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Classification of imbalanced datasets of animal behavior has been one of the top

challenges in the field of animal science. An imbalanced dataset will lead many

classification algorithms to being less effective and result in a higher misclassification

rate for the minority classes. The aim of this study was to assess a method

for addressing the problem of imbalanced datasets of pigs’ behavior by using an

over-sampling method, namely Borderline-SMOTE. The pigs’ activity was measured

using a triaxial accelerometer, which was mounted on the back of the pigs. Wavelet

filtering and Borderline-SMOTE were both applied as methods to pre-process the

dataset. A multilayer feed-forward neural network was trained and validated with 21

input features to classify four pig activities: lying, standing, walking, and exploring.

The results showed that wavelet filtering and Borderline-SMOTE both lead to

improved performance. Furthermore, Borderline-SMOTE yielded greater improvements

in classification performance than an alternative method for balancing the training data,

namely random under-sampling, which is commonly used in animal science research.

However, the overall performance was not adequate to satisfy the research needs in this

field and to address the common but urgent problem of imbalanced behavior dataset.

Keywords: behavioral classification, Borderline-SMOTE, data augmentation, fattening pigs, imbalanced dataset,

Sus scrofa domesticus, triaxial accelerometer

INTRODUCTION

Behavior is one of the most used and sensitive indicators which can reflect livestock’s physical,
physiological, and health status, as well as their reactions to the environment. Being able to
acquire reliable information on animal behavior is therefore of great importance for decision
making on livestock farms and for the improvement of animal welfare (Larsen et al., 2019a).
Tri-axial accelerometers, fixed to the bodies of animals, have previously been applied for the
collection of data used for animal behavior classification. As an example, Cornou et al. (2011) fitted
accelerometers to the necks of sows to monitor the sows’ lying patterns by distinguishing between
when the sows were lying laterally on one side, on the other side, and sternally.
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For the raw accelerometer data to become useful, it must
undergo various steps of data preparations. One such step is often
de-noising; the random noise generated from the physiological
jitter of the animal, or the device being randomly shaken or
impacted, will be added to the systematic signals that correspond
to the various behaviors, thus reducing the signal-to-noise ratio
of the raw data, and thus affecting the accuracy of the behavior
classification typically performed in later steps.

An additional data preparation step is sometimes to balance
the dataset. This problem of imbalanced dataset often occurs in
animal behavior classification, since different behavioral states do
not appear equally frequently (Homburger et al., 2014). For pigs
specifically, they spend most of their time lying, while they spend
less time standing or exploring, and they spend the least amount
time walking (Li, 2014). In recent decades, many solutions have
been proposed to deal with this problem. A commonly adopted
strategy for imbalanced data is one of two broad re-sampling
strategies: the first re-sampling strategy is to remove parts of the
majority class to bring it closer to the number of observations in
the minority class, i.e., under-sampling. The second is to carry
out Bootstrap sampling for the minority class, thus bringing
the size of the minority class closer to that of the majority
class, usually by repeating randomly selected observations, i.e.,
over-sampling. Under-sampling has the drawback that when
observations are removed from the majority class, potentially
useful information is lost. The drawback of the commonly used
simple over-sampling is that a large number of identical samples
will be generated, which will cause the model to over-fit to those
repeated observations (Barwick, 2020). In the field of livestock
science, most researchers who address the problem of imbalanced
data sets do so by applying the under-sampling solution (e.g.,
Smith et al., 2016; Abell et al., 2017; Sakai et al., 2019; Fogarty
et al., 2020). Many researchers in this field, however, do not
address this issue at all (e.g., Barwick, 2020), which suggests that
this is an issue in need of more attention within the animal
science community.

In other areas of research, different strategies have been
developed to tackle the problem of imbalanced data sets. As
an example, over-sampling with replacement was most used in
the beginning, but related research by Japkowicz (2000) noted
that it didn’t significantly improve the identification of minority
class. Then, inspired by a technique that proved successful in
handwritten character recognition, a heuristic over-sampling
algorithm called Synthetic Minority Over-sampling Technique
(SMOTE) was proposed by Nitesh V. Chawla. This method
generated new synthetic examples along the line between the
minority examples and their selected nearest neighbors (Chawla
et al., 2002). The experiments were initially conducted on a
mammography dataset with 10,923 examples in themajority class
and 260 examples in the minority class, and was finally tested
on nine different datasets, with varying degrees of imbalance to
verify its superiority. An extension of SMOTE is the Borderline-
SMOTE, which was first introduced by Han et al. (2005). With
this method, only observations of the minority class on the
borderline between the minority and majority class are over-
sampled, instead of all minority observations. Hui Han et al.
reasoned that the minority class examples on and near the

borderline to the majority class are more likely to be misclassified
than the ones far from the borderline, and thus more important
for classification.

Furthermore, to classify pigs’ behaviors, an appropriate
classification method is also of great significance. A fully
connected feed-forward artificial neural network (ANN) has
many advantages over traditional statistical methods for complex
model fitting (Gardner and Dorling, 1998), as it is a universal
function approximator, which can learn any arbitrary functional
relationship between inputs and outputs. For this reason, fully
connected feed-forward ANNs were applied in this study.

With this study, we had three aims: (1) to assess the value
of de-noising the accelerometer data prior to training the ANN,
(2) to assess the value of balancing the classes in the training
data using Borderline-SMOTE before training the ANN, and (3)
to compare the utility of Borderline-SMOTE to that of random
under-sampling before training the ANN. The value of the pre-
processing steps was assessed in terms of the performance of the
trained ANN, when it was applied to an unseen test set.

METHODS

Data Source
The experiment was carried out on a pig farm in Hohhot, Inner
Mongolia, China (40◦40′26”N, 111◦21′46”E) from 8:00 to 18:00
every day between March 10th and April 17th, 2019. Three pigs at
different fattening stages (initial weights of 35.8, 62.3, and 92.4 kg,
respectively, referred to as pigs A, B, and C in the following
sections) were monitored.

The pigs’ activities were measured using a triaxial
accelerometer with sampling frequency of 20Hz (SW-J4601V,
China), powered with 5V lithium-ion batteries and controlled
by CC2530F256 controller and ADXL325 chip. The triaxial
accelerometer was placed in a waterproof box and tied to
the back of the pigs. The installation direction of the triaxial
accelerometer is shown in Figure 1.

The pigs’ behavior was video-recorded throughout the
experiment, and the camera was time-synchronized to the
computer used to initialize the accelerometers. For this study, we
focused on four behaviors of the pigs: lying, standing, walking,
and exploring. These are considered to be themain daily activities
of pigs, and monitoring these behaviors can provide useful
information for abnormal behavior warning and environment
control. A video with examples of these behaviors for each of
the pigs can be seen in Supplementary Video 1. The definitions
and descriptions of these behavioral characteristics of the pigs are
summarized in Supplementary Table 1.

Data Pre-processing
Data pre-processing was done using both R (R Core Team, 2013)
andMATLAB (2017).Modeling and statistical analysis were done
in R. Prior to all other pre-processing, the raw data were averaged
per second.

Wavelet Filtering
Wavelet filtering was employed in this study to de-noise
the original signal due to its multi-resolution analysis and

Frontiers in Animal Science | www.frontiersin.org 2 May 2021 | Volume 2 | Article 666855

https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/animal-science#articles


Jin et al. Data Augmentation for Behavior Classification

FIGURE 1 | Direction of the back-mounted triaxial accelerometer. The X-axis

pointed from the left to the right side of the pig’s body, the Y-axis pointed from

the tail to the head of the pig, and the Z-axis was perpendicular to the XY

plane.

self-similarity, which can effectively extract time-frequency
characteristics of a signal by using wide and narrow windows
in the low-frequency and high-frequency parts of the signal,
respectively (Loyola-González et al., 2016). Threshold de-noising
can be done using the wavelet toolbox and the functionWden in
Matlab. For this study, the traditional soft threshold de-nosing
with Db4 wavelet basis, Rigrsure threshold rule and six-layer
decomposition was chosen based on initial tests.

Transformation by Summary Statistics
Six summary statistics (mean, median, minimum, maximum, the
first quartile, and the third quartile) were calculated for rolling
windows of the (denoised) acceleration data in the X, Y, and Z
directions. Combined with the (denoised) X, Y, and Z values,
these summary statistics formed a new 21-dimensional dataset.
Each of the 21 variables were normalized to a range of [−1, 1]
before being used in the later model building stage. Different
lengths for the rolling time window (3, 4, and 5 s) were compared
to test whether time window length influenced the results of the
ANN classification of pigs’ behavior. The decision to compare
these three window lengths were based on the distribution of
the number of consecutive seconds, which each pig spend on
each type of activity. These distributions can be seen in the
Supplementary Table 2.

Over-Sampling
The data used in this study were heavily imbalanced. Borderline-
SMOTE (Han et al., 2005) was adopted as the method to augment
our dataset by artificially creating new data points for the each of
the minority classes by interpolating them between the real data
points which exists near the border to each of the other three
classes. The new samples were generated without affecting the
majority class. In general, the examples on the borderline and the

ones nearby are more apt to be misclassified than the ones far
from the borderline, and thus more important for classification.
Borderline-SMOTE constructs a set of border minority examples
known as DANGER. Then, it applies SMOTE for each instance
of the DANGER set. For this, we used the function BLSMOTE
from the R package smotefamily. The purpose of this data
augmentation was to be better able to distinguish all the different
classes from each other. To this end, Borderline SMOTE-1 was
iteratively applied to each minority class, in a way where the
borders to all other classes were strengthened. This resulted in a
new data set, where the previous minority classes all significantly
outnumbered the previously largest majority class. This data set
was rebalanced by selecting all of the original data points, along
with a random sample of artificial data points from each class, so
that all classes in the final data set were represented by the same
total number of data points as was in the original overall majority
class. When applying the algorithm, the number of nearest
neighbors to be considered while synthesizing new observations
(K) was set to 3. The parameter “dupSize” was set to 0, which
indicates that the algorithm should stop creating new minority
observations, when the number of minority observations was
equal to the number of observations in the majority class that was
used for a given iteration of the data augmentation.

Under-Sampling
As under-sampling is the most commonly used method of
balancing data sets in animal science, it was decided to
also include under-sampling in this study for the purpose of
comparing it to our selected method of over-sampling.

Under-sampling was repeated 20 times, leading to 20 distinct
under-sampled data set. For each under-sampled set, a random
sample with a size equal to the size of the smallest minority class
was taken from each of the four classes without replacement.
The resulting 20 trained ANNs would then be applied to the
relevant (unbalanced) test set, yielding 20 performance estimates,
which were used to estimate the with corresponding 95%
confidence intervals (CI). The final estimates of the under-
sampled performance and the corresponding 95% CIs were made
by taking the simple mean of the 20 different estimates per test
set. These final 95% CIs were then used when comparing the
performances with those resulting from training the ANNs on
over-sampled and unbalanced data sets.

Artificial Neural Network Architecture
Fully connected feed-forward ANNs were trained using
the back-propagation algorithm, using the function
mx.model.FeedForward.create from R packagemxnet.

The ANNs trained in this study consisted of an input layer,
two hidden layers and an output layer. The number of neurons
in the input layer was 21. We decided to use two hidden layers
in the network in our study, as this structure is known to be
more efficient than ANNs with only one hidden layer in terms of
the number of parameters needed for the training (Tamura and
Tateishi, 1997).

Rectified linear units (ReLU) was used as the activation
function in the hidden layers, while the softmax function was
used as the activation function in the output layer. The output
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layer had four nodes, corresponding to the four classes of
behavior, which were considered in this study. The softmax
functions adjusts the values of the four outputs, so that they
are all between 0 and 1 and always sum to 1. Thus, each of the
four output values can be interpreted as the probability of the
respective behavior. The final prediction for a given observation
was the behavior class with the highest probability value.

We optimized the number of nodes in the two hidden
layers by following the example of Larsen et al. (2019b). The
best combination for each ANN for was chosen based on the
highest accuracy.

Model Training and Validation
In this study, per-pig cross validation was used to train and
validate the models. The data relating to two pigs were iteratively
used to train a model, which was then tested on unbalanced data
from the remaining pig.

The main performance metric was the major mean accuracy;
for each behavior class, the per-class accuracy was calculated
as the fraction of observed instances of that class, which was
correctly predicted to be of that class. The major mean accuracy
was then calculated as the simple mean of the four per-class
accuracies. Additionally, the 95% CI for the major mean accuracy
was estimated via bootstrapping (Thomas and Efron, 1996).
The performances of two trained ANNs were considered to
be significantly different from each other, if the major mean
accuracy of one ANN was not contained within the 95% CI of
the other, and vice versa.

When over-sampled or under-sampled data were used, this
was only the case during the training of the ANN. The
trained ANNs would always only be tested on the original
unbalanced data.

RESULTS

Selection of Window Length
After comparison of the results of different window lengths (3,
4, and 5 s), it can be seen in the Supplementary Table 3 that
better results, measured in terms of major mean accuracy, can
be achieved when using a window length of 5 s.

Optimal Architecture of the ANN
Different combinations of each ANN and the corresponding
performances can be seen in the Supplementary Table 4.
The optimized architecture of the ANN is listed in
Supplementary Table 5.

Data Distribution
The original imbalanced data statistics of all pigs can be seen
in the Supplementary Table 6. For illustrative purposes, the
original 1-day data of each pig and the balanced dataset after data
augmentation of each pig are presented as Figure 2.

Per-Pig Cross-Validation Performance of
the ANN
Table 1 shows the results of behavior classification using both
Wavelet filtering and under-sampling, as well as the results of

behavior classification depending on whether the training data
were augmented using Borderline-SMOTE or not, and whether
the training and test data were de-noised using wavelet filtering
as part of the data pre-processing. Figure 3 shows both the
normalized confusion matrices of the per-pig cross-validation
with the under-sampled data (Figure 3A), and the normalized
confusion matrices for the per-pig cross-validation, when both
Wavelet filtering and data augmentation with BL-SMOTE was
performed as part of the data pre-processing (Figure 3B).

DISCUSSION

The problem of imbalanced data is, of course, not unique to
the behavior of pigs, but is also seen in the behavior of cows
(Homburger et al., 2014), calves (Abell et al., 2017), sheep
(Fogarty et al., 2020), and goats (Sakai et al., 2019). Barwick
(2020) used an imbalanced dataset directly as the training set
to identify sheep activity from triaxial acceleration signals. Their
results showed that lying behavior was predicted very poorly
from the collar data with a sensitivity of 6%, since limited lying
behavior was observed. The rest of the above listed studies all
adopted random under-sampling to balance the training dataset
of the animals’ behavior. None of the studies on classification of
animal behavior, which we were able to find, used over-sampling
(random or otherwise).

The reason why under-sampling is often preferred to over-
sampling is likely related to the risk that the simplest form of
oversampling, i.e., over-sampling by simple random resampling,
could lead to over-fitting. This is because the simple random
resampling makes multiple exact copies of the minority class
records (Mahani and Riad Baba Ali, 2019). However, because
of the degree to which our data are imbalanced, as illustrated
in Figure 2, using under-sampling meant removing more than
10,000 observations of the largest majority class (i.e., lying), in
order for it to reach the same size as the smallest minority class
(i.e., walking). The expected effect of this would be the loss of a
great deal of information, which could otherwise prove useful for
the classification.

In our study, a comparison between the performances
achieved when the training data were balanced using under-
sampling with the performances achieved without balancing the
training data (Table 1), reveals that under-sampling improves
the mean accuracies from 0.320 to 0.344 for pig A, from 0.240
to 0.301 for pig B, reduces from 0.292 to 0.252 for pig C, and
the overall major mean accuracy improves from 0.284 to 0.299.
These accuracies were all statistically significant based on their
respective 95% CI. This suggests that balancing the training data
by under-sampling is better than not balancing the training data
at all. This is contrary to the findings of Sakai et al. (2019),
who showed that their overall accuracy was reduced from 87 to
84% when training their model on under-sampled balanced data,
compared to training on imbalanced data.

This being said, the improvements from under-sampling
seen in our study are arguably very moderate from a practical
perspective. Furthermore, even though under-sampling generally
increased the mean per-class accuracies of the three minority
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FIGURE 2 | Proportion of original four behaviors of each pig (A) and proportion of four behaviors of each pig after data augmentation (B).

TABLE 1 | Classification results by using wavelet filtering, under-sampling, and over-sampling with BL-SMOTE on the training data.

Balancing method Wavelet Numbers of

each class in

training seta

Training set Test set ACC-L ACC-S ACC-W ACC-E ACC-Major mean

(95% CI)

None Yes 115,304, 3,275,

3,028, 11,442

B, C A 0.789 0.180 0.008 0.304 0.320 (0.314–0.326)

97,876, 4,839,

3,258, 15,855

A, C B 0.837 0.029 0.019 0.074 0.240 (0.237–0.243)

95,918, 5,530,

3,262, 15,727

A, B C 0.918 0.101 0.019 0.128 0.292 (0.288–0.296)

Major mean 0.848 0.103 0.015 0.169 0.284 (0.280–0.288)

Under-sampling Yes 3,028 × 4 B, C A 0.744 0.246 0.147 0.239 0.344 (0.339–0.349)

3,258 × 4 A, C B 0.696 0.082 0.122 0.306 0.301 (0.295–0.307)

3,262 × 4 A, B C 0.462 0.132 0.084 0.330 0.252 (0.245–0.259)

Major mean 0.634 0.153 0.118 0.292 0.299 (0.293–0.305)

Borderline-SMOTE Yes 115,304 × 4 B, C A 0.757 0.530 0.536 0.746 0.642 (0.634–0.650)

97,876 × 4 A, C B 0.591 0.275 0.260 0.094 0.305 (0.298–0.312)

95,918 × 4 A, B C 0.884 0.536 0.573 0.867 0.715 (0.705–0.725)

Major mean 0.744 0.447 0.456 0.569 0.554 (0.546–0.562)

Borderline-SMOTE No 115,304 × 4 B, C A 0.764 0.588 0.514 0.713 0.645 (0.638–0.652)

97,876 × 4 A, C B 0.618 0.059 0.088 0.213 0.245 (0.240–0.250)

95,918 × 4 A, B C 0.801 0.692 0.444 0.748 0.671 (0.661–0.681)

Major mean 0.728 0.446 0.349 0.558 0.520 (0.513–0.528)

aFor the unbalanced data sets, the number of observations of each class is listed in the following order: Lying, Standing, Walking, Exploring. For the balanced data sets, the number of

observations of each class is identical within a given training set. Bold values are the overall major mean accuracies, each of them can be calculated by averaging the corresponding

major mean accuracy (three rows above each of them).

categories (walking, standing, and exploring), the performance
of lying was generally decreased. This is in concordance with
the findings of Sakai et al. (2019), who showed that the F1
scores of the minority class improved only slightly from 58 to
59 when using under-sampling. We suspect that the reductions
we see in the performance on the largest classes is the effect of
the under-sampling removing large parts of useful information
about these classes. The effects of removing a large amount
of data was not assessed by Sakai et al. (2019). Fogarty et al.
(2020) also acknowledged this potential issue with randomly
removing observations from the majority class to make the

dataset balanced, and they also noted that under-sampling may
have impacted the results for the other behaviors such as lying
by discarding potentially useful information. However, they did
not assess the magnitude of the impact of this problem on
their results.

Moreover, our chosen method of over-sampling, i.e.,
Borderline-SMOTE, does not simply duplicate observations
from the minority classes, but generates new synthetic examples
along the line between observations in the minority class and
their selected nearest neighbors. As opposed to the original
SMOTE algorithm, Borderline-SMOTE starts by identifying
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FIGURE 3 | Normalized confusion matrix of behavior classification from the per-pig cross-validation after using Wavelet filtering and under-sampling (A). Left: tested

on pig A. Middle: tested on pig B. Right: tested on pig C. Normalized confusion matrix of behavior classification from the per-pig cross-validation after data

augmentation with BL-SMOTE and Wavelet filtering (B). Left: tested on pig A. Middle: tested on pig B. Right: tested on pig C.

a set of minority examples on the border to a majority class.
This set is known as the DANGER set. Then, it applies SMOTE
for each instance of the DANGER set, but ignores the rest
of the observations in the minority class. Two versions of
Borderline-SMOTE exists, namely Borderline-SMOTE1 and
Borderline-SMOTE2. Compared with Borderline-SMOTE1,
Borderline-SMOTE2 does not only generate synthetic examples
between the minority class points in the DANGER set, but
also between members of the DANGER set and their nearest
neighbors in the majority class. These synthetic observations
are created in such a way that they are always closer to the
point in the minority class than to its neighbor in the majority
class. Unlike the original SMOTE, when Borderline-SMOTE is
applied, new samples can be generated by using the minority
class near the category boundary without affecting the majority
class (Supplementary Figures 1, 2).

From our initial tests, we found that when the dataset is large,
Borderline-SMOTE1 performed better in terms of CPU efficiency
and was more robust, while Borderline-SMOTE2 was more

time-consuming and would generate many missing values (data
not shown). Consequently, Borderline-SMOTE1 was adopted as
the method to augment our training datasets.

In this study, when Wavelet filtering and Borderline-
SMOTE where both applied as part of the data pre-processing,
the mean accuracies for pigs A, B, and C were 0.642,
0.305, and 0.715, respectively (Table 1). Lying was generally
the most accurately predicted behavior (Figure 3). This is
hardly surprising, as lying is the most distinct and simple
of the four included behaviors. For pigs A and C, standing
and walking were correctly classified 53–57% of the time.
When these behaviors were misclassified, they were most
commonly misclassified as exploring. This is most likely because
exploring was more heavily represented in the unbalanced
data than both walking and standing, as seen in Figure 2.
This means that in the balanced training sets, exploring was
represented by more variation than walking and standing, even
though they were all represented by the same number of
(synthetic) observations.
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It can also be seen from Table 1 that the mean accuracy
differs significantly at the 95% confidence level between all three
pigs, depending on which pig was used as the test set. This
also suggests that the three different pigs, which are at different
stages in their respective growth periods, express different
movement patterns from each other, e.g., in terms of movement
amplitude (Supplementary Videos 2, 3). From the data, which
were available for our study, it is impossible to say whether these
differences are mainly due to completely individual character
traits of the individual pig, or if they represent systematic effects
of the ages of the pigs. If the differences in measured activity
patters are strongly associated with the sizes and/or ages of the
pigs, then future models for behavior classification will need to
be able to combine data about such traits with the accelerometer
data, and use data from many more pigs at different ages than
what we had access to in this study. If, on the other hand,
the differences reflect true individual patterns, then part of the
pre-processing of the data could be to use other methods of
time series filtering such as dynamic linear models, which could
actively learn the normal behavior of the individual pig. This
type of model has previously been used to actively learn e.g.,
the drinking behavior of specific groups of pigs for monitoring
purposes (e.g., Larsen et al., 2019b; Jensen et al., 2017; Dominiak
et al., 2019). Additionally, further research should also focus
on comparing different machine learning methods, such as
random forest and support vector machines, to try to improve
the classification performance of each behavior class, e.g., by
employing ensembles of multiple different types of machine
learning models simultaneously.

As an alternative to balancing the data, further research should
also investigate the effect of training the ANN with novel loss
functions from the pure machine learning literature, such as focal
losses (Lin et al., 2020), which down-weights the loss assigned
to well-classified examples. A similar option for an adaptive
loss function would be to weigh the calculated loss for different
samples differently, depending on whether they belong to the
majority or the minority classes. Such approaches were, however,
outside the scope of this paper.

In conclusion, Wavelet filtering and data augmentation
by Borderline-SMOTE were both found to consistently and
significantly improve the classification accuracy of all four
behavior classes considered for this study, with the effect
of Borderline-SMOTE alone being greater than the effect of
Wavelet filtering alone. The effect of using data augmentation
by Borderline-SMOTE was more pronounced than balancing the
training data by under-sampling. This appears to be the first time

the use of this algorithm has been demonstrated within the field
of animal science. However, the overall performance was not
adequate to satisfy the research needs in this field and to address
the common but urgent problem of imbalanced behavior dataset.
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