valued
predictors extracted from the audio signals scaled to lie between
0 and 1. Introducing Lagrange multipliers one can represent the
SVM optimization problem using the dual representation (Hastie
et al., 2009):

min L̃ (a) = 1

2

N
∑

i, j=1

yiyjaiajk
〈

xi,xj
〉

−
N
∑

i=1

ai,

subject to

N
∑

i=1

aiyi = 0 and 0 ≤ ai ≤ C

in which ai are the Lagrange multipliers associated with each
observation, C is a user predefined positive regularization
parameter and k〈xi, xj〉 = ϕ (xi) ϕ

(

xj
)

is the kernel function. Due
to its good generalization capability while dealing with possible
nonlinearity in the input data, we used the radial basis function
(RBF) as the kernel:

k〈xi,xj〉 = exp
(

−γ ‖xi−xj‖2
)

in which γ is the user-predefined kernel bandwidth hyper-
parameter and, xi and xj are the vectors of predictor variables for
labels i and j, respectively. The classification of unlabeled data (xt)
is given by:

f (xt)= sgn

(

N_SV
∑

i=1

aiyik 〈xi,xt〉+b

)

where N_SV is the number of support vectors, i.e., the trained
data points for which ai > 0. The best combination for the
hyperparameter values in each AFD was set by using a grid-
search procedure on the training data, with C and γ ǫ {0.00001,
0.0001, 0.001, 0.01, 0.1, 1, 10, 100}. The SVM was fitted using the
e1071 R package (Meyer et al., 2019).

Supervised Deep Learning Algorithms
Deep learning (DL) is a subfield of ML which comprises
a wide variety of techniques for implementing multi-layered
neural networks. It has been the state-of-art method for dealing
with unstructured data arising in many research areas such as
machine translation, computer vision, and speech recognition
(Voulodimos et al., 2018; Mustaqeem Kwon, 2020; Popel et al.,
2020). Recent applications of DL in livestock include the
prediction of complex traits in quantitative genomics (Abdollahi-
Arpanahi et al., 2020) and precision farming (Qiao et al., 2019).
Supervised DL techniques can be classified according to different
architectures such as multilayer perceptron (MLP), deep belief
networks (DBN), convolutional neural networks (CNN), and
recurrent neural networks (RNN). A comprehensive review of
different DL methods can be found in Emmert-Streib et al.
(2020). This study focused on the implementation of MLP and
CNN, two very common DL algorithms. The basic components
and key concepts are described in the next subsections.

Multilayer Perceptron
The MLP is the simplest neural network (NN) architecture
and comprises several layers fully connected in a feedforward
propagation scheme. These layers can be divided into the input
layer, which receives the input data (here, the audio-based
features), hidden layers, containing the mapping processing
units, also called neurons, and the output layer which gives the
outcomes of the NN. Conventionally, an MLP architecture can
be considered deep if it consists of more than two hidden layers
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(Yoshua, 2009). Our proposed architecture is composed of 3 fully
connected hidden layers as schematically depicted in Figure 2. In
this NN topology, each neuron in the hidden layer computes a
score given by a weighted linear summation of the values from
the previous layer. The neuron-specific scores are then mapped
by a linear or non-linear activation function. Finally, the output
layer receives the mapped scores from the last hidden layer for
computing the output values (Figure 2).

Let y be an n x 1 vector containing the labels indicating the
gait types for each observation, with yi ǫ {0, 1}, and X = {xi}
is the n x p matrix of audio-based features, with xi as specified
before. In Figure 2, the first hidden layer (H1) performs the
following computation: Z[1]= ϕ1 (XW1+b1), where W1 is a p
x nh1 weights matrix connecting the input variables to each
neuron, with nh1 standing for the user predefined number
of neurons in H1; b1 is an n x nh1 matrix of neuron-
specific constants called biases; ϕ1 is an activation function
used for mapping the nh1 neuron-specific scores, and Z[1] is
an n x nh1 matrix containing the H1 activated outputs. The
second hidden layer (H2) performs the following computation:
Z[2]= ϕ2

(

Z[1]W2+b2
)

, in which W2 is the weight matrix of
dimension nh1 x nh2 (nh2 = number of neurons in the second
hidden layer) that connects Z[1] into the H2 neuron units; b2
is the n x nh2 matrix of biases; ϕ2 is the activation function
for the neurons in H2; and Z[2] is the n x nh2 matrix of
outputs for H2; analogously, the outputs for H3 are computed
as Z[3]= ϕ3

(

Z[2]W3+b3
)

. Lastly, the neurons in the output layer

compute the following quantities: p̂[o]= ϕo

(

Z[3]Wo +bo
)

, in
which Wo is the weight matrix of dimension nh3 x 2 connecting
Z[3] to the output layer; bo is the n x 2 matrix of biases and ϕo

represents the softmax function, which was maintained as the
output layer activation function for all DL implementations in
this study. The softmax activation function is given by:

ϕo

(

Z[o]
)

=
exp(z[o]ij )

∑l
j=1 exp

(

z
[o]
ij

)

where Z[o]=Z[3]Wo +bo is the n x 2 matrix of logits scores,

z
[o]
ij are the elements of the ith row of the matrix Z[o], and
l is the number of levels or classes, with l = 2 for binary
classification problems. This results in n bidimensional vectors
containing the probabilities that a given sample belongs to each
gait type, and the MLP classification is given by the class with the
highest probability:

ŷ=
{

0, if p̂[o](y=0)> 0.5

1, otherwise

For classification problems the loss function is generally the
cross-entropy given as follows:

Loss
(

y, ŷ, W
)

= −y ln ŷ−
(

1− y
)

ln
(

1−ŷ
)

+ α ‖W‖22

where W represent the model parameters, α‖W‖22 is the L2
regularization term for penalizing complex models and α > 0 are

hyperparameters that control the magnitude of the penalty. The
basic learning process of an MLP involves backpropagating the
updated values ofW, obtained with some gradient descent based-
techniques, until Loss

(

y, ŷ, W
)

reach its minimal (Goodfellow
et al., 2016).

For finding the architecture with the best generalization
capability, we considered different values for the MLP
hyperparameters, including the optimization algorithm (sgd,
adam, nadam and, RMSprop), learning rate (0.001, 0.01,
0.05, 0.1), nh1 (512, 256, 128, 64, 32), nh2 (64, 32, 16, 8), nh3
(32, 16, 8, 4), batch size (8, 16, 32, 64), dropout (0.01, 0.1,
0.3, 0.5) and hidden layers activation function (sigmoid—sig,
tangent hyperbolic—tanh, rectified linear unit—ReLU, or
exponential linear unit—ELU), with ϕ1 = ϕ2 = ϕ3. Due to the
computation burden in assessing each possible combination of
hyperparameter values in the traditional grid-search procedure,
the network optimization was performed using a genetic
algorithm (GA).

Briefly, the GA evolves a population of candidate models,
represented with vectors that contain different values for the
hyperparameters. The models with the best fitness scores
(measured with some loss function) are then selected and
combined into new vectors that aggregate the features of both
parent vectors. The GA was implemented using an R library
(Scrucca, 2013), considering 100 generations, population size
equal to 20, elitism of 2 (the best two models are selected
for crossing), and a mutation rate of 0.1 (the probability of a
given hyperparameter value to change randomly). All models
were run with 150 epochs and the best two configurations,
hereinafter named MLP1 and MLP2, were found for each AFD
and retained for comparisons across models. The MLP was
implemented in the Keras version for R (Allaire and Chollet,
2017) using Tensorflow (Allaire and Tang, 2018) as a backend.
Supplementary Table 1 summarizes the final configurations for
MLP1 and MLP2 according to the different audio-based features
used as predictor variables.

Convolutional Neural Network
A CNN is a special case of neural networks composed of
convolutional layers, pooling layers, and feed-forward fully-
connected layers that are conceived to deal with different
unstructuredmultidimensional data represented by two or three-
dimensional arrays such as images and videos (Emmert-Streib
et al., 2020). Indeed, most applications of CNN for audio-
based classifications are converted into image classification tasks
by using visual representations of the audio features (e.g.,
Spectrograms) as the input information (e.g., Rubin et al., 2016;
Ghosal and Kolekar, 2018; Su et al., 2020). However, for a
meaningful comparison of the predictive ability across models,
we used the same input data as the other methods for training the
CNN, which converts it into a one-dimensional CNN (1D-CNN).

The first CNN component is the convolutional layer (or
layers) which can extract local spatial or temporal dependency
by performing operations between the input data and arrays of
a predefined size, called kernels or filters. Instead of applying
fully connected operations, a kernel operates locally and moves
forward in the input space until it reaches its limit, sliding
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FIGURE 2 | Schematic representation of the trained multiple-layer perceptron neural networks. Each layer receives the outputs from the previous layer and computes

weighted linear summations followed by some linear or nonlinear processing, X represents the audio-based features data, the W’s and b’s are the matrices or vectors

of weights and biases, ϕ are the neurons activation functions, nh1, nh2 and nh3 are the number of neurons in the hidden layers.

into it according to the stride size (str_s). A convolutional
layer is composed of k equally sized filters, which will learn
different patterns from the input data, for one-dimensional input
vectors, each filter has the dimension of 1 x k_s, where k_s is a
user predefined size. Convolutional operations for a 1D-CNN,
considering kernel size = 2 and stride = 1, can be represented
as follows:

C
[k]
i =

[

c
[k]
1 c

[k]
2 . . . c

[k]
j

]

C
[k]
i =

[

x1w
[k]
1 +x2w

[k]
2 x2w

[k]
1 +x3w

[k]
2 . . . xp−1w

[k]
1 +xpw

[k]
2

]

in which C
[k]
i represents the ith column vector (with i = 1, 2,

3, . . . N) for the kth filter in the convolutional layer, w[k]
1 and

w
[k]
2 are learnable parameters. The dimension of C[k]

i will depend

mainly on the kernel size and stride, with j = p−k_s+2pa
str_s +1, where

pa represents the number of zeros padded on each side of the
input vector. This is useful for preserving the input dimension.
The convolution operation outputs are generally mapped with
an activation function before passing to the next layer of the
network. Here, the ReLU function was used to map all filters in

the convolution layer, relu
(

c
[k]
j

)

= max(0, c[k ]
j ).

The activated filters in the convolution layer are further
processed by the pooling layers to reduce the dimension of the
inputs (with minimal loss of information) as well as introducing
slight invariance to small changes (Pérez-Enciso and Zingaretti,
2019; Emmert-Streib et al., 2020). The pooling operations extract
single information of successive groups of the filter outputs
by performing operations such as the mean, maximum, or
minimum. The main pooling layer hyperparameters are the size
of the pooling window (poo_s) and stride (poo_str) that were set
to be equal in the present study. For instance, a max-pooling

operation with pooling windows size equal to 2 will half the size
of the convolution layer outputs as follows:

P
[k]
i =

[

max
(

c
[k]
1 , c

[k]

2

)

max
(

c
[k]
3 , c

[k]

4

)

. . . max
(

c
[k]
j−1, c

[k]

j

)]

Lastly, for classifying the horses’ gait types, the k different
maps from the pooling layer (represented as a 3D tensor) are
flattened into one-dimensional vectors and used to feed the input
layer of an MLP, with the main elements as explained before.
The general architecture of the built 1D-CNN in this study is
depicted in Figure 3. The proposed 1D-CNN is composed of one
convolutional layer, one pooling layer, and a feedforward MLP
with two hidden layers and dropout regularization. The ReLU
and softmax activation functions were fixed for the hidden layers
and output layer, respectively.

As presented for the MLP, the CNN was optimized using
the GA considering different values for the number of filters
(8, 16, 32, 64), k_s (1, 2, 3, 4), str_s (1, 2, 3, 4), poo_s (1,
2, 3, 4), nh1 (256, 128, 64, 32, 16, 8, 4), nh2 (8, 16, 32, 64),
dropout rate (0.01, 0.1, 0.3, 0.5), optimization algorithm (sgd,
adam, nadam and, RMSprop), learning rate (0.001, 0.01, 0.05,
0.3), and batch size (8, 16, 32, 64). All models were run with
150 epochs for the backpropagation optimizer and, the best two
configurations (CNN1 and CNN2) were defined for each AFD
(MFCC, TEMP, and OS), final CNN architectures are shown in
Supplementary Table 1. CNN was implemented in the R version
of Keras and Tensorflow (Allaire and Chollet, 2017; Allaire and
Tang, 2018).

Training and Validation Processes
For the models fine-tuning, the training set was further
subdivided into two groups, containing∼ 2/3 and 1/3 of the total
number of data points. In the grid-search or GA procedures,
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FIGURE 3 | Schematic representation of the used 1D CNN general architecture. The input layer receives the audio-based features data that were extracted from raw

audio-signal; the convolutional layer is composed of k filters; each filter captures information in the input data by performing local operations involving a limited number

of input features depending on the filter size (filters of size = 2 are represented) and moves toward the input data space according to the stride size (stride size = 1 is

represented); the pooling layer operates by converting the outputs of the convolutional layer at some certain locations into a single value by taking its maximum

(max-pooling operation); the last layer is a fully-connected multilayer perceptron that receives flatten pooling layer outputs as input information.

the first group (∼ 67%) was used for training the different
methods considering different hyperparameter combinations,
whereas the classification accuracy was monitored in the
remaining group (∼33%). The best model hyperparameter
configuration was defined for each AFD considering the
classification accuracy in the monitoring group. After
setting the models hyperparameters, we performed a five-
fold cross-validation scheme considering 10 replicates in the
training data, to allow more realistic comparisons across the
different methods.

The final models were also fitted to all training data points
(N = 164) according to the AFD and used for classifying
independent validation data points (N = 32), which were
omitted during the fine-tuning and cross-validation processes.
This was done to prevent overfitting (a scenario where the model
predictions provide excellent accuracy in the training phase but
poorly perform when presented to new data, not previously
introduced to the modeling problem). The metrics used for
comparing the models’ performance were the classification
accuracy (ACC = number of correct classifications divided
by the total number of samples), specificity (SPEC = MB
correctly identified among all MB samples in the validation
set), sensitivity (SEN = MP correctly identified among all
MP samples in the validation set), and area under the curve
(AUC). Multiple pairwise Tukey tests were performed in the
R package for comparing the models’ performance within
each AFD.

RESULTS

Audio-Feature Descriptive Analysis
Waveforms and spectrograms of random audio data representing
each gait pattern (MB or MP) are depicted in Figure 4. The
sound waves can be rendered digitally by sampling the audio
signal amplitudes at discrete time intervals, this provides a
convenient way to visualize audio data over time. As highlighted
before, we set up a sampling rate of 20 kHz which means that
20,000 audio amplitude samples were taken per second. From
visual inspection, it can be seen important differences in the
dynamics of the audio signal over time according to the gait
type considered. The audio selected for MB presented wider
wavelengths with signals presenting relatively similar amplitude
values over time whereas the MP audio data presented shorter
wavelengths with several small peaks in-between waves with
higher amplitude values (Figure 4). The spectrograms, i.e., visual
representation of the sound frequencies spectrum over time (Rao,
2008), show that for the MB audio sample, the frequencies with
the highest energy (horizontal brightest region) lied into two
different ranges, at lowest and highest-frequency bands (from 0
to 2000Hz and, from 6000 to 9000Hz), without major changing
over time. For the MP audio sample, the frequencies with higher
energy were most present until 4000Hz, as suggested by visual
inspection of the spectrogram (Figure 4).

We further explored the acoustic differences between MP and
MB by extracting audio features in different domains. Except for
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FIGURE 4 | Waveforms (top) and spectrograms (bottom) for the audio data of random samples of MB (left) and MP (right) gaiting phenotypes in Brazilian horses.

Tempo, the feature values were computed by linear or non-linear
transformations either from the raw waveform or spectrogram
(for more details, the reader is referred to Rao, 2008 and McFee
et al., 2015). Some features (Onset Strength, Centroid, Spectral
Bandwidth, Roll-off, and MFCC[1]) are high dimensional and,
hence, were computed by averaging the features arrays obtained
for each training data sample.

The boxplots in Figure 5 show that the audio data for
MP presented a higher signal span, with mean values of
−0.553 and 0.544 for the signal minimum and maximum,
respectively, whereas values of −0.315 and 0.311 were observed
in the MB data (Table 1). The distribution of Roll-off (15%)
values was more asymmetrical for MB, also presenting more
outliers (Figure 5), which indicates that the minimum frequency
necessary for retaining an important amount of spectral
energy vary more than for MP audio data, as confirmed by
the relative standard deviations (Table 1). Logistic regression
analysis also pointed that MB audio-data presented on average,
lower RMS (p = 0.002), Averaged Onset Strength (p =
0.014) and MFCC[1] (p = 2.01 × 10−7), whereas the global
Tempo was higher (p = 0.006), as detailed in Table 1.
Averaged centroid values were higher for MP (Figure 5) but
not significant (Table 1), with mean values of 2,634 ± 611.5

and 2,938 ± 750.1Hz for the frequencies throughout the
time domain.

These single-valued audio features presented null to
substantial linear associations (Supplementary Figure 2), with
the highest positive correlation coefficient observed between the
signal maximum and RMS (0.86), ZCR and Centroid (0.91), and
Centroid and Spectral bandwidth (0.90). The highest negative
correlations were observed between the signal minimum and
other audio features such as signal maximum (−0.97), RMS
(−0.86), and MFCC[1] (−0.78). The averaged onset strength
presented a significant correlation with almost all other features
(except for ZCR), although with weak associations in all cases
(Supplementary Figure 2).

Based on the boxplots inspection and logistic regression
results we decided to explore fully the potential of MFCC,
Onset Strength, and Tempo audio features for classifying
the gait patterns since they provide a good description of
harmonic and/or rhythmic domains. The RMS and signal
minimum features were also statistically significant. However,
these metrics were not further explored because they are
less informative when compared to the chosen metrics. As
detailed in the Material and Methods section, instead of
using single-values for describing these features, the whole
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FIGURE 5 | Boxplots for features extracted from audio data of Brazilian horses gaiting according to two different gait types (marcha batida—MB and marcha

picada—MP). ZCR, Zero Crossing Rate; MFCC[1], First component of the Mel-frequency cepstrum coefficients. The Onset Strength, Centroid, Spectral Contrast,

Spectral Bandwidth, Roll-off, MFCC[1] were computed by averaging the values of the whole feature vector for each training data sample.

TABLE 1 | Mean ± standard deviation (SD) and relative standard deviation (RSD) for different features extracted from audio recordings of Brazilian horses gaiting

according to different patterns (Marcha Batida—MB and Marcha Picada—MP).

Feature Mean ± SD RSD (%) p

MB MP MB MP

Signal min −0.315 ± 0.29 −0.553 ± 0.26 93.63 47.99 0.133ns

Signal max 0.311 ± 0.29 0.544 ± 0.26 94.49 48.89 0.043*

RMS 0.012 ± 0.01 0.022 ± 0.01 103.59 60.64 0.002**

ZCR 0.195 ± 0.07 0.217 ± 0.08 38.26 37.86 0.308ns

Tempo (BPM) 126.2 ± 7.79 122.87 ± 9.64 6.18 7.84 0.006**

Onset Strength 0.148 ± 0.02 0.165 ± 0.03 16.73 15.78 0.014*

Centroid (Hz) 2634 ± 611.5 2938 ± 750.1 23.21 25.53 0.945ns

Spec_cont (Hz) 17.18 ± 0.72 16.95 ± 0.83 4.22 4.92 0.259ns

Spec_band (Hz) 2246 ± 310.7 2393 ± 380.7 13.83 15.91 0.085ns

Roll-off_85% (Hz) 7607 ± 1026.9 7886 ± 1077.4 13.50 13.66 0.130ns

Roll-off_15% (Hz) 209.28 ± 181.9 426.83 ± 229.9 86.93 53.85 0.667ns

MFCC[1] −403.2 ± 69.5 −297.2 ± 71.1 17.24 23.93 2.01e−07***

P-values were obtained by fitting a multiple logistic regression in the binary outcomes (MB = 0 and MP = 1).

RMS, Root mean square of the audio signal.

ZCR, Zero crossing rate.

Spec_cont, Spectral contrast.

Spec_band, Spectral bandwidth.

MFCC[1], First component of the Mel-frequency cepstral coefficients.
nsnon-significant.

*significant p-values at levels of 0.05 (*), 0.01 (**), and 0.001 (***).

real-valued features vector or some array reshaping was
used as input information in the methods (PCA, ML, and
DL). This was done for capturing time-specific variations in
the audio data. Visual representations of these features are
exemplified in Figure 6. Local Tempo information per time-
frame was encoded with the tempogram (TEMP) a two-
dimensional autocorrelation array of the onset strength envelope
(Figures 6E,F).

Principal Component Analysis
Scatterplots illustrating the first and second principal component
projections of the initial 12 single-value features set and the AFD

(MFCC, OS, TEMP) proposed for training the classifiers are
shown in Figure 7. The central aim here was to identify visually
how the gait types were related to each other according to the
different audio-derived data. Despite some clustering patterns
that could be noticed, the fuzziness in those linear projections is
noticeable given the high extent of overlapping among samples
from the two gait patterns (Figure 7). In the TEMP dataset,
more than two substructures are highlighted (Figure 7D) and
outliers can be found for all datasets (Figures 7A–D). Also,
the proportion of variance explained by the first and second
components was not substantial for MFCC (PC1 = 8.8% and
PC2= 5.4%) and OS (PC1= 7.1% and PC2= 6%), which differs
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FIGURE 6 | Visual representation for the Mel-frequency cepstrum coefficients (MFCC) spectrogram (A,B), Onset Strength envelope (C,D), and Tempogram (E,F)

extracted from audio recordings of Brazilian horses gaiting according to two gait types, marcha batida—MB (left) and marcha picada—MP (right).

from results for TEMP (PC1 = 65.5% and PC2 = 4.6%), more
specifically for the first PC (Figures 7B–D). The single-value
features set presented the second-highest percentage of variance
explained by the PC1 (36.9%) and the highest for the PC2
(27.3%), unfortunately, this was not reflected in a substantially
better clustering ability.

Models Performance Assessment With
Cross-Validation
Figure 8 shows the boxplots for the classification accuracy
obtained according to the AFD (MFCC, OS, or TEMP) and
classification algorithm (RF, SVM, MLP, or CNN), ACC values
were obtained in a five-fold cross-validation scheme with 10

random repetitions. The boxplots distributions and the small
presence of outliers confirm that the performance across folds
was stable in most cases, suggesting a good generalization
capability for yet-to-be-observed labels (Figure 8).WhenMFCC-
based features were used as input information, the average ACC
(standard deviation) were 0.846 (0.06), 0.806 (0.07), 0.831 (0.06),
0.922 (0.06), and 0.932 (0.06) for RF, SVM, MLP1, MLP2, CNN1,
and CNN2, respectively. The OS-developed models were the
most divergent in terms of average performance (Figure 8B),
with RF, SVM, MLP1, MLP2, CNN1, and CNN2 presenting ACC
values of 0.846 (0.06), 0.758 (0.07), 0.775 (0.06), 0.785 (0.07),
0.948 (0.04), and 0.917 (0.04), respectively. Overall, the TEMP
dataset provided the best classification accuracies for all models
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FIGURE 7 | Scatter plot for the first and second principal components (PC1 and PC2) of the initial 12 single-valued features set (A; please refer to Table 1 for further

details) and for the different audio feature datasets (B—Mel-frequency Cepstral Coefficients, C—Onset Strength and D—Tempogram) proposed for training the

classification models. All features were extracted from audio recordings of gait types (marcha batida—MB and marcha picada—MP) exhibited by Brazilian horses.

(Figure 8), with average ACC values of 0.937 (0.04), 0.952 (0.04),
0.946 (0.04), 0.936 (0.04), 0.947 (0.04), and 0.968 (0.03), following
the same order as presented before.

Since the labels’ frequency was approximately balanced in
the training dataset, the AUC values were rather similar to
that observed for ACC (Figure 9). CNN was the less AFD
sensitive method while SVM and MLP presented considerable
performance variation, depending on the AFD. Comparing
the classification algorithms within the different AFD, the
SVM had the lowest values for ACC and AUC in the OS,
whereas MLP performed worst in the TEMP dataset (Figures 8,
9). Pairwise Tukey tests confirmed that the proposed CNN
architectures presented clear superiority in the classification
accuracy over all other methods when using the MFCC or
OS datasets (p < 0.05), while the SVM was competitive with
the CNN’s second architecture (CNN2) in the TEMP dataset
(p = 0.14). Nonetheless, the boxplot distributions empirically
favor the CNN2 choice (Figure 8C). There were no major AUC
differences between the CNN’s first and second architectures
within each AFD (Figure 9). It is noteworthy that the proposed
architectures for the MLP and CNNmethods vary with the input
dataset. Supplementary Table 1 presents a full description of the
hyperparameters used in each neural network.

Models Performance in the Validation
Dataset
The classification performance of the models in the independent
data varied remarkably according to the AFD. Overall, the
results agreed well with that observed in the cross-validation

scheme, where the adoption of MFCC and TEMP as input
datasets provided the worst and best results in terms of model
classification accuracy (Figure 10). All methods (especially RF,
SVM and MLP) seemed to suffer from overfitting in the MFCC
dataset, mainly due to the high misclassification rate for MP as
evidenced by the sensitivity values (Figure 10A). Such a reduced
ability into classifying MP audios correctly was also noticed in
the OS dataset, but to a lower extent (Figure 10B). In turn, the
TEMP-based models had more stable performance, presenting
balanced results between SPEC and SEN (Figure 10C), with the
best overall predictive performance observed in the second CNN
architecture (ACC= 0.97).

Receiver operating characteristic (ROC) curves along with
their respective area under the ROC curve (AUC) for the
classifications in the independent data according to the AFD
and models are shown in Figure 11. The best AUC values were
observed for RF (0.963) and CNN2 (0.961) in the OS and
TEMP features data, respectively. ROC curves reinforce the good
performance of CNN at distinguishing correctly between MB
and MP in different thresholds, generally with curves closer to
the top left corner, which indicates a better overall performance.
The MFCC-based SVM model presented the worst specificity-
sensitivity trade-off, performing lower even than a random guess
for some thresholds (Figure 11).

