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Adrenergic Tone as an Intermediary
in the Temperament Syndrome
Associated With Flight Speed in Beef
Cattle
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The temperament of farm animals can influence their resilience to everyday variations

within the managed production environment and has been under strong direct and

indirect selection during the course of domestication. A prominent objective measure

used for assessing temperament in beef cattle is the behavioral flight response to release

from confinement in a crush or chute. This behavioral measure, termed flight speed (also

known as escape velocity) is associated with physiological processes including body

temperature, feeding behavior, growth rate, carcass composition, immune function, and

health outcomes. This review examines the functional links between this suite of traits and

adrenergic activity of the sympathetic nervous system and the adrenomedullary hormonal

system. It is suggested that flight speed is the behavioral aspect of an underlying

“flightiness” temperament syndrome, and that elevated adrenergic tone in animals with

a high level of flightiness (i.e., flighty animals) tunes physiological activities toward a

sustained “fight or flight” defense profile that reduces productivity and the capacity to

flourish within the production environment. Nonetheless, despite a common influence of

adrenergic tone on this suite of traits, variation in each trait is also influenced by other

regulatory pathways and by the capacity of tissues to respond to a range of modulators

in addition to adrenergic stimuli. It is suggested that tuning by adrenergic tone is an

example of homeorhetic regulation that can help account for the persistent expression

of behavioral and somatic traits associated with the flight speed temperament syndrome

across the life of the animal. At a population level, temperament may modulate ecological

fit within and across generations in the face of environmental variability and change.

Associations of flight speed with the psychological affective state of the animal, and

implications for welfare are also considered. The review will help advance understanding

of the developmental biology and physiological regulation of temperament syndromes.

Keywords: temperament, flight speed, immune competence, body temperature, epinephrine, norepinephrine,

dopamine, metabolism

1. INTRODUCTION

Animals engage with their environment through behavioral activities in order to harvest resources,
seek rewards and avoid threats. Individual differences in perception of the environment and in
the behavioral responses to those perceptions lead to the expression of a range of behavioral types
within a population (Sih et al., 2004; Réale et al., 2007; Dingemanse et al., 2010). In ecological
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studies, the coupling of behaviors to physiological and immune
processes is thought to influence life history and environmental
fitness (Biro and Stamps, 2008, 2010; Careau et al., 2008;
Koolhaas, 2008; Koolhaas et al., 2010; Capitanio and Mason,
2019). Persistent patterns of behavioral activity that are repeated
in different environmental contexts or repeated across time
within a single context are considered to reflect an aspect of
the individual’s temperament or personality (Lyons et al., 1988;
Réale et al., 2007; Koolhaas et al., 2010; MacKay and Haskell,
2015; Finkemeier et al., 2018). For humans and farm animals,
these ecological interactions between temperament traits and
stress and immune response pathways (Benus et al., 1991;
Koolhaas et al., 1999; Koolhaas, 2008; Burdick et al., 2011b;
Capitanio, 2011; Hine et al., 2019) gain clinical importance
through their influence on disease susceptibility, welfare, and
livestock production (Segerstrom, 2003; Haskell et al., 2014;
Koolhaas and van Reenen, 2016).

When an animal perceives a challenge within the ebb and flow
of daily events, response pathways are activated that defend its
integrity. Activation of the hypothalamic pituitary adrenal system
(HPA) leads to release of cortisol from the adrenal cortex, while
increased activity of the sympathetic nervous system (SNS) leads
to rapid release of norepinephrine at nerve endings within most
organs and tissues of the body. The SNS also innervates the
adrenal medulla and stimulates the adrenomedullary hormone
system (AHS) to release epinephrine and small amounts of
norepinephrine (Holzbauer and Sharman, 1972; Goldstein,
2003). Epinephrine and norepinephrine contribute to the fight or
flight response. A family of six alpha and three beta adrenergic
receptors that differ in tissue distribution and sensitivity
to norepinephrine and epinephrine provide fine tuning of
adrenergic responses at the tissue level (Badino et al., 2005) as
seen for example in control of milk release form the bovine
mammary gland (Blum et al., 1989). HPA, SNS, and AHS
messengers are not only deployed when integrity is under threat
but are also released tonically and contribute to the continuous
regulation of homeostasis (Sundlöf and Wallin, 1977; Vicente
et al., 2002; Goldstein, 2003). Variations in the level of HPA,
SNS, and AHS activity provide a dynamic orchestration of
the allocation of resources between defense and flourishing in
accord with the felicity of environmental conditions the animal
is experiencing (Rauw et al., 2017). Unresolved motivations to
harvest resources, to acquire rewards or to avoid threats also
lead to elevated HPA, AHS, and SNS activity (Jensen and Toates,
1997). As a consequence, measurement of HPA, AHS, and SNS
activity plays a prominent role in studies of animal welfare
(Mormède et al., 2007).

Among the changes in farm animals that have occurred during
domestication, it is thought that the threshold for perception
of threats has increased while the strength of physiological
responses to stressors has decreased (Price, 1999; Mignon-
Grasteau et al., 2005; Jensen, 2014; Wilkins, 2020). Nonetheless,
there is substantial variation in temperament between individuals
within a breed or species, and in the behavioral, physiological,
and immune activities mobilized in the presence of perceived
threats (Koolhaas et al., 1999, 2010; Boissy et al., 2005). In beef
cattle, flight speed (FS) has attracted attention as a measure of

temperament, and a large literature examines its associations with
physiological functions, health, and production traits (for reviews
see Burrow, 1997; Burdick et al., 2011b; Cooke, 2014; Haskell
et al., 2014). The reader is referred to those reviews for detailed
critiques of experimental studies on temperament (especially
FS) and its association with physiology, health, production, and
reproduction traits. This review focusses on the mechanistic
associations between adrenergic activity, metabolism, immune
function, and psychological affect that may contribute to the
observed phenotypic associations of traits with FS seen in
some studies. Section 2 provides a brief summary of biological
functions and production traits associated with FS. In Section 3,
experimental studies in cattle and other species on the influence
of adrenergic activities on the biological functions underpinning
production traits is examined. Section 4 examines the roles of
homeorhesis and allostasis in regulating homeostatic states of
the animal. Homeorhesis as a mechanism for the persistence
of temperament, and the potential role of candidate genes
identified in genomic studies in this mechanism are examined
in Section 5. These concepts are drawn together in Section 6 to
suggested that the behavioral responsemeasured by FS is an acute
expression of a persistent underlying temperament syndrome
that balances behavior, metabolism, and immune functions
along an axis between preparedness for defense and more
generative flourishing. It is suggested that persistent variation
between individual animals in adrenergic tone contributes to the
temperament syndrome.

2. FLIGHT SPEED

2.1. Measuring the Trait
Pioneering work beginning in the 1960s established standardized
methods for quantifying the behavioral activities of beef cattle
during handling procedures (Tulloh, 1961; Hearnshaw et al.,
1979; Fordyce et al., 1982). In accord with folk wisdom,
differences in behavior observed between individuals were found
to be repeatable and the scored behavior was found to vary
between breeds of cattle, to be heritable and also to be influenced
by experience (Tulloh, 1961; Hearnshaw et al., 1979; Fordyce
et al., 1982). Initial methods used categorical subjective scores.
Tulloh (1961) summarized behavior as cattle entering the scales,
the crush, and the bail by allotting scores in a range from 1
(best) to 4 (worst). Hearnshaw et al. (1979) assessed responses to
restraint in a head bail by the behaviors: tail swishing, straining
back; backward and forward movement; paddling with the back
feet in an attempt to escape; kicking: kneeling; jumping. These
behaviors were used to generate a combined score described in
words as 0= stands very quietly, offers no resistance, only casual
tail swishing; 1 = generally quiet, offers token resistance, steady
movement in bail head; 2 = involves slightly excited movement,
straining and paddling, may kick; 3 = excited, vigorous abrupt
movement, straining, paddling; may jump, or kneel; 4 = very
disturbed, frightened, wild movements etc, may jump and goes
down in crush; 5 = unmanageable and dangerous. Fordyce
et al. (1982) assessed cattle in a crush test, a race test and a
head bail test scoring movement on a scale from 1 to 7 and
respiration on a scale of 1 to 4. These authors also introduced
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two continuous quantitative measures by counting the number
of quadrants a beast crossed in a 60 s interval when confined
in a circular yard with a 6m diameter with an observer at
the center, and the closest distance measured in paces that a
human could approach an animal in a 20 by 30m yard. The
complexity of these scoring systems highlights the importance
of the method subsequently developed by Burrow et al. (1988).
These authors used an objective measure by recording the time
taken for an animal to traverse a distance of 1.7m when released
from confinement in a crush (chute) or weighing box. This
measure generates a continuous variable for analysis of genetic
parameters (Burrow, 1997). Flight time is commonly converted
to FS (m/s) for analysis. FS (also known as escape velocity)
is a quantitative trait that often displays a broad distribution
within a study population (Figure 1). A number of subjective
and objective methods for measuring behavioral activity of cattle
during handling have subsequently been developed (reviewed
by Haskell et al., 2014), however, amongst these tests, FS has
been most widely used in studies of behavior, physiology, and
genetics. A “temperament” score combining FS with a subjective
measure such as chute score or pen score is also commonly
used (e.g., Burdick et al., 2011c; Francisco et al., 2015; Lee et al.,
2018), and a subjective score of behavior as the animal exits
the crush is used in some studies (e.g., Schwartzkopf-Genswein
et al., 2012). Many studies in beef cattle implicitly or explicitly
adopt a model of temperament as a singular one-dimensional
characteristic of the animal that can be described with terms such
as calm and agitated, or good and poor temperament, or adequate
and excitable (e.g., Fell et al., 1999; Cooke, 2014). Some studies,
however, have examined temperament as a multidimensional
attribute of the animal (for examples see van Reenen et al., 2002,
2004; Van Reenen et al., 2005; Kilgour et al., 2006; Petherick

FIGURE 1 | Frequency histogram of the distribution of flight speed (m/s) in a

cohort of 164 Angus steers measured on Day 1 of weaning. Calves were the

progeny of 47 sires used in a sire genetic benchmarking program and were

born and raised at pasture in a single contemporary management group.

