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Feeding a liquid diet to the newborn calf has considerable implications for developing

the intestinal microbiota, as its composition can shift the population to a highly adapted

microbiota. The present work evaluated 15 Holstein calves individually housed and fed

one of the three liquid diets: I – whole milk (n = 5), II – milk replacer (22.9% CP;

16.2% fat; diluted to 14% solids; n = 5) and III – acidified whole milk to pH 4.5 with

formic acid (n = 5). All animals received 6 L of liquid diet, divided into two meals, being

weaned at week 8 of life. Calves also had free access to water and starter concentrate.

After weaning, all calves were grouped on pasture, fed with starter concentrate, and

hay ad libitum. The fecal samples were collected at birth (0) and at weeks 1, 2, 4,

8, and 10 of life. The bacterial community was assessed the through sequencing of

the V3-V4 region of the 16S rRNA gene on the Illumina MiSeq platform and analyzed

using the DADA2 pipeline. Diversity indices were not affected by the liquid diets, but

by age (P < 0.001) with weeks 1 and 2 presenting lower diversity, evenness, and

richness values. The bacterial community structure was affected by diet, age, and the

interaction of these factors (P < 0.01). Twenty-eight bacterial phyla were identified in the

fecal samples, and the most predominant phyla were Firmicutes (42.35%), Bacteroidota

(39.37%), and Proteobacteria (9.36%). The most prevalent genera were Bacteroides

(10.71%), Lactobacillus (8.11%), Alloprevotella (6.20%). Over the weeks, different genera

were predominant, with some showing significant differences among treatments. The

different liquid diets altered the fecal bacterial community during the pre-weaning period.

However, differences in the initial colonization due to different liquid diets are alleviated

after weaning, when animals share a common environment and solid diet composition.

Keywords: animal nutrition, Bifidobacterium, dairy calf, gut health, gut microbiota

INTRODUCTION

The intestinal microbiota is essential for the stable development of the gastrointestinal tract (GIT)
and a healthy immune system (Czarnecki-Maulden, 2008). Nutrition and management, among
others, can affect the GIT microbiota of newborn calves (Malmuthuge et al., 2015). Nutrition
is the most influential factor in pre-weaned calves’ gut bacterial community (Klein-Jöbstl et al.,
2014; Guzman et al., 2015). Indeed, the composition of the diet offered to calves affects the
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gut microbiota structure because it provides different substrates
for the growth of bacterial communities (Maslowski andMackay,
2011; Li et al., 2012; Kasparovska et al., 2016). However, most
studies that evaluated the effects of feeding management on the
calves’ gut microbiota have focused on the impact of a solid diet
(Callaway et al., 2010; Shanks et al., 2011; Petri et al., 2013a; Dias
et al., 2018), and little information is available on the effect of
liquid diet composition on gut microbial composition (Górka
et al., 2011; Edrington et al., 2012; Deng et al., 2017).

The main liquid diet offered to pre-weaned dairy calves in
Brazilian and Canadian dairy herds is whole milk (Vasseur et al.,
2010; dos Santos and Bittar, 2015), while milk replacer is mainly
used in USA (United States Department of Agriculture, 2014).
Other liquid diets include waste milk, pasteurized waste milk,
transitional milk, or acidified milk (milk replacer, waste milk, or
whole milk; Vasseur et al., 2010; United States Department of
Agriculture, 2014; dos Santos and Bittar, 2015). The liquid diet is
commonly offered for 60–90 days after birth, but in some cases,
calves are weaned after 90 days.

Whole milk feeding has considerable implications for gut
microbiota development and selection for a highly adapted
intestinal microbiota dominated by Bifidobacterium (Kelly et al.,
2016). These bacteria have probiotics effects on gut development
and the prevention of dysbiosis (Hidalgo-Cantabrana et al.,
2018). Probiotic is defined as a living microorganism that
promotes a benefit to host’s health (Hill et al., 2014). Various
milk constituents, such as oligosaccharides and glycoconjugates,
selectively enrich this type of microorganism (Pacheco et al.,
2015). In humans, newborns fed on breast milk compared
to infant formula have a gut microbiota with a profound
relationship to neonatal enterocyte genes that influence host
protection and development (Schwartz et al., 2012). Also,
formula-fed babies have more significant colonization by
Clostridium spp. and particularly C. difficile (Penders et al., 2005,
2006; Vael and Desager, 2009), microorganisms associated with
various diseases, including diarrhea (Dial, 2004; Poutanen, 2004;
Lees et al., 2020).