DISCUSSION

To the best of our knowledge, this is the first effort of exploring
audio signal processing techniques using gaited horse datasets.
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FIGURE 8 | Accuracy values obtained with different algorithms (RF, Random Forest; SVM, Support Vector Machine; MLP, Multilayer Perceptron Neural Networks;

CNN, Convolutional Neural Networks) for the classification of gait types (marcha batida—MB or marcha picada—MP) in Brazilian horses according to the

audio-feature dataset used as input information (A—Mel-frequency Cepstral Coefficients, B—Onset Strength and C—Tempogram). Classification accuracy was

assessed using a five-fold cross-validation scheme with 10 random repetitions. MLP1, MLP2, CNN1, and CNN2 refer to the different neural network architectures

used for each audio-feature dataset, as fully described in Supplementary Table 1.

Undoubtedly, the sound analysis presents potential value as an
emerging technology in horse production systems such as for
the high-throughput phenotyping in horse breeding schemes.
Sound-enabled classification of gait patterns could be used as
a complementary tool to the subjective visual assessment by
breeders associations during the registration process or for
automated gait type labeling in official webpages. The results
obtained in this study are encouraging, as a good classification
performance is expected, provided that suitable AFD and
classification algorithms are employed (Figures 8–11). More
importantly, such a high classification performance validates ASP
as a promising approach to be explored in the gaited horse
industry. The next steps should involve field-collected audio data
using sensors technology to provide relevant information for
developing novel complex traits describing inherent variation
among animals within and between different gait patterns.

Using audio-generated data in phenotyping routines provides
an interesting opportunity to understand the different gait
phenotypes in greater detail. For instance, the feature tempo
(measured in beats per minute) can be interpreted as a general
indicator of the horse’s gait speed and rhythm whereas the
stepping rate for any particular time interval can be characterized
using onset detection algorithms. Hence, the gaiting pattern
prevalence for different time intervals could be assessed through
audio-features generated traits. Dissociated four-beat gaits
(including MB and MP) and some of their attributes, such as the
capability to pace exhibit moderate to high heritability (Rustin
et al., 2009; Albertsdóttir et al., 2011; Becker et al., 2011; Bussiman
et al., 2020). It seems reasonable, therefore, to expect gait-ability

correlated traits developed with ASP to show a remarkable
response to selection.

A single nucleotide mutation in the double-sex and mab-3-
related transcription factor 3 (DMRT3) gene has been described
as a causal region with a major effect on the horses’ ability
to express a natural four-beat ambling gait (Andersson et al.,
2012; Kristjansson et al., 2014; Promerová et al., 2014; Fonseca
et al., 2017). However, the role of the “Gait keeper” mutant
allele in the expression of the MB and MP gaits remains
uncertain. For instance, in the Mangalarga Marchador breed,
the animals exhibiting the MB phenotype generally carry only
the homozygous genotype for the wild allele (CC) and still can
be classified as gaited horses (Patterson et al., 2015). On the
other hand, in the Campolina breed, animals expressing either
the MB or MP gait types can carry the mutant allele in the
heterozygotic or double-recessive form (Manso Filho et al., 2015).
More recently, some studies have been pointing that the genetic
mechanisms underlying those gait types might be polygenic
(Fonseca et al., 2017; Bussiman et al., 2019).

Since gait phenotyping generally demands trained personnel,
in Brazil, most of the research in gait genetics has been performed
with a very limited sample size, which reduces the statistical
power to detect important regions in genome-wide studies
(Fonseca et al., 2017; Bussiman et al., 2019). Furthermore, the
MB andMP gaits are generally analyzed jointly as a dichotomous
trait, impairing a detailed prospection of the genetic mechanisms
underlying each gait type. These drawbacks contribute to the
lack of conclusive results on the genetic architecture for these
two distinct phenotypes expressed by Brazilian gaited horses.
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FIGURE 9 | Area under the curve (AUC) obtained with different algorithms (RF, Random Forest; SVM, Support Vector Machine; MLP, Multilayer Perceptron Neural

Networks; CNN, Convolutional Neural Networks) for the classification of gait types (marcha batida and marcha picada) in Brazilian horses according to the

audio-feature dataset used as input information (MFCC, Mel-frequency Cepstral Coefficients; OS, Onset Strength; TEMP, Tempogram). AUC values were obtained in a

five-fold cross-validation scheme with 10 random repetitions. MLP1, MLP2, CNN1, and CNN2 refer to the different neural network architectures used for each

audio-feature dataset, as fully described in Supplementary Table 1.

The approach described in this study could help to overcome
the issues aforementioned by allowing automated phenotyping
of the gait types (in the standard binary fashion) and the
development of novel complex phenotypes that would have
continuous distribution within each gait group. We believe,
therefore, that ASP can be a valuable tool for future research into
the genetics of gait and horse breeding.

Horse gait classification is commonly based on the visual
assessment of horse movements. There are several intermediate
gait types, differing in terms of support proportions, step
frequency, speed, and metabolic cost (Nicodemus and Clayton,
2003; Wanderley et al., 2010). The visual evaluation demands
a trained evaluator because the person who gives the scores or
measures may have a high impact on the trait (Rustin et al.,
2009; Vicente et al., 2014), and it also depends largely on
subjectivism naturally occurred when different people need to
evaluate a specific feature. To overcome this issue, kinematic
analyses may be a solution (Valera et al., 2008; Solé et al.,
2014; Clayton and Hobbs, 2019), since they are accurate and
have high reproducibility. At the same time, kinematic analysis
generally requires the adoption of specific software and high-
speed cameras, which increases its cost and impairs large-scale
phenotyping. Body sensors technologies such as accelerometry
(for e.g., Robilliard et al., 2007) and inertial measurement units

(Serra Bragança et al., 2020) also have been developed to allow
accurate and fast phenotyping, in the latter case, integrating
machine learning algorithms for improved classification. The
use of audio-recording data can be viewed as a low-cost
complementary approach for improving both accuracy and
time of horse gait phenotyping, as it can be done in several
conditions (different locals and equestrian arenas) and with
common resources (such as our nowadays smartphones). These
appealing attributes would allow a faster gait type determination,
favoring the formation of robust datasets, and also could provide
novel temporally distributed continuous phenotypes.

Furthermore, recent applications of ASP technology in
precision livestock farming provide evidence of its usefulness
in a wide range of problems related to welfare, health, and
feeding management. For instance, cough and sneeze audio data
can provide information for recognizing in advance respiratory
diseases in poultry, pig, and cattle, with precision scores
(percentage of samples predicted to be coughing that are true
coughing) ranging between 88.4 and 97.6% in the best scenarios
(Carpentier et al., 2018, 2019; Yin et al., 2020). The sound
analysis also has been used for identifying heat and management
related distress conditions using pigs’ vocalization generated
data, achieving accuracies over 80% (Cordeiro et al., 2013,
2018; Ferrari et al., 2013) and for acoustic monitoring of intake
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FIGURE 10 | Accuracy, specificity, and sensitivity values for the classification of Brazilian horses gait types (MB and MP) in an independent dataset (N = 32) using

machine learning algorithms (RF, Random Forest; SVM, Support Vector Machine; MLP, Multilayer Perceptron Neural Networks; CNN, Convolutional Neural Networks)

trained with different feature datasets extracted from audio data (A—Mel-frequency Cepstral Coefficients, B—Onset Strength and C—Tempogram). MLP1, MLP2,

CNN1, and CNN2 refer to the different neural network architectures used for each audio-feature dataset (as fully presented in Supplementary Table 1).

FIGURE 11 | Receiver operating characteristic (ROC) curves and respective area under the ROC curves (AUC) for the classification of Brazilian horses gait types (MB

or MP) obtained in an independent dataset (N = 32) according to the algorithm (RF, Random Forest; SVM, Support Vector Machine; MLP, Multilayer Perceptron Neural

Networks; CNN, Convolutional Neural Networks) and the audio-feature dataset (Left—Mel-frequency Cepstral Coefficients, Middle—Onset Strength, and

Right—Tempogram). The diagonal dashed line represents a random guess. MLP1, MLP2, CNN1, and CNN2 refer to the different neural network architectures used

for each audio-feature dataset (as fully presented in Supplementary Table 1).

behavior in broilers, cattle, and sheep, also delivering reliable
predictions (Clapham et al., 2011; Galli et al., 2011; Aydin
et al., 2014; Aydin and Berckmans, 2016; Chelotti et al., 2016),
as evidenced by the good determination coefficients achieved
in those studies (higher than 0.89 and up to 0.995). These

results reinforce thereof that the possibilities of exploring sound-
generated data in the animal science discipline are vast.

In the waveform representation, the number of amplitude
values becomes as large as the SR and audio length increase,
easily surpassing dozens of thousands of sampled points; hence,
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raw audio signal data are generally not suited for classification
tasks. In this study, a set of 12 single-valued features was initially
used for summarizing the audio data in the temporal, frequency,
or rhythmic domains. This preliminary analysis has pointed
to MFCC, Onset Strength, and Tempo as the most relevant
metrics for describing the gait patterns in the studied population.
Interestingly, some biomechanical characteristics of each gait
type as the step frequencies (higher in MP) and speed (higher
in MB) (Wanderley et al., 2010) can be directly related to the
higher average onset strength (implying the detection of more
sound onsets) and global tempo found for themarcha picada and
marcha batida gait patterns, respectively. Therefore, following
the preliminary multiple regression results and their expected
biological meaning, three audio-feature datasets (MFCC, OS, and
TEMP) based on these metrics were used as input variables for
different methods (PCA, ML, and DL).

In the PCA, no clear clusters for the gait patterns were found,
as noticed by the fuzziness present in the projection of the first
and second principal components for all datasets. Also, in some
cases, more than two clusters were suggested and a high presence
of outliers was observed in all scenarios. We hypothesize that it
could be due to data-specific differences such as the gait speed,
horses’ aerobic capacity, road condition (paved or unpaved),
horseshoes types, rider skills, and the horse training intensity,
besides the perceived heterogeneity in the audio quality; however,
the lack of details in the audio-data annotation prevented us from
investigating it closer.

Possibly, the underlying structure of the different AFD is
not linear or the target patterns are highly correlated which
would impair the PCA clustering performance (Lever et al.,
2017). To address these challenges, different machine learning
(RF, SVM) and deep learning (MLP and CNN) algorithms were
compared according to their classification performance. Overall,
CNN presented the best classification performance among all
methods. In audio-generated data, the sound events tend to
be similar in near-time intervals, hence, features describing
the audio dynamics over a given period present strong time-
dependent collinearity. This may explain the CNN superiority
since this method is designed to take into account both local
dependence and nonlinear relationships present in the data
(Emmert-Streib et al., 2020). Our results have shown that
the DL techniques, particularly the CNN method, provided a
highly accurate and stable classification for yet-to-be observed
labels in both cross-validation and independent validation
schemes, although the best network architecture was highly
AFD-dependent (Supplementary Table 1). Finding an optimal
configuration for DL algorithms can be challenging because
depending on the hyperparameters tested (e.g., number of
layers, number of neurons, activation functions, kernel and
stride sizes, and learning rate) thousands of combinations need
to be assessed and different classification performances can
be achieved. Here we used a genetic algorithm for stochastic
optimization of both MLP and CNN methods. Evolutionary
algorithms such as GA are a well-documented alternative to
solve complex optimization problems in a faster manner than
an exhaustive grid-search procedure (Wicaksono and Supianto,
2018; Han et al., 2020) by selecting, combining, and mutating

the model parameters sequentially, thus, mimicking mechanisms
that resemble biological evolution.

Another methodological challenge in this study was the risk
of overfitting, mainly due to the small amount of available data
for training the classification models. Still, good classification
performance was observed in almost all scenarios, considering
the different AFD and models. This is mostly because of
the very well-behaved nature of the problem, with only two
balanced classes, which simplifies the decision boundary to be
optimized. This binary classification task was considered because
the largest Brazilian gaited horses breed associations require a
visual inspection during the registration process to ensure that
horses exhibit either the MB or MP phenotype. Accordingly,
this is a real-world problem, with practical implications for
the Brazilian gaited horse industry. Certainly, the issue with
overfitting would be more prominent with a larger number of
horse gait classes, considering the same amount of training data.
As already stressed, this study provides a preliminary exploration
of audio-signal processing for gait characterization. Hence, it is
important to validate the proposed approach in the simplest case
before it can be extended to multiclass classification tasks or even
more complex cases, which can be done straightforwardly.

According to our results, the MFCC dataset had the worst
performance at explaining the differences between the horses’
gait patterns. Partially, this can be due to the higher number
of variables included in this AFD (p = 314). Indeed, the ratio
between the number of available observations and features
influences the risk of overfitting. Notwithstanding, one must
highlight that all classification methods applied in our study have
well-known mechanisms to prevent overfitting. For instance, the
C hyperparameter in the SVM regulates the trade-off between
model complexity and training error variance; in the RF, there is
variable selection during the growing process of the classification
trees. For the deep learning models, two regularization strategies
were employed during the training phase, i.e., weight decay and
dropout. Besides, previous studies point that the ML methods
can be useful even when the number of explanatory variables
(p) vastly exceeds the number of available phenotypes (n), as
demonstrated in the genome-enabled prediction of complex
traits (Lopes et al., 2020; Bargelloni et al., 2021). Hence, the higher
number of explanatory variables itself does not fully explain the
lower classification performance of the models feed with the
MFCC data. Apparently, there are also acoustic components
intrinsic to this audio feature affecting its ability to generalize
effectively the gait types.

MFCCs are intended to represent human spectral perception
whichmakes them useful in different ASP applications, including
speech recognition, environmental sound differentiation, music
genre classification, and abnormal heart activity detection (On
et al., 2006; Piczak, 2015; Rubin et al., 2016; Ghosal and Kolekar,
2018; Nogueira et al., 2019). However, differently from animal
vocalizations, the sound events describing MB and MP gait
patterns are less sensitive to changes in the audio harmonic
component. On the other hand, the horses gaiting activity give
rise to important differences in the audio percussive patterns.

The Brazilian gaited horse breeds present a natural gait
with symmetrical and four-beat pace, which differs in two
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main patterns, the MB is mainly characterized by the frequent
diagonal support in the leg movements, more frequent than the
triple support, whereas the MP presents leg movements in a
lateral sequence, frequently alternating with triple hoof support
(Nicodemus and Clayton, 2003). Since gait phenotypes are highly
pace-dependent, the higher classification accuracy and model
stability achieved when using the TEMP dataset as input variables
is justified as it provides a rhythmic rather than harmonic
description of the audio data. Sound onset detection algorithms
also seem to have an important role in describing the horses
stepping rate, as footfalls laterally coupled and without loss of
triple-limb support are expected to generate a higher number of
sound events.

The results reported are promising, nonetheless, the current
study also had some limitations such as the relatively small
sample size. Also, our data was not generated under experimental
conditions, implying that the audio recording process was rather
heterogeneous, resulting in low audio quality for some files,
and thus, very short audio segmentations (4 s) were studied.
As evidenced here, those issues had no major implications on
the classification accuracy of the gait patterns. On the other
hand, a much higher data volume, with longer recording periods
and in standardized conditions may be needed to characterize
the gait phenotypes in greater detail, as some audio features
may be sensitive to these factors to some extent. Differences
among breeds, horse training intensity, and activity purposes
(e.g., official competitions, livestock handling and, leisure ride)
are some of the technical factors that also must be taken
into account. Thus, future researches exploring those gaps are
strongly encouraged.

CONCLUSIONS

This study provides a primer on the suitability of applying
audio signal processing technology in the gaited horse industry.
According to the results observed, exploring audio-generated
data for describing gait phenotypes in Brazilian horses is
a promising approach as the two gait types studied were
correctly distinguished in the presented approach. The highest
classification performance was achieved by combining deep

learning techniques (Convolutional Neural Networks) and
rhythmic-descriptive audio feature datasets. One must highlight
that the results found in this study are preliminary, hence, future
research using field-collected information must be assessed
to further elucidate some practical concerns, including the
validation of novel complex phenotypes derived from audio data.
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