Adapted from Hine et al. (2019).

et al., 2009b; Cafe et al., 2011a) which aligns more closely with
the multi-dimensional construct of temperament used more
broadly in the behavioral ecology and psychology literatures
(Réale et al., 2007; Koolhaas et al., 2010; MacKay and Haskell,
2015; Finkemeier et al., 2018; Capitanio and Mason, 2019). The
terms used to describe temperament in the following section (e.g.,
good, poor, temperamental, calm) reflect those of the authors
cited below.

2.2. Associations With Production Traits
Beginning with the earliest quantitative studies, associations with
physiological processes such as growth rate were recognized (e.g.,
Tulloh, 1961). Favorable phenotypic and genetic associations
have been found between good temperament (usually assessed
as low FS) and higher feed intake, higher growth rate, higher
intramuscular fat percentage, higher intramuscular glycogen,
higher pregnancy rate, and lower disease incidence during feedlot
finishing (Voisinet et al., 1997a,b; Kadel et al., 2006; King et al.,
2006; Müller and von Keyserlingk, 2006; Petherick et al., 2009a;
Cafe et al., 2011a,b; McGilchrist et al., 2011; Sebastian et al., 2011;
Sant’Anna et al., 2012; Cooke, 2014; Llonch et al., 2016; Bruno
et al., 2018). Favorable associations have been seen in cattle run
at pasture and during feedlot finishing (Ferguson et al., 2006; Cafe
et al., 2011b). Contrary results for some measures have also been
observed (e.g., Burrow and Dillon, 1997; Prayaga and Henshall,
2005; Bruno et al., 2018). For further references and discussion of
associations with production traits see Haskell et al. (2014).

2.3. Associations With Baseline Values of
Physiological and Immune Variables
The search for proximate mechanisms underlying the
associations between activity during handling and measures
of animal productivity has found elevated basal cortisol and
epinephrine (Fell et al., 1999; Curley K. O. J. et al., 2006; King
et al., 2006; Petherick et al., 2009a; Burdick et al., 2011a,c; Cafe
et al., 2011a), higher basal glucose, lactate (Petherick et al., 2009a;
Boles et al., 2015; Williams et al., 2019) and non-esterified fatty
acid (NEFA) concentrations in blood (Cafe et al., 2011a; Burdick
Sanchez et al., 2016), higher basal temperature (Burdick et al.,
2011c; Williams et al., 2019; Lees et al., 2020; Parham et al.,
2021), and higher heart rate (Parham et al., 2021) in cattle with
poor temperament. Few leukocyte variables differ between cattle
with poor or good temperament (Fell et al., 1999; Hulbert et al.,
2011). Accurate estimates of baseline values are difficult to obtain
without habituation of animals to handling and confinement,
and subsequent collection of blood samples via indwelling
catheters (Cafe et al., 2011a; Burdick Sanchez et al., 2016). In
many studies and as acknowledged by the authors, the estimates
of baseline values obtained from cattle mustered and handled
through yards are likely to be influenced by HPA, SNS, and AHS
responses to handling before blood samples are drawn (Petherick
et al., 2009a; Williams et al., 2019). A number of studies have
found that temperamental cattle have reduced feed intake (Black
et al., 2013; Llonch et al., 2018), increased feeding bouts of
shorter duration (Llonch et al., 2018) and reduced feeding times
(Nkrumah et al., 2007; Cafe et al., 2011a).
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2.4. Associations With Muscle Physiology
and Carcass Characteristics
Exercise increases anaerobic glycolysis in muscle (Holmes et al.,
1972) and leads to an increase in blood lactate following its
transport out of muscle cells (Williams et al., 2019). Blood
(Holmes et al., 1972; Petherick et al., 2009a; Boles et al., 2015;
Williams et al., 2019) andmuscle lactate (McGilchrist et al., 2011)
are elevated and muscle glycogen lower (McGilchrist et al., 2011)
in temperamental cattle scored categorically (Holmes et al., 1972)
or by FS (McGilchrist et al., 2011; Boles et al., 2015;Williams et al.,
2019). In post-mortem carcass analyses, FS was associated with
higher muscle lactate (McGilchrist et al., 2011; Coombes et al.,
2014), lower fat cover (Cafe et al., 2011b), lower intramuscular
fat (marbling) (Cafe et al., 2011b; Francisco et al., 2015), higher
pH (Cafe et al., 2011b), and higher shear force (Voisinet et al.,
1997a; Kadel et al., 2006; King et al., 2006; Behrends et al., 2009;
Cafe et al., 2011b; Boles et al., 2015). An effect of FS on pH
and muscle glycogen was not seen in all studies (Coombes et al.,
2014). Differences between calm and temperamental cattle in
muscle mitochondrial function have also been observed (Owen
et al., 2020).

2.5. Associations With Changes in
Physiological, Immune, and Behavioral
Variables Following Experimental
Challenges
The influence of reactivity to handling on responses to
environmental challenges that are typically encountered in the
production environment has been explored in a number of
studies described below. In response to transport for 9 h, rectal
temperature increased in temperamental and calm 10 month
old bull calves with a peak at 30min. Temperamental bulls
had a higher rectal temperature throughout the study and
a temperament group by time interaction was not reported
(Burdick et al., 2011a). The higher concentrations of cortisol and
epinephrine in temperamental bulls observed before transport
were also evident after transport with little observed change
from the pretransport values. In calm bulls, cortisol increased
during transport whereas there was little change from initial
high levels in epinephrine concentrations. At feedlot entry
and 5 days later, a suite of hematological variables did not
differ between temperament groups of Bos taurus steers (Fell
et al., 1999). Nonetheless, health outcomes differed between
groups with a higher percentage of temperamental steers being
removed to the hospital pen. Reinhardt et al. (2009) reported
that mortality during feedlot finishing increased with subjectively
scored behavior on exit from the chute, although the number
of treatments for respiratory disease was not associated with
temperament score. In contrast to health outcomes in feedlot
cattle, there is little evidence of genetic or phenotypic effects of
FS on tick, buffalo fly or worm burdens in topical adapted beef
cattle grazing at pasture (Burrow, 2001; Prayaga, 2003; Prayaga
and Henshall, 2005).

Several studies have examined the influence of temperament
on immune system activity. The antibody response to vaccination

at weaning with a commercial leptospirosis vaccine was
compared in eight steers with low FS and eight steers with
high FS. Antibody titers to Leptospira were significantly higher
in the low FS group (Bruno et al., 2018). In 1149 Angus
calves receiving clostridial vaccination during the stress of
yard weaning, IgG antibody responses to tetanus toxoid,
and delayed type hypersensitivity responses to intradermal
injection of clostridial antigens were not phenotypically
correlated with FS, however favorable genetic correlations
were seen for both immune function traits (Hine et al., 2019).
Thus, docile temperament was genetically correlated with
elevated adaptive immune responses. In a contrast between
10 temperamental and 10 calm bull calves vaccinated with
a clostridial vaccine at weaning and boosted 4 weeks later,
there was a tendency for IgG antibody titres to be higher
at the end of the primary antibody response period in calm
calves, although the treatment by time interaction was not
significant (Oliphint, 2006). Lymphocyte proliferation in vitro
following mitogen stimulation was higher in calm calves. In
responses to injection of bacterial lipopolysaccharide (LPS,
endotoxin), which primarily activates the innate immune
system, expression of sickness behaviors and fever were blunted
in temperamental weaned bull calves (Burdick et al., 2011c).
Cortisol response to the LPS challenge was not affected by
temperament whereas epinephrine responses were elevated in
temperamental calves.

Following epinephrine injection, temperamental cattle had
a greater increase in blood lactate concentration than quiet
cattle (Holmes et al., 1972). Following glucose and insulin
challenges, temperamental calves had a lower insulin response,
were slower to clear glucose from blood and exhibited relative
insulin insensitivity (Burdick Sanchez et al., 2016). Studies
of the cortisol response to ACTH challenge have found no
association between FS and peak cortisol concentrations (Curley
et al., 2008; Cafe et al., 2011a). The results suggest that
the elevated baseline HPA activity in temperamental cattle
is not associated with a chronic stress status and attenuated
adrenal reactivity.

The influence of FS on behavioral responses in a threat
perception test has been examined in 8 month old Angus steers
(Lee et al., 2018). The test measures a suite of behaviors following
exposure to a dog. There was a significant association between
poor temperament based on temperament index (combining FS
and chute score) and increased number of zones crossed in
the test arena, increased attention toward the threat and tail
swishing, and there was a tendency for vigilance to be increased
in temperamental cattle (Lee et al., 2018). Elevated activity of
these behaviors has been interpreted previously as signs the
animal is in a negatively valenced state with increased arousal,
i.e., a negative psychological affective state as discussed further
below (Lee et al., 2016; Monk et al., 2018). Interestingly, FS
was not modified by treatment with the anxiogenic drug 1-
methy-chlorophenylpiperazine. The results support a tentative
conclusion that flighty cattle have a more negative affect state
than calm cattle when exposed to an aversive environmental
challenge (Lee et al., 2018).
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3. INFLUENCE OF ADRENERGIC
PATHWAYS ON TRAITS ASSOCIATED
WITH FS

A prominent feature of these studies is the association
with heightened adrenergic activity in temperamental cattle
(Burdick et al., 2011c; Cafe et al., 2011a). In contrast, despite
higher baseline levels of cortisol in temperamental cattle, HPA
responsiveness to environmental challenges is comparable in
calm and temperamental cattle in most studies (Curley et al.,
2008; Cafe et al., 2011a) (Supplementary Material). This section
examines the influence of SNS and AHS activity on physiological
and immune responses and affective state. Adrenergic effects
are mediated primarily by the catecholamines norepinephrine
in the SNS and epinephrine in the AHS (Burdick et al., 2011b).
The third catecholamine, dopamine, is also active in peripheral
tissues, especially kidney, gut, and immune cells (Falck et al.,
1964; Matt and Gaskill, 2019; Broome et al., 2020). Activity
of the SNS and AHS pathways can differ both at rest and in
response to specific types of stressor (Goldstein, 2003). SNS
and AHS actions are broadly conserved across mammalian
species, although some species differences occur, for instance
in sensitivity to adrenergic agonists and relative concentrations
of norepinephrine and epinephrine at rest and in responses to
environmental challenges (Dunshea and D’Souza, 2003). Where
data are not available for cattle, the general model of adrenergic
influence on physiological and immune functions is described.
Discussion focuses on studies in cattle which have employed
infusion of epinephrine or norepinephrine to examine short term
effects of adrenergic activation on physiological mechanisms,
and injection of synthetic adrenergic agonists and antagonists
such as clenbuterol and propranolol on longer term effects of
adrenergic activation or inhibition. For reviews of adrenergic
influences on reproduction in beef cattle see (Fernandez-Novo
et al., 2020) and on appetite see (Wellman, 2005). For comments
on limitations associated with the scope of the review see
Supplementary Material.

3.1. Core Body Temperature and
Metabolism
Studies summarized in Section 2.3 indicate that FS is associated
with variation in body temperature and metabolism. Body
temperature is regulated by balancing heat generation and heat
loss (Gale, 1973). Obligatory heat produced from metabolic
activity, motor activity and digestion-related thermogenesis
can be augmented to defend core body temperature during
cold exposure via involuntary muscular shivering and non-
shivering thermogenesis in brown adipose tissue (Hohtola,
2004). Norepinephrine infusion in new-born calves induces heat
production in brown adipose tissue (Alexander et al., 1975;
Thompson and Bell, 1976). The thermogenic response decreases
over the first few days of the calf ’s life and is replaced by
an increase in the lipolytic effect of epinephrine on white
adipose tissue. Brown adipose tissue has not been found in adult
cattle by histological examination (Bruce, 1998); however recent
molecular studies suggest white adipose tissue can transition

toward a “beige” or “brite” (BRown-In-whiTE) phenotype in
adult cattle following cold exposure (and following exercise
in a number of other species), with an associated restoration
of thermogenic capacity via activity of uncoupling protein-
1 (Komolka et al., 2017). Catecholamines also contribute to
thermogenesis by mobilizing energy reserves. Catecholamine-
induced lipolysis leads to rapid release of NEFA that can be
rapidly oxidized as an energy source. The NEFA response
to epinephrine infusion is accompanied by elevated glucose
concentrations in blood and reduced sensitivity to insulin
(Pethick et al., 2005). These thermogenic effects are illustrated
in cattle by the analgesic agent xylazine through its action as an
α2-adrenergic agonist which induces increased blood glucose and
decreased blood insulin concentrations together with increased
body temperature and disrupted heat dissipation (Greene and
Thurmon, 1988). In accord with these effects, the treatment
of calves with the beta adrenergic agonist clenbuterol reduces
energy retention and increases heat production (Williams et al.,
1987). In contrast to the thermogenic effects of beta agonists,
inhibition of sympathetic outflow by alpha agonists reduces basal
metabolic rate, heat production and heart rate in cattle (Gazzola
et al., 1995). Inactivation of norepinephrine by antibodies
generated by immunizing cattle with norepinephrine had a
similar effect (Gazzola and Hunter, 1999). The authors noted
that the individual animal was a significant source of variation in
statistical analyses of metabolic rate and heart rate, and to a lesser
extent heart rate (Gazzola et al., 1995). This simple observation
illustrates that individual animals differ in metabolic activity
even when housed in the highly controlled environment of
respiration chambers (Supplementary Material). As antibodies
do not cross the blood brain barrier, additional studies were
undertaken to examine the effect of intracerebral injection of
alpha agonists on metabolic rate, heat production and heart
rate (Hunter et al., 1993). Results confirmed that the target
for activity on metabolic activity of the alpha agonists and
antibodies to norepinephrine was in peripheral tissues (Hunter
et al., 1993). Anticipation of feeding in steers induces sufficient
adrenergic outflow to elevate NEFA (Boisclair et al., 1997). Tissue
responses to catecholamines are influenced by the physiological
state of the animal (Pethick et al., 2005) and by treatment with
bovine somatotropin (Boisclair et al., 1997). In addition to effects
on heat production, epinephrine infusion induces cutaneous
vasoconstriction that reduces skin temperature and heat loss
(Gale, 1973; Stewart et al., 2010). The influence of sympathetic
activity on tone of peripheral vasculature has been used clinically
in cattle to assess welfare stress status (Stewart et al., 2007).

Within a few minutes of exposure to a stressor there is a
transient increase in core temperature termed stress-induced
hyperthermia (SIH) (Bouwknecht et al., 2007). The response
occurs independent of physical activity associated with stress
and can be modulated with anxiogenic and anxiolytic drugs
(Nakamura, 2011). This drug sensitivity leads SIH to be
described as a response to psychological or emotional stress.
The temperature increase involves sympathetic outflow and can
be reduced in rats by beta antagonists (Nakamura, 2011). An
SIH-like increase in temperature during handling in yards is
seen in beef cattle (Lees et al., 2020). In accord with studies
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in rodents and sheep (Bouwknecht et al., 2007; Monk et al.,
2018), SIH during a threat perception test in Angus steers
was enhanced by pre-treatment with the anxiogenic drug 1-
methy-chlorophenylpiperazine; however, the anxiogenic drug
treatment did not influence FS as noted above (Lee et al., 2018).
Thus, adrenergic activity modulates metabolic rate and body
temperature at rest, and modulates dynamic changes in these
metabolic variables during physical and psychological challenges.

3.2. Carcass Composition
Studies summarized in Section 2.4 indicate that accumulation
of fat within the body, and energy metabolism in muscle vary
with FS. Studies on effects of adrenergic activity on muscle
function, intramuscular fat metabolism and carcass composition
in cattle have focused mainly on the effects of stressors, exercise
and beta agonists. Adrenergic activity in these contexts increases
insulin resistance, glycogen mobilization, lipolysis, cellular, and
plasma lactate concentrations, and ultimate pH of meat following
slaughter, and reduces intramuscular fat deposition (Pethick
et al., 1995, 2005; Hocquette et al., 1998; Johnson et al., 2014).
Beta agonists used as growth promotants induce hypertrophy
of glycolytic type II muscle fibers and reduce intramuscular fat
(Johnson et al., 2014).

In resting humans, sympathetic nerves innervating skeletal
muscle exhibit short bursts of activity in synchrony with heart
rate (Sundlöf and Wallin, 1977). Up to 10-fold variation occurs
between individual humans in the incidence of sympathetic
impulses, yet within an individual, the pattern of impulses is
consistent between differentmuscle groups, and consistent across
time when measurements are repeated at intervals of up to 21
months. Norepinephrine released from this sympathetic outflow
increases non-shivering thermogenesis (Mejsnar and Pácha,
1983) and spills over into draining blood thereby contributing
to circulating levels of the neurotransmitter (Wallin et al., 1981).
Indeed, persistent differences between individuals in plasma
norepinephrine during rest are positively correlated with muscle
sympathetic activity across time periods examined up to 45
months apart (Wallin et al., 1981). The impulses arise from
central sympathetic drive and generate muscle sympathetic tone
that differs between individuals (Sundlöf and Wallin, 1977).
Changes in sympathetic tone modulate many physiological
activities. For example, variations in sympathetic tone control
the frequency of pulsatile contractions of the bovine teat
sphincter muscles, and a reduction of sympathetic tone following
stimulation of the udder leads to relaxation of the teat sphincter
muscles which promotes removal of milk from the gland
(Lefcourt, 1982; Blum et al., 1989). Together these observations
in humans and cows suggest that variation between individuals
in basal and dynamic adrenergic activities could contribute to
the associations seen between flightiness, muscle physiology, and
carcass composition in cattle. Studies on individual variation
between cattle in activity of the sympathetic innervation of
skeletal muscle seem warranted.

3.3. Immune Function
Studies have found associations between FS and activity of the
innate and adaptive immune systems (Sections 2.3 and 2.5).

Adrenergic activity exerts an influence over immune functions
via sympathetic innervation of primary and secondary lymphoid
organs, and through activation of adrenergic receptors on
leukocytes, especially cells of the monocyte—macrophage lineage
(LaBranche et al., 2010; Irwin and Cole, 2011; Kenney and Ganta,
2011; Wohleb, 2019). In sheep, the beta agonist clenbuterol
suppresses antibody responses to vaccination (Spencer and
Oliver, 1996). Conversely, in mouse studies it was found that
the beta antagonist propranolol enhances antibody responses
and T helper 1 immune responses (Mazloomi et al., 2012).
Studies of chronic social stressors in humans, rodents, and rhesus
monkeys have identified a shift in gene expression in monocyte
lineage leukocytes away from a pattern associated with strong
antiviral and antibody defense toward a pattern associated with
inflammatory defense (reviewed by Wohleb, 2019). This gene
expression profile, termed a conserved transcriptional response
to adversity, is marked by elevated expression of the cytokines
IL-1β, TNFα, and IL-6 and reduced expression of IFNγ amongst
other changes, and is associated with increased susceptibility to
a range of inflammatory and infectious diseases (Cole, 2014,
2019; Cole et al., 2015; Fredrickson et al., 2015). In the species
in which the pattern has been studied, it is primarily associated
with norepinephrine release from SNS innervation of lymphoid
organs (Sloan et al., 2008; Cole, 2019). It has been suggested that
epigenetic changes in leukocytes induced by the elevated SNS
activity, but not the HPA axis in these stress paradigms induces
a persistent shift of immune functions toward inflammation
and tissue repair in preparedness for fight or flight defenses
(Irwin and Cole, 2011). As well as peripheral effects on immune
function, catecholamines released in human and rodent models
of stress act centrally to induce interleukin-1β within brain
tissue and induce mood changes (Johnson et al., 2005; Wohleb,
2019).

A further mode of action of catecholamines on immune
function is via the metabolic changes noted in Section 3.1.
The innate immune system initiates inflammatory responses
when sensory pathways that detect molecular patterns associated
with pathogens and damaged host tissues are activated via a
classical receptor—ligand pathway. Activation of the receptors
(PAMPs and DAMPs) leads to assembly of intracellular
multimolecular complexes termed inflammasomes which in turn
leads to cleavage, maturation and release of the proinflammatory
cytokines IL-1β and IL-18 (Liston and Masters, 2017). In
addition to activation via these receptor—ligand sensory
pathways, inflammasome assembly is also initiated through
physicochemical and allosteric effects of elevated intracellular
concentrations of a number of metabolites including NEFA
and by products of cellular stress including reactive oxygen
species and Heat Shock Protein 72 (Lacetera, 2016; Liston
and Masters, 2017; Bronzo et al., 2020). Through this non-
classical activation pathway, metabolic changes such as elevated
NEFA associated with elevated sympathetic tone can bias innate
immune function toward inflammation and away from support
of adaptive immune responses. Studies in cattle show that
elevated NEFA concentration in plasma suppresses adaptive
immune functions including proliferation of lymphocytes, and
production of IgM and interferon γ (Lacetera et al., 2004).
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The studies in humans and animal models by Cole and
colleagues (Cole, 2014, 2019; Cole et al., 2015; Fredrickson
et al., 2015) have examined the influence of a range of chronic
environmental stressors experienced during childhood or adult
life on immune function. In contrast to this influence of
experience on immune function, a long standing research focus
in humans (Segerstrom, 2003), laboratory (Benus et al., 1991),
and farm animals (Koolhaas, 2008) has been the influence
of heritable personality and temperament traits on immune
function and disease susceptibility. Studies in humans, pigs,
rodents, and some other species show that during social conflict,
individuals can exhibit a proactive coping style associated
with aggression, or a reactive style associated with withdrawal,
immobility and low levels of aggression (Henry and Stephens,
1977; Koolhaas et al., 1999; Castanheira et al., 2017). Coping
styles have been extensively studied in pigs using a “back test” to
assess the behavioral response to restraint in a supine position for
60s (Hessing et al., 1994). When scored on a continuous scale,
pigs exhibit a continuous unimodal distribution of responses
between proactive and reactive styles (Forkman et al., 1995;
Zebunke et al., 2015) that is similar to the unimodal distribution
of FS in cattle (Figure 1). Pigs with a proactive coping style
have low basal HPA activity, low HPA reactivity to stress, and
high sympathetic and low parasympathetic reactivity. In contrast,
pigs with a reactive coping style have normal basal HPA axis
activity that increases under stressed conditions together with
low sympathetic reactivity and high parasympathetic reactivity
to stress (Koolhaas et al., 1999; Koolhaas, 2008). Of relevance
to this section, a number of differences in immune function
have been observed between coping styles (Koolhaas, 2008). Pigs
with a reactive coping style express lower cellular immunity in
vitro but higher humoral immunity following vaccination with
keyhole limpet hemocyanin, in comparison to proactive coping
pigs (Koolhaas, 2008). In the period prior to vaccination with
tetanus toxoid and again after the peak of the immune response,
proactive pigs exhibit a pattern of heightening inflammatory
defense and tissue repair (Oster et al., 2015). In teleological terms,
this pattern is considered to align with the heightened risk of
injury accompanying the fight or flight character of the proactive
coping style (Korte et al., 2005). In similarity with the studies of
Cole and colleagues cited above, the effects of coping style on
immune responses in pigs may arise from phenotypic effects of
stress reactivity. The relative contribution of adrenergic activity
to the immune response profiles seen in coping phenotypes has
not been described, although in other studies epinephrine and
norepinephrine have been found to promote an innate immune
bias in pigs (Reiske et al., 2020) (however see Bacou et al., 2017).
In contrast to associations between FS and production traits in
cattle, genetic correlations between coping style as scored by back
test and production traits in pigs are negligible (Velie et al., 2009;
Iversen et al., 2017).

Together these findings suggest that heightened adrenergic
activity can induce short-term bias and long-term programming
of immune function toward an inflammatory phenotype with
reduced antibody mediated adaptive immune function. The
effects of catecholamines on immune functions are complex, and

norepinephrine and epinephrine can exert contrasting effects
on the inflammatory bias of macrophages via their independent
actions on alpha and beta adrenoceptors (Barnes et al., 2015;
Bacou et al., 2017). This divergence could lead to differences
between the long-term effects of adrenergic tone and acute effects
of adrenergic discharge during acute environmental challenge.
Recent studies indicate that dopamine released from SNS within
peripheral tissues is an important modulator of immune function
(Matt and Gaskill, 2019; Broome et al., 2020) and therefore also
deserves attention in studies on immune functions associated
with FS. Activity of the parasympathetic nervous system also
modulates immune function, for example, via the cholinergic
anti-inflammatory reflex, thus providing an additional layer of
autonomic nervous system modulation of immune responses
(Kenney and Ganta, 2011), that furthermore can differ between
individuals as illustrated by studies on coping styles (Koolhaas,
2008).

3.4. Affective States
Empirical (Lee et al., 2018) and theoretic (Boissy, 1995) studies
indicate that temperament influences the affect state of cattle.
Norepinephrine is an important neurotransmitter within the
CNS with involvement in cognition, attention, vigilance, and
affect (Coull et al., 1997; Kreibig, 2010; Kleckner and Quigley,
2015). Affect is a psychological state usually described as having
two aspects; hedonic valence and arousal (Russell and Barrett,
1999; Mendl et al., 2010; Kremer et al., 2020; Mendl and Paul,
2020b). Valence describes attractiveness or aversiveness, and
arousal describes the physiological and psychological activation
that can accompany engagement with situations, objects or
events in the internal or external environments. Affect is a system
property arising from central processing of afferent inputs from
the peripheral nervous system and from blood-borne messengers
(Kleckner et al., 2017; Dantzer et al., 2018; Quigley et al.,
2021). This “system property” concept is supported by studies
of affective responses to electrical stimulation and microinjection
of neurotransmitters into individual neurons within the nucleus
accumbens and the amygdala in rats (Berridge, 2019). Affective
responses cannot be repeatably titrated by incremental doses
of stimulation. Rather, the affective response to any quantum
of stimulus varies in accord with concurrent functional states
associated with internal and external conditions of the animal,
such as environmental context, anxiety, hunger or thirst
(Kleckner and Quigley, 2015; Berridge, 2019; Hoemann et al.,
2020).

The affective state of the animal is continuously present
and dynamically varies over time (Kremer et al., 2020; Mendl
and Paul, 2020b). Although humans can at times be aware of
their affective state, it is generally accepted that awareness is
not necessary for affect to be present or for it to modulate
behavioral, physiological or immune processes, and hence that
affect is an important aspect of the mental state in farm
animals (Kremer et al., 2020; Mendl and Paul, 2020b). Affect
modulates psychological processes like cognition, and also
modulates somatic processes through autonomic and motor
neuron activities (Kleckner and Quigley, 2015; Kleckner et al.,
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2017; Mendl and Paul, 2020a). As a consequence, behavioral,
physiological, and psychological activities (especially cognition)
can serve as proxies for assessing affective states in farm
animals (Mendl et al., 2009; Crump et al., 2018; Mattiello
et al., 2019). A very large number of physiological changes
have been correlated with affect (Kreibig, 2010; Kleckner
and Quigley, 2015) and have attracted attention as potential
measures of affect because of their relative ease of measurement.
Heart rate variability and pre-ejection period of the heart
contraction cycle are reduced by arousal (Cacioppo et al.,
1994; von Borell et al., 2007). Parasympathetic and sympathetic
activities exert mixed influences on heart function and on most
other physiological activities (Berntson et al., 1991); however
pre-ejection period has some utility as a “pure” measure
of sympathetic influence and respiratory sinus arrhythmia
as a pure measure of parasympathetic influence on heart
function in humans (Cacioppo et al., 1994; Quigley and
Stifter, 2006; Hoemann et al., 2020). Release of epinephrine
from the adrenal medulla provides an additional level of
stimulation of heart function and provides feedback to the
central nervous system via stimulation of the vagus to
further modify affective state (Miyashita and Williams, 2006).
Notwithstanding the associations seen between autonomic
nervous system activities and affective states, neither valence
nor arousal exhibit one-to-one mapping to particular autonomic
activities. Thus, a particular autonomic response can be seen
in a range of affective state states (Kleckner and Quigley,
2015).

Although dynamically variable, valance and arousal have
a tendency over time to return toward a balancing range
of core affect that is characteristic for an individual. In
humans, differences between individuals in this settling point
are recognized as dispositions and traits such as dispositional
optimism, dispositional happiness, and trait anxiety (Kremer
et al., 2020). The long term balance of positive vs. negative
affect is considered to be a measure of happiness in animals
(Webb et al., 2018) and to be indicative of positive welfare
(Lawrence et al., 2019). At present, methods for assessing
affective states in farm animals are not sufficiently sensitive
to detect long term differences between individuals in the
balancing range of core affect in resting states (Mendl and
Paul, 2020b). It is usually considered that the influence of
affect on mental, behavioral, and somatic activities serves a
homeostatic function with consequences for the welfare of the
animal (Boissy et al., 2007; Lawrence et al., 2019; Mendl and
Paul, 2020b). A role for affect in maintaining homeostasis is well-
described in the literature. Two points from this discussion are
of importance to the temperament syndrome associated with
FS. Firstly, bi-direction interactions between central processes
including affect and cognition and peripheral functions of the
animal (Kleckner et al., 2017; Dantzer et al., 2018; Quigley et al.,
2021) are mediated in part by adrenergic activities (Coull et al.,
1997; Kreibig, 2010; Kleckner and Quigley, 2015). Secondly,
it is likely that consistent individual differences in baseline
core affect and in dynamic affective states associated with
environmental challenges co-vary with FS (Boissy, 1995; Kremer
et al., 2020).

3.5. Summary of Adrenergic Effects
SNS and AHS, through innervation of somatic tissues and via
systemic release of catecholamines from the adrenal medulla
into the bloodstream, contribute to the homeostatic balance
of metabolism, body composition, tissue perfusion, immune
function, and affective state. Studies in a number of species
including beef cattle suggest that basal (tonic) activity varies
between individuals and contributes to differences in basal
metabolic rate, core body temperature, allocation of nutrients to
defense vs. anabolic functions, and bias in the immune system
toward innate inflammatory activity in priority over adaptive
immune functions. In view of the homeostatic role of adrenergic
activities in the resting state and in response to perceived
threats from the internal and external environment, the next
section addresses models of homeostatic regulation that may
help illuminate the way traits associated with flightiness tend to
persist across the life of the animal despite short and long term
environmental fluctuations.

4. REGULATION OF HOMEOSTASIS

For an animal to survive and thrive requires maintenance
of morphological and physiological conditions across
organizational levels extending from intracellular processes
to the whole organism (Chovatiya and Medzhitov, 2014).
Cannon used the term homeostasis to describe a state or
condition of the body, rather than the processes by which a state
is maintained:

“The constant conditions which are maintained in the body might

be termed equilibria. That word, however, has come to have fairly

exact meaning as applied to relatively simple physico-chemical

states, in closed systems, where known forces are balanced. The

coordinated physiological processes which maintain most of the

steady states in the organism are so complex and so peculiar to

living beings—involving, as they may, the brain and nerves, the

heart, lungs, kidneys, and spleen, all working cooperatively—that

I have suggested a special designation for these states, homeostasis.

The word does not imply something set and immobile, a stagnation.

It means a condition—a condition which may vary, but which is

relatively constant.”

Thus, Cannon suggested that homeostasis is not a single
condition but rather that a number of states exist within
the body that are each maintained in a homeostatic balance.
In contemporary terms, homeostatic states and variables like
psychological affect and body temperature are each regulated by
a suite of effectors that actively maintain the state or regulated
variable within a range of values (Goldstein, 2003; Ramsay and
Woods, 2014; Kotas and Medzhitov, 2015; Goldstein and Kopin,
2017; Ye and Medzhitov, 2019). Opposing effectors are usually
not simultaneously active, thereby exhibiting Sherrington’s
principle of reciprocal inhibition (Sherrington, 1913; Bauman,
2000; Ramsay and Woods, 2014), although exceptions do occur
especially during chronic stress and in autonomic control of some
organ functions (Berntson et al., 1991, 1993; Goldstein, 2003).
Sensory pathways control the activity of effectors via feedback
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or feedforward to provide inhibition or activation of effectors
(Bauman, 2000; Ramsay and Woods, 2014; Goldstein, 2019; Ye
and Medzhitov, 2019). Romanovsky (2018) describes the suite
of effectors that influence a state or variable as constituting a
dynamic confederation of independent controllers. Importantly,
afferent signals from sensors within effector pathways (e.g., from
temperature sensors or baroceptors) are not integrated within
a central homeostat (e.g., thermostat or barostat) to generate
an integrated mean value (e.g., core body temperature, blood
pressure). Nor is there a process by which such a putative mean
value is compared to a central reference value (Romanovsky,
2018). Thus, states and variables are not regulated around
physiological set points but tend to be maintained within a
balancing range as an outcome of the activity of the confederation
of controllers (Joyner and Limberg, 2014; Ramsay and Woods,
2014; Romanovsky, 2018). As a consequence, a sensor for an
outcome state or variable is not necessary for the state or
variable to (appear to) be regulated (Wirtshafter and Davis,
1977; Goldstein, 2003, 2019; Ramsay and Woods, 2014). Indeed,
it is not the physiological variable that is regulated. It is the
activity of each effector within the confederation of controllers
that is regulated through proximate pathways of activation
and inhibition. The clinically measured physiological variable
(e.g., body temperature, blood pressure) emerges as a system
property of the concerted activity of the controllers. Detailed
accounts for body temperature and blood pressure regulation
are provided by Romanovsky (2018) and Joyner and Limberg
(2014). As discussed in more detail below, activity of effectors
can be influenced by genetic, epigenetic, pharmacological, and
short-acting physiological messengers that in concert contribute
to characteristic differences seen between individuals. For the
current discussion, this general feature of homeostatic regulation
indicates that a sensor of affect (or of a higher order characteristic
of the animal such as temperament) is not necessary for affect to
(appear to) be a regulated state.

Effectors and sensors operate within the context of available
resources. These resources provide a buffer against change in the
state or variable by providing a reserve that can be drawn down
or a sink (including excretion) that can accommodate excess
(Cannon, 1929; Goldstein and Kopin, 2017; Ye and Medzhitov,
2019). Resources available to buffer the state or variable can take
many forms and include chemical [e.g., pH buffering via carbonic
acid (H2CO3) and bicarbonate anion (HCO3−)], physical (e.g.,
subcutaneous fat), psychological (e.g., competencies), social (e.g.,
presence and behavior of conspecifics), and other external
conditions in the environment (e.g., shade, a warm den). Buffers
can also act across generations. For example, in most mammals
the mother enters a state of negative energy balance in early
lactation and draws on her own body reserves to buffer the
neonate against environmental variation in availability of energy
in the mother’s diet (Bauman, 2000). This transgenerational
transfer of resources is evident in beef cows during lactation.
Indeed, there is little genetic potential to select beef cattle for
heavy calf weaning weight without penalty to cow body weight
during periods of seasonal feed scarcity (Meyer and Colditz,
2015) illustrating that buffers confer robustness of physiological
processes to the effects of environmental fluctuations.

From studies in developmental biology, it was recognized
that states are also regulated over extended periods of time
during ontogenetic progression along a developmental trajectory.
Waddington termed the processes that regulate the flow
of form and function along a trajectory or toward a new
state, homeorhesis (Waddington, 1957). Many ontogenetic
developments and life cycle transitions also occur in postnatal
life and are regulated by homeorhetic processes. A detailed
account of homeorhetic regulation of the transitions in tissue
structure andmetabolic functions that occur during development
and maintenance of pregnancy and lactation in the dairy
cow has been developed by Bauman and colleagues (Bauman
and Currie, 1980; Bell and Bauman, 1997; Bauman, 2000).
During lactogenesis and early lactation, changes in circulating
concentrations of prolactin, growth hormone, glucocorticoids,
insulin-like growth factor-1 and thyroid hormones induce
organ-specific changes in expression of genes, expression
and binding kinetics of receptors, and activity of signal
transduction pathways. For instance, the lipolytic effect of beta-
adrenergic stimulation of adipocytes doubles during lactation,
in comparison with the non-pregnant state in ewes (Guesnet
et al., 1987) and cows (Baumgard et al., 2017). Insulin sensitivity
of tissues also changes leading to decreased lipogenesis and
decreased uptake of preformed fatty acids in adipose tissue,
decreased glucose uptake in skeletal muscle and increased
gluconeogenesis in liver which together lead to decreased
glucose utilization by insulin-responsive non-mammary tissues
(Bauman, 2000). These tissue-specific changes support the new
physiological state of lactation (for reviews see Bauman, 2000;
Baumgard et al., 2017; Habel and Sundrum, 2020). In this new
state, physiological (and behavioral) variables are shifted to a
new homeostatic range. The concept of homeorhesis has been
extended to describe post-natal growth trajectories of cattle
(Bauman et al., 1982) and coordinated responses during climatic
adaptation (Collier et al., 2009) and immune function (Colditz,
2004). Mrosovsky (1990) suggested that these coordinated
postnatal changes in homeostatic states could be better described
by the term rheostasis.

The changes in pregnancy and lactation illustrate that
homeostasis is a dynamic outcome that can be modulated over
developmental, seasonal and short-term timeframes through
genetic and epigenetic programming of the effectors that control
physiological variables. Homeorhesis is used to describe the
processes that contribute to the tendency for the trajectory
of certain traits to be robust to genetic and environmental
fluctuations (Waddington, 1957; Strandberg, 2009; Bateson and
Gluckman, 2011). Nonetheless, an animal’s phenotype also
exhibits plasticity in the face of some transient or persistent
environmental perturbations (Bateson and Gluckman, 2011).
Many of the moment-to-moment and day-to-day excursions in
physiological variables occur in anticipation of a physiological
demand through actions of the autonomic nervous system
(Goldstein, 2003). Sterling and Eyer (1988) introduced the term
allostasis meaning stability through change to describe both
short-term anticipatory physiological regulation via the ANS
and the compensatory changes that occur during persistent
environmental perturbations and disease processes (Goldstein,
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2003; McEwen and Wingfield, 2003; Korte et al., 2007; Koolhaas
et al., 2011). A critique of allostasis is beyond the scope of
the current review (see McEwen and Wingfield, 2010; Ramsay
and Woods, 2014), and the concept is mentioned here to
highlight that homeostatic balance is achieved through a dialogue
between homeorhesis and allostasis (Colditz, 2020). Robustness
and plasticity describe relative positions on a continuum (rather
than being synonyms for a nature–nurture dichotomy), while
the terms homeorhesis and allostasis provide descriptors of
tendencies for effectors controlling form and physiological
functions to be robust or plastic to environmental influences
(Bateson and Gluckman, 2011; Colditz, 2020). The tendency
for traits through which temperament is expressed to persist
throughout the life of the animal underpins the homeorhetic
account of temperament described next.

5. DEVELOPMENT AND REGULATION OF
FS AND ASSOCIATED TRAITS

5.1. Persistence of Behavioral and Somatic
Expressions of Temperament
The exquisite capacity for dynamic adjustments of behavior,
metabolic activity, and immune function to achieve homeostatic
balance in the face of changing environmental conditions draws
attention to the paradoxical tendency for some characteristics
of the animal to persist despite environmental fluctuations. As
noted in the introduction, temperament is conceptualized in
operational terms as the persistence of behavioral activity across
time and across contexts (Lyons et al., 1988; Dingemanse et al.,
2010; Stamps J. and Groothuis, 2010; MacKay and Haskell, 2015;
Finkemeier et al., 2018). In accord with this characterization,
persistence of individual differences between cattle in FS have
been reported in a number of studies (Burrow and Dillon,
1997; Curley K. O. et al., 2006; Kilgour et al., 2006; Petherick
et al., 2009b; Cafe et al., 2011b). While absolute values can vary
between measurement days and can decrease with habituation
to repeated handling through yards, the relative performance of
individuals within a cohort tends to be fairly stable, especially
for flighty animals with high FS (Cooke et al., 2009; Petherick
et al., 2009b; Cafe et al., 2011b). Indeed, it is the persistence
of relative performance within a contemporary group that is
considered to characterize temperament (Lyons et al., 1988;
Stamps J. and Groothuis, 2010). Notwithstanding the influence
on FS of habituation to handling, studies on the behavioral
responses to proximity of humans suggest that reactivity of
cattle to the presence of humans is not strongly associated
with FS (Kilgour et al., 2006; Cooke et al., 2009; Petherick
et al., 2009b). This observation draws attention to the difference
between transient behavioral expressions of temperament and
the persistent underlying processes that sculpt the expressions
of temperament. In studies on beef cattle managed at pasture,
animals are typically handled through yards for assessment of FS
at frequencies less than once every 30–60 days (Petherick et al.,
2009b; Cafe et al., 2011b). Thus, the behavioral flight response
to handling is a brief and infrequent event in comparison with
the quotidian challenges of daily life. Furthermore, physiological

responses to handling and transport including changes in
cortisol, epinephrine, NEFA, and body temperature tend to be
transient and return to pre-challenge values within minutes
to hours (Curley et al., 2008; Cafe et al., 2011a; Lees et al.,
2020). In contrast to the transience of these behavioral and
physiological expressions of temperament, other traits associated
with FS such as body weight, growth rate, metabolic rate,
core body temperature, intramuscular fat deposition, and some
immune functions are manifestations of persistent expression
of metabolic functions and resource allocation priorities.
The persistent whole-of-body association of flightiness with
behavioral and physiological functions could be consistent with
flighty temperament constituting a homeorhetically regulated
state of the animal (Colditz, 2020; Supplementary Material).
How might homeorhetic processes shape the expression of
these traits?

5.2. Homeorhetic Regulation of
Temperament Traits
Two types of homeorhetic regulation are relevant to
temperament in cattle: (1) top down organization by the
central nervous system of functions in somatic tissues that
is coupled to external environmental cues; and (2) multiplex
regulation integrating internal and external cues via dialogue
between the central nervous system and somatic tissues
providing both top down and bottom up inputs to the regulated
physiological state. Top down regulation by a central controller
in response to an external cue has recently been proposed for
regulation of photoperiodism in sheep and other mammals by
the circadian genes BMAL2, and DEC1, through their activating
and suppressive effects on EYA3 in the pars tuberalis of the
pituitary gland (Wood et al., 2020). The authors suggest that
regulation of EYA3 constitutes a flip-flop switch for transitioning
between two stable states recognized as summer and winter
physiology. Variation between animals in the characteristics of
summer and winter physiology such as coat length might then
be influenced by additional proximate regulators of individual
traits in peripheral tissues. In this top down model, regulation
lies within the activity of the pituitary in response to day length
signals it receives from the external environment. In contrast,
in the multiplex model of homeorhesis provided by lactation,
hormones including prolactin, growth hormone, glucocorticoids,
insulin-like growth factor-1, and thyroid hormones produced
both centrally and in peripheral tissues create an endocrine
environment that modifies the expression of genes and the
functions of pathways that provide the homeostatic settings for
metabolic activities throughout the animal. Thus, visual and
tactile stimuli from the external environment are integrated
with neural and somatic signals from the internal environment
in maintenance of the physiological state of lactation (Akers
et al., 2000; Bauman, 2000; Armstrong, 2015). Within this
multiplex hormonal environment, lactation performance is
influenced by numerous genes influencing hormonal regulation,
metabolism, and mammary gland function. Under the additional
influence of availability of environmental resources, lactational
performance is expressed as a continuous trait. Thus, the trait
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“lactation performance” is the expression of a physiological
state recognized as “lactation” that is not controlled by a
single regulator but is the summation of a whole-of-animal
condition. These two models of homeorhetic regulation raise
the question as to whether the physiological, behavioral, and
immune characteristics of cattle with flighty temperament follow
a central top-down model initiated by external environmental
cues (such as proximity of humans) or multiplex integration
of top-down and bottom-up messaging. This question is
examined further in Section 5.5. While the persistence of the
behavioral, physiological, and immunological expressions of
flighty temperament are in accord with the homeorhetic model
(Colditz, 2020), there remains a need for a mechanistic account
of the developmental architecture of temperament to better
understand how the stable patterning of temperament traits
arises. Four timeframes for patterning are evident (Lyons et al.,
1988; Stamps J. A. and Groothuis, 2010; Mason and Capitanio,
2012; Schuett et al., 2013; Stamps and Biro, 2016; Moldoff and
Westneat, 2017), as described next.

5.3. Patterning of FS and Its Associated
Traits
The patterning of tissue structure and function during ontogeny
can have life-long influences on the expression of traits.
This phenomenon has attracted particular attention in farm
animals through the patterning of traits known as domestication
syndrome. The cardinal sign of domestication in vertebrates
is a reduction in fearfulness (Price, 1999; Wilkins, 2020).
Accompanying the increase in tameness is a suite of behavioral
and morphological changes including smaller jaws and teeth,
wider heads, floppy ears, altered coat colors, smaller brains,
reduced stress responsiveness, an extended timeframe during
which socialization can occur and more frequent female sexual
cycles than occur in wild progenitors (Trut et al., 2009). Deficits
in activity of gene regulatory networks influencing development
of the neural crest during embryogenesis have been proposed to
link these domestication syndrome traits (Wilkins et al., 2014).
Neural crest derivatives include the adrenal medulla and nerves
of the autonomic and enteric nervous systems. Expression of
homeobox gene PHOX2B supports expression of glial-derived
neurotrophic factor and MASH1 which regulate development
of autonomic tissues and the enteric nervous system in
the developing embryo. At this developmental stage, Phox2b
protein is necessary for expression of tyrosine hydroxylase
and dopamine-β-hydroxylase and is described as an essential
determinant of the vertebrate noradrenergic phenotype (Pattyn
et al., 1999).

A second phase of ontogenetic patterning that occurs later in
fetal development has been demonstrated by studies of the effect
of prenatal maternal stress on FS in calves. Repeated transport
of brahman cows for 2 h at 60 ± 5, 80 ± 5, 100 ± 5, 120 ±

5, and 140 ± 5 d of gestation was associated with a significant
increase in FS and basal cortisol in calf progeny in comparison
to controls (Littlejohn et al., 2016). Analysis of genome-wide
distribution of differential DNA methylation (hypermethylation
and hypomethylation) in peripheral blood leukocytes revealed

alterations in canonical pathways of behavior, stress responses,
metabolism, and immune function (Littlejohn et al., 2018). In
a more focused analysis, differential methylation was observed
in pathways involved in opioid signaling, corticotropin releasing
hormone signaling, dopamine signaling, serotonin signaling,
and GABA signaling (Littlejohn et al., 2020). Activity of the
innate immune system was also studied in a subset of these
calves by intravenous challenge with endotoxin (LPS). Prior to
challenge, TNF-α and IL-6 were higher and IFN-γ lower in pre-
natally stressed calves. In contrast to the larger study population
(Littlejohn et al., 2016), cortisol did not differ prior to challenge
but responses were higher post challenge in pre-natally stressed
calves. There was also a tendency for baseline rectal temperature
to be higher in pre-natally stressed calves (P= 0.051). Adrenergic
activity has not been described in these studies. When female
progeny were assessed at 5 years of age, the pattern of change
in DNA methylation as animals aged differed between prenatal
treatments illustrating the persistence of effects of prenatal stress
(Cilkiz et al., 2020).

Ontogenetic patterning in embryonic and fetal life are strong
examples of homeorhetic regulation. The studies of Cole and
colleagues (Irwin and Cole, 2011; Fredrickson et al., 2015; Cole,
2019) discussed in Section 3.3 illustrate a third time frame for
patterning. The shift in immune function under the burden
of environmental stressors provides a canonical example of
phenotypic plasticity associated with allostatic reprogramming
in post-natal life (McEwen, 1998). The persistency of the
stress-induced immune phenotype and its associated changes
in metabolic function are recognized as the basis for a stable
dyshomeostasis (Thorp and Schlaich, 2015).

Learning during past-natal life provides a fourth pathway
for patterning of behaviors. Persistent patterns of behavior can
be acquired through a range of learning processes including
imprinting, classical (Pavlovian) conditioning and instrumental
learning (Goldstein, 2019). The pervasiveness of post-natal
learning in modifying phenotype is illustrated by Pavlovian
conditioning of immune functions (Colditz, 2008). All aspects of
innate and adaptive immune functions so-far examined as well
as many endocrine activities can be entrained through classical
conditioning paradigms to be re-enlisted (re-expressed) when the
animal is exposed at a later time to the conditioning stimulus,
such as a sound, sight, odor, touch or taste, that was used in
the training paradigm (Husband, 1993; Hadamitzky et al., 2020).
The distinction between patterning of immune activities as a
consequence of exposure to environmental stressors described
in the preceding paragraph and Pavlovian conditioning is the
need in the former example for an immune stimulus to reactivate
the patterned immune function, whereas eliciting stimuli in
behavioral conditioning are not molecular structures recognized
by cells of the immune system. To emphasis this distinction,
Pavlovian conditioning of immune function is also termed
behavioral conditioning. Behavioral conditioning entails neural
processing (Koren et al., 2020) and provides a further example
of the anticipatory regulation Sterling and Eyer termed allostasis
(Sterling and Eyer, 1988). Post-natal learning and experience
have been found to induce plasticity of temperament in a number
of species (Lyons et al., 1988; Stamps J. A. and Groothuis,
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2010; Schuett et al., 2013; Stamps and Biro, 2016; Moldoff and
Westneat, 2017; Capitanio and Mason, 2019). Cattle can readily
be habituated to handling and the presence of humans, however
the failure of habituation to eliminate relative differences between
animals in the FS test provides a strong argument that persistent
learned behaviors play little role in the temperament syndrome
associated with FS (Petherick et al., 2009b; Cafe et al., 2011b;
Cooke, 2014).

Mason and Capitanio (2012) summarize developmental
patterning as a process that is enabled by an ecologically
appropriate environment which supports genome environment
interactions that are “customary” of the evolutionary
history of the species. The foreshortening of the recent
evolutionary history of beef cattle by artificial selection creates
challenges for the design of environments and management
practices to deliberately nurture ontogenetic development
of temperament traits that are adaptive for contemporary
management environments.

5.4. GWAS Studies of FS
Genome-wide association studies (GWAS) in cattle phenotyped
for FS can help cast some light on the influence of genes on
ontogeny and mature function in the temperament syndrome.
Single nucleotide polymorphisms (SNP) pointing to candidate
genes associated with FS have been identified by several groups.
Candidates include BARHL2, MAGEL2, NDN, SNRPN (Costilla
et al., 2020; Brahman and two tropical composite herds),
NCKAP5, PARK2, ANTXR1, GUCY1A2, CPE, DOCK1 (Valente
et al., 2016; Nallore), PWWP2A, GABRG2 (Chen et al., 2020;
Brahman and Yunling), DRD3, HTR2A (Garza-Brenner et al.,
2017; Charolais), POU1F1, DRD3, VWA3A, ZBTB20, EPHA6,
SNRPF, NTN4 (Dos Santos et al., 2017; Guzerat), ACER3,
VRK2, FANCL, SLCO3A1, NRXN3, EXOC4, CACNG4, and
SLC9A4 (Paredes-Sánchez et al., 2020; Brahman) (Table 1).
Hanna et al. (2014) identified candidate genes involved in
sodium ion transport and voltage gated ion channel functions
associated with subjectively scored temperament in Nellore
Angus cross cattle. Thus, candidate genes differ between
studies and between breeds of cattle. Where quantified, SNP
contribute up to a few percent of additive genetic variation
in FS (Dos Santos et al., 2017; Costilla et al., 2020). The
large number of candidate genes and their small individual
additive genetic variation in FS is in accord with the additive
genetic variation seen in heritability estimates of FS (Haskell
et al., 2014). A theme of involvement in neural development
and synaptic function is evident amongst the candidates. A
notable absence from this list of candidates are SNP in genes
encoding adrenergic receptors or enzymes tyrosine hydroxylase
and dopamine-β-hydroxylase involved in the dopamine—
norepinephrine—epinephrine synthesis pathway, which harbor
known polymorphisms in cattle (Hu et al., 2010; Lourenco-
Jaramillo et al., 2012). For a review of candidate genes associated
with other behavioral traits in cattle see Friedrich et al. (2015).

5.5. Summary of Regulation of Flightiness
GWAS studies point to a prominent role of neural functions in
generating the internal environment that tunes somatic activities

into the characteristic patterns associated with flightiness in a
top down manner. In this model, orchestration of temperament
would lie within the neural activities modulated by structural
and functional variation associated with the candidate genes
identified by GWAS (e.g., Dos Santos et al., 2017; Costilla
et al., 2020). Conversely, the potential for epigenetic patterning
of peripheral tissue functions during ontogeny and mature
life is well-recognized in the somatic activities associated with
FS (Bell and Greenwood, 2016). In view of the importance
of centripetal (afferent) nervous and blood borne messaging
from peripheral tissues to the central nervous system (Kleckner
et al., 2017; Dantzer et al., 2018; Quigley et al., 2021), a
multiplex bi-directional model seems more plausible than a
top down model driven by external environmental cues like
proximity to humans. Thus, the persistent character of FS
and its associated peripheral traits (Haskell et al., 2014) could
arise from the influence of genetic variants (e.g., Dos Santos
et al., 2017; Costilla et al., 2020) and prenatal epigenetic
effects such as maternal stress on ontogenetic development in
utero (Littlejohn et al., 2020), then be reinforced in postnatal
life by feedback from peripheral tissues functioning within
an autonomic and neurohormonal environment patterned by
the earlier developmental programming (Kleckner et al., 2017;
Dantzer et al., 2018; Quigley et al., 2021). The quantitative
character of FS and its associated traits (Haskell et al., 2014)
suggest that the balance of these influences may well differ
between populations of cattle. In this multiplex homeorhetic
model, temperament would lie within both the central neural
functions modulating perception of the animal’s internal and
external environments providing top down regulation, and in
the epigenetic settings in peripheral tissues providing tissue-
specific regulation (Chovatiya andMedzhitov, 2014) and bottom-
up signaling to central processing functions (Kleckner et al.,
2017). It is suggested here that adrenergic tone is an important
intermediary within this dialogue.

Zuckerman (1995) suggests that temperament emerges
from “chemical templates that produce and regulate proteins
involved in building the structure of nervous systems and
the neurotransmitters, enzymes, and hormones that regulate
them.” An attempt at one-to-one mapping of neutral processes
such as neurotransmitter activity to temperament has long
been discredited as molecular phrenology. The quantitative
character of FS and the diversity of genes implicated with
the trait is in accord with Zuckerman’s model. Thus, while
variation between individuals in baseline adrenergic tone and in
adrenergic reactivity to perceived threats may provide a common
link between traits associated with flightiness, a causal basis
for variation in adrenergic tone within genes associated with
adrenergic messaging may not be a prerequisite. Indeed, much
of the variation between individuals that leads to variation in
adrenergic tone is likely to lie outside the SNS and AHS systems.

6. DISCUSSION

Several further points are noteworthy. Early studies on
temperament in cattle and other farm animal species focused
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TABLE 1 | Candidate genes associated with FS suggested in GWAS studies (Valente et al., 2016; Dos Santos et al., 2017; Garza-Brenner et al., 2017; Chen et al., 2020;

Costilla et al., 2020; Paredes-Sánchez et al., 2020).

Candidate gene Protein Biological function Tissue expression

BARHL2 BarH like homeobox 2 Neuron differentiation and migration Prefrontal cortex and two other tissues

MAGEL2 MAGE family member L2 Transcription regulation, regulation of circadian

rhythm

Brain and 13 other tissues

NDN Small nuclear ribonucleoprotein-associated

protein N

Transcription activator, central nervous system

development

Brain

SNRPN Small nuclear ribonucleoprotein-associated

protein N

mRNA splicing Brain and 19 other tissues

NCKAP5 NCK associated protein 5 microtubule formation Lung and 14 other tissues

PARK2 RBR-type E3 ubiquitin transferase Ubiquitin conjugation pathway Not described

ANTXR1 ANTXR cell adhesion molecule 1 Cytoskeleton reorganization Baseline

GUCY1A2 Guanylate cyclase Intracellular signal transduction Prefrontal cortex and 10 other tissues

CPE Carboxypeptidase E Protein processing Prefrontal cortex and 18 other tissues

DOCK1 Dedicator of cytokinesis 1 Cell migration Placenta and 18 other tissues

PWWP2A PWWP domain containing 2A Histone binding Conceptus and 19 other tissues

GABRG2 Gamma-aminobutyric acid receptor subunit

gamma-2

Component of gamma-aminobutyric acid

receptor, the major inhibitory neurotransmitter

in the brain

Not described

DRD3 D(3) dopamine receptor Dopamine neurotransmitter receptor Prefrontal cortex

HTR2A 5-hydroxytryptamine receptor 2A Serotonin neurotransmitter receptor Brain and 15 other tissues

ACER3 Sodium/hydrogen exchanger Transmembrane cation transport Adult kidney and 5 other tissues

VRK2 VRK serine/threonine kinase 2 Protein phosphorylation Baseline

FANCL FA complementation group L DNA repair Spermatocyte and 19 other tissues

SLCO3A1 Solute carrier organic anion transporter family

member 3A1

Mediates transport of prostaglandins (PG) E1

and E2, thyroxine (T4), deltorphin II, BQ-123,

and vasopressin

Heart and 17 other tissues

NRXN3 Neurexin-3-beta Neuronal cell surface protein that may be

involved in cell recognition and cell adhesion

Baseline

EXOC4 Exocyst complex component 4 Synaptic transmission Longissimus thoracis muscle and 19 other

tissues

CACNG4 Voltage-dependent calcium channel gamma-4

subunit

Modulates neurotransmitter glutamate receptor

function

Not described

SLC9A4 Sodium/hydrogen exchanger Transmembrane sodium and potassium

transport

Adult kidney and 5 other tissues

POU1F1 Pituitary-specific positive transcription factor 1 Development of anterior pituitary, expression of

prolactin, and Thyroid Stimulating Hormone β

Not described

VWA3A von Willebrand factor A domain containing 3A Basal membrane formation, cell migration, cell

differentiation, adhesion, hemostasis, signaling,

chromosomal stability, malignant

transformation, and immune defenses

Testis and 8 other tissues

ZBTB20 Zinc finger and BTB domain containing 20 Encodes for a transcription factor implicated in

hematopoiesis, oncogenesis, and immune

response

Muscle and 18 other tissues

EPHA6 Ephrin type-A receptor 6 Central nervous system development, inter cell

signaling, axon guidance

Central nervous system, hypothalamus,

thalamus, amygdala

SNRPF Small nuclear ribonucleoprotein F Plays role in pre-mRNA splicing Conceptus, and 19 other tissues

NTN4 Netrin 4 Axon development and morphogenesis Lung and 19 other tissues

on consistent individual differences in behavior during handling
(Tulloh, 1961; Burrow et al., 1988; Grandin, 1993). Nonetheless,
it was also recognized that temperament is an enduring
characteristic of the animal that persists in the absence of
humans (Lyons et al., 1988; Sebastian et al., 2011) and which
“represents an individual’s basic stance toward continuing
changes and challenges in its environment” (Mason, 1984),

cited by (Lyons et al., 1988). Lyons (1989) goes on to add “In
most naturalistic settings, the functioning of an individual’s
behavioral and physiological systems depends on multiple
influences. An individual’s characteristic temperament, its
specific expectations and motivations, and salient environmental
events interact to influence specific behavioral and physiological
outcomes.” The account of flightiness provided here is in accord
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with this concept of temperament as a pervasive whole-of-
animal attribute of the individual’s process of environmental
engagement (Capitanio and Mason, 2019). Indeed, the
emergence of observed physiological states of the animal
from the activity of Romanovsky’s dynamic confederation
of controllers (Romanovsky, 2018) provides a model of
regulation that scales from proximate physiological variables
like body temperature and blood pressure to intermediate
states like psychological affect and whole-of-animal attributes
like temperament.

Data on baseline values of physiological variables suggest
that flightiness is associated with differences between animals
at rest as well as when challenged by handling, confinement
and the opportunity for escape. The influence of adrenergic
activity on metabolic and immune functions described above
together with persistent differences between individuals in
resting sympathetic tone seen in humans suggest that persistent
differences between individual cattle in adrenergic tone tune
physiological activities that manifest as differences in metabolic
rate, core body temperature, carcass composition, immune
function, and perhaps affective disposition. In this respect,
flightiness measured as escape from confinement in the chute
can be considered to be but one manifestation of an underlying
temperament trait that is also expressed through somatic and
psychological functions of the animal. Thus, the underlying
temperament trait measured by FS can be considered to be
a whole-of-animal characteristic that is expressed at rest as
well as during episodes of acute environmental challenge.
The associations observed between FS and the expression of
long-term behavioral activities in steers is in accord with
this suggestion (MacKay et al., 2013). This whole-of-animal
influence of temperament balances behavior, metabolism, and
immune functions of each individual along an axis between
active defense and generative flourishing. The remarkable point
is that a continuous gradation along this axis should exist
within a population of animals at rest. Further studies on
baseline values of physiological variables are warranted, together
with studies on the relationship between baseline adrenergic
tone and adrenergic reactivity to environmental challenges
such as handling. Examination of the influence of habituation
of animals to handling on metabolic profiles associated with
flightiness could be particularly informative. Failure of metabolic
profiles to habituate despite behavioral habituation to handling
would support the distributed multiplex homeorhetic model of
temperament regulation. In addition, further studies on bias
of immune responses toward inflammatory activity rather than
adaptive immunity are warranted, together with further studies
on associations of flightiness with immune competence (Hine
et al., 2015, 2019). The influence of dopamine release as a
component of adrenergic tone on immune function also deserves
attention (Matt and Gaskill, 2019; Broome et al., 2020).

It follows that the position of an animal on the spectrum
of flightiness does not describe the whole of the animal’s
temperament. This suggestion is in accord with the results
of principal components analysis of behavioral tests in cattle
(Kilgour et al., 2006) and with the more general conclusion
drawn in behavioral ecology and psychology that temperament

is a multidimensional attribute of the animal (Zuckerman, 1995;
Réale et al., 2007; Finkemeier et al., 2018).

Associations between FS and HPA activity have been clearly
demonstrated in numerous studies and the focus in this review
on adrenergic function does not imply that HPA activity is not an
important aspect of flighty temperament. Differing contributions
of HPA, SNS, and AHS to host responses are observed in
many stress paradigms (for review see Goldstein, 2003) and
are a distinguishing feature of proactive vs. reactive coping
styles (Koolhaas et al., 2010). Differences between individuals
in activity of the parasympathetic nervous system (PNS) are
also an important feature of coping styles (Koolhaas et al.,
1999). PNS activity has attracted little attention in studies of
FS. PNS and SNS exert one-dimensional reciprocal inhibition
on the function of some organs; however a more complex
pattern of autonomic control is usually observed (Berntson et al.,
1991). PNS and SNS can exhibit coactivation, co-inhibition,
and change in one while the other remains stable, as well
as reciprocal inhibition. Thus, physiological functions occupy
a two-dimensional “autonomic space” (Berntson et al., 1991)
(Figure 2D). The autonomic space model is well-supported by
studies of heart function in farm animals (von Borell et al.,
2007) and physiological responses to affective experience in
humans (Quigley and Stifter, 2006; Hoemann et al., 2020).
Activity of PNS in FS warrants investigation as does the relative
contribution of SNS and AHS activities at rest and in response to
environmental challenges. To date, there have been few studies
on the involvement of norepinephrine (SNS) in FS phenotypes.
Dissection of the contribution of SNS and AHS activities should
help illuminate the role of adrenergic tone in FS and it associated
traits. Thus, it is not possible at present to speculate on whether
differences occur between tonic activity of AHS (AHS tone)
(Vicente et al., 2002), tonic activity of SNS (sympathetic tone)
(Sundlöf and Wallin, 1977; Blum et al., 1989; Gazzola and
Hunter, 1999) or whether there is a parallel tonic activity of
both adrenergic pathways (adrenergic tone). Tone describes
the intensity of neurotransmitter released over time. Discharge
of neurotransmitters from the sympathetic nervous system is
pulsatile and exhibits rhythms with a range of frequencies
within an individual nerve fiber (Kenney and Ganta, 2011).
Synchronization of discharge between fibers within a nerve
bundle innervating a target organ, and between organs (such as
synchronization between heart contraction and respiration) is
thought to play an important role in modulating sympathetic
tone and physiological activities of target organs (Barman and
Kenney, 2007; Gilbey, 2007). It follows that variation between
animals in propensity for synchronization of SNS discharge is
an additional level of investigation that may reveal processes
contributing to the temperament syndrome.

A further point of note is that activity of AHS, SNS,
and PNS may differ between test paradigms used to measure
behavioral activities and thereby contribute to differences seen
between behavioral tests such as crush score and FS in their
associations with production traits (Kadel et al., 2006; Cafe
et al., 2011b; Haskell et al., 2014). Divergence of PNS, SNS,
AHS, and HPA activity between behavioral tests is well-
documented in rodents (Goldstein, 2003; Koolhaas et al., 2010).
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FIGURE 2 | Hypothetical location of cattle (A–C) and pigs (D) in physiological space. Animals occupy a 2 dimensional autonomic space created by activity of the

sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) illustrated by the x y plane (D) (Berntson et al., 1991). In panels (A–C), SNS activity is

combined with adrenomedullary hormonal system (AHS) activity as adrenergic activity (ADR) in view of the limited studies in cattle on associations between flightiness

and SNS activity. A third dimension to physiological regulation is provided by hypothalamic adrenal axis (HPA) activity (z axis). In the resting state (A), ADR and HPA

activity is elevated in flighty cattle (Flighty) in comparison to calm cattle (Calm). In the presence of environmental stressors such as transport or immune challenge with

bacterial endotoxin (B), ADR and HPA activity in flighty cattle remains elevated. In contrast, HPA activity becomes elevated in calm animals with little change in ADR

activity. The association between flightiness and position of cattle on the PNS axis has not be established and a hypothetical scenario is presented in (C). (D)

illustrates the position of pigs with reactive (React) and proactive (Proact) coping styles within 3 dimensional autonomic and HPA space (Koolhaas et al., 1999).

Individuals within a population fall along a vector (arrows) through 3-dimensional space between the extreme phenotypes illustrated as Calm and Flighty or Proactive

and Reactive. Life history differences between species can also lead to species-typical differences in position within autonomic space (Capitanio and Mason, 2019).

The particular test paradigm used to assay temperament may in
effect generate a transect through autonomic space along which
individuals in a population are distributed (Figures 2A–C).
To the extent that genetic and epigenetic variations between
individuals in their perception of the environment and in
autonomic and HPA functions contribute to their position along
a particular transect, different test paradigmsmay reveal different
temperament types as illustrated by Figures 2B,D. Furthermore,
not all temperament types as revealed by transects through
autonomic space may be as strongly associated with consistent
individual differences in metabolic and immune functions as
is FS. Capitanio and Mason (2019) note from studies in wild
and captive monkeys that consistent differences in autonomic

function can occur between species as well as between individuals
with a species. The dimensions of temperament that for many
species are summarized as boldness, aggressiveness, reactivity,
sociability, and exploration may reflect principal dimensions
of environmental variability that are of ecological salience to
the life history and eco-niche that a species occupies. Variation
between individuals within a species points to temperament
being a tuning factor that modulates the environmental fit of
a population both within and across generations. A challenge
for studies on temperament is to identify test paradigms
that reflect the ecologically salient aspects of environment
that over evolutionary time have exerted selective pressure on
temperament in the species of interest. For beef cattle, the
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opportunity to escape from the perceived threat posed by
isolation and confinement may fortuitously fulfill this role.

The multiplex model has implications for how the
temperament trait associated with flightiness is defined and
measured. If the trait lies not only within the neural functions
(such as those predicted by candidate genes near SNP identified
by GWAS) that generate perceptions of environmental threats
but is also situated within the somatic (metabolic and immune)
functions that generate afferent inputs to those neural functions,
then measurement of the temperament trait may be improved by
combining the behavioral escape response with measurements
of immune and metabolic functions. Describing the trait solely
by its behavioral dimension might miss some aspects of the
underlying trait. Thus, characteristics such as immune function,
body temperature, metabolic activity, and appetite (not discussed
here) are not merely consequences of a neural top down driver
of flightiness but are themselves attributes of the underlying
temperament syndrome (Biro and Stamps, 2010). A challenge
for animal scientists is to develop statistical models to integrate
activity of the components of the temperament syndrome in
a manner that adequately reflects the biological emergence of
temperament within the animal.

The model of flightiness as a suite of processes situated
within the architecture and activities of neural and somatic
tissues is in accord with the Bayesian brain model of sensory
perception and neural function (Kristiansen and Fernö, 2020),
and the viewpoint of biology known as enactivism (Allen, 2018;
Gefter, 2018; Colditz, 2020). These viewpoints have a long
history in philosophy and biology, and align in general terms
with a number of alternative accounts such as the organismic
perspective described by Mason and Capitanio (2012).

Information on the association between FS and affective state
is limited to one study, which provided evidence that flightiness
is associated with increased arousal and a negatively valenced
state during a threat perception test (Lee et al., 2018). Further
work is warranted on the susceptibility of flighty animals to
negative affective states during acute environmental challenge
and their disposition to negative affectivity when at rest. In view
of the importance of positive affective states to positive welfare
(Lawrence et al., 2019) this question has important implications
for the welfare of free ranging cattle at pasture as well as within
the infrastructure of handling facilities and feedlots. Evidence in

mice indicates that negative affective states have a cumulative
effect that decreases resilience to subsequent aversive events
(Clarkson et al., 2020). A tendency toward negative affectivity in
flighty cattle would provide an additional limit to their suitability
for participation in the animal domestication niche of modern
animal production.

In conclusion, a plausible scenario is that in beef cattle, fight
or flight activity in the face of acute challenge as well as persistent
differences in physiological functions such as metabolic rate,
growth rate, rectal temperature, carcass composition, and
immune competence are aspects of a flightiness temperament
syndrome that is mediated in part via adrenergic tone.
Nonetheless, adrenergic tone is but one of several neurosomatic
axes influencing these traits. Variation between individuals in
activity of these other axes together with variation in capacity of
tissues to respond to adrenergic and non-adrenergic stimuli and
to express downstream traits are likely to be additional sources
of variation in the relationship between FS, production, health,
and welfare.
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