In many dairy herds, especially those that have ad libitum
feeding, the liquid diet is acidified with organic acids up to pH
4.2–4.5 to maintain its microbiological quality throughout the
day (Todd et al., 2017). This type of liquid diet is an alternative
for feeding dairy calves and has been studied as a simple and
low-cost method (Yanar et al., 2006). Acidification can modulate
the gut microbiota, retarding growth, or eliminate pathogenic
microorganisms (Richard et al., 1988; Jaster et al., 1990),
sensitive to lower pH values. Besides, acidification can favor
the growth of beneficial microorganisms, such as Lactobacillus,
Bifidobacterium, and Faecalibacterium (Deng et al., 2017), that
will compete for nutrients with pathogenic microorganisms.

The use of commercial formulas (milk replacer) can be an
option to replace whole milk, either for economic reasons, for
consistency in the liquid diet composition, or for the opportunity
to increase the solids content and consequently the performance
of calves. Many studies have shown that milk replacers may be
suitable to replace whole milk, ensuring animal performance, as
long as they have an adequate composition as to the sources and
levels of nutrients (Cooper and Watson, 2013; Bittar et al., 2018;

Badman et al., 2019; Bai et al., 2020). The various ingredients
used in the milk replacer composition, such as dairy products
or vegetable origin products (Bittar et al., 2018), can affect the
gastrointestinal microbiome (Badman et al., 2019).

Some studies have used fecal sampling to study the gut
microbial community in dairy calves (Uyeno et al., 2010;
Oikonomou et al., 2013; Badman et al., 2019), especially for
ease of sampling, and because it is a non-invasive method,
allowing repeated sampling (Claesson et al., 2017). However, due
to the microbial community’s difference between the mucosa
and digesta, and differences along the intestinal tract, the fecal
microbial community should not be used to represent the entire
gut microbiota (Tang et al., 2020). It is more accepted as a proxy
for the distal gut microbiota (Claesson et al., 2017).

This study aimed to compare the fecal bacterial community of
calves fed different liquid diets (whole milk, acidified whole milk,
and milk replacer) in the pre- and post-weaning phase. We have
investigated the fecal bacterial community of dairy calves using
16s rRNA amplicon sequencing as a non-invasive proxy for the
intestinal bacterial community in fifteen young dairy calves. We
hypothesized that feeding different liquid diets can cause fecal
bacterial community changes during the pre-weaning period, and
that these changes are persistent after weaning.

MATERIALS AND METHODS

Animals, Facilities, and Feeding System
This study was conducted at the calf facilities of the Department
of Animal Science, Luiz de Queiroz College of Agriculture,
University of São Paulo, located in Piracicaba – São Paulo,
Brazil. All animal procedures followed the guidelines
recommended by the Animal Care and Use Committee
(Protocol no. 2018.5.586.11.7).

This study was part of a performance study with 36 newborn
Holstein calves (male calves, birth weight of 32.84 ± 1.54 kg;
and females, 28.22 ± 0.81 kg), blocked according to sex, age, and
birth weight and evaluated in a randomized block design in the
pre-weaning period for performance and health. Previous results
were published in the abstract by Coelho et al. (2020a). For the
present study, 15 calves were assigned to 5 blocks so that each
block had 3 calves with similar sex, age, and BW at the beginning
of the experiment. Then, three male blocks (birth weight 28.52
± 0.91 kg), and two female blocks (birth weight 35.89± 2.24 kg),
were used to assess the impact of different liquid diets on the fecal
bacterial community.

All animals were fed 10% of birth-weight of high-quality
colostrum (>50 g IgG/L) within the first 6 h of life (Godden,
2008). All calves had serum protein above 5.5 g/dL at 48 h of
life, as recommended by Elsohaby et al. (2019). From the second
day of life, each calf within each block was fed one of the three
evaluated liquid diets: 1 - Whole milk (WM); 2 - Acidified
whole milk (AWM); and 3 - Milk replacer (MR; Sprayfo Azul,
Sloten from Brazil Ltda, SP, Brazil) diluted to 14% solids. The
composition of the MR and whole milk are described in Table 1.

The total volume of whole milk was collected daily in the
milking parlor and divided into two portions, one part was
immediately refrigerated, and the other was acidified. The pH
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TABLE 1 | Chemical composition of the starter, milk replacer and whole milk.

Composition Starter concentrate Milk replacer Whole milk

Dry matter, % 89.96 96.49 –

Ash, % DM 6.93 8.73 –

Crude protein, % DM 22.66 22.90 2.28*

Crude fat, % DM 2.92 16.20 3.89*

NDF, % DM 16.47 1.13 –

NFC, % DM 51.02 51.04 –

Lactose, % – – 4.45

Total solids, % – – 12.58

NDF, Neutral detergent fiber; NFC, Non-fiber carbohydrate (NFC) was calculated

according to the equation: NFC = 100 – (CP + EE + NDFcp + ash).

*Not in the dry matter, but estimated from total solids (g/100 g milk).

was measured with a pH-meter (Tecnal, SP, Brazil) during the
acidification process, which was stopped when pH reached 4.5.
The acidification was done with the milk at 5◦C to avoid the
formation of protein clots, with the addition of formic acid
(formic acid 85%, Dinâmica Química Contemporânea Ltda, SP,
Brazil). The milk was acidified at least 12 h before feeding and
kept at room temperature. Because the pH dropped during
storage, it was corrected back to 4.5 by adding whole milk before
being supplied to the calves. All liquid diets were heated to 38–
40◦C before feeding. Liquid diets were supplied from 2 d of life
till weaning, 3 L of liquid diet was individually offered twice daily
(7 and 17 h). Calves were trained from 2 d of life to drink milk
from an open bucket. At 57 d of age, the weaning process was
initiated in the morning by reducing the total daily liquid diet
supply by 1 L every day until complete weaning at 62 d.

Calves Housing
Immediately after birth, the calves were housed in individual
suspended cages (113× 140 cm)with sawdust beds in a ventilated
barn, where they remained until 15 d of life. At 2 d, the calves
had free access to water and starter concentrate in open buckets
located in the cage’s front. From 16 d until the end of weaning
at 62 d, the calves were individually housed outdoors in a
wood shelter with free access to water and starter concentrate.
The commercial starter concentrate (Bezerra Ag Milk Agroceres
Multimix Animal Nutrition Ltda., Rio Claro, SP, Brazil) was
offered daily ad libitum, always after supplying the liquid diet.
The composition of starter concentrate is described in Table 1.

After weaning, calves were grouped on pasture, with free
access to water, the same starter concentrate, and hay ad libitum.
The animals were followed up to 70 days of age when the
study ended.

Animal Health and Measurement
The individual consumption of the liquid diet and the starter
concentrate, was measured daily. Calves were weighed at birth
and weekly until week 8 on amechanical scale (ICS-300, Coimma
Ltda., Dracena, SP, Brazil), always before morning feeding.
Average daily gain (ADG) and feed efficiency (kg of BW gain/kg
of total DMI) were calculated for the pre-weaning period (0–
56 d).

The fecal score was monitored daily, as described by
Larson et al. (1977), based on the fluidity of feces: (1)
normal and firm; (2) soft; (3) aqueous; (4) fluid. Diarrhea
was considered when the calves had a fecal score ≥ of
3 for more than 1 day. Calves with a score ≥ of 3
received oral rehydration solution1 in a volume of 8%
of body weight, 2 h after morning feeding, with a bottle
until the fecal score returned to normal. Calves’ rectal
temperature was measured daily using a digital thermometer,
and fever was considered when the calf had more than 39.4◦C.
Health problems were monitored and treated according to
veterinary recommendations.

Evaluation of Bacterial Community
Fecal Samples Collections
Fecal samples were collected at day 0 (±1 h after birth, before
colostrum feeding) and at days 7 (S1), 14 (S2), 28 (S4), 56
(S8, weaning), and 70 (S10, post-weaning). The samples were
collected manually with gloves, directly from the animals’
rectum, and the gloves were discarded at each collection to
avoid cross-contamination among samples. About 2 g of feces
were collected, placed in sterile tubes, and immediately frozen
at−20◦C.

DNA Extraction, Library Preparation, and Sequencing
DNA extraction from fecal samples was performed with the
QIAamp R© Fast DNA Stool Minikit extraction (Qiagen, Hilden,
Germany), following the modifications suggested by Yu and
Morrison (2004). The quality of the DNA samples was evaluated
by electrophoresis on 0.8% agarose gel and concentrations were
quantified with a spectrophotometer (NanoDrop R© ND-2000;
Thermo Fisher Scientific, Wilmington, DE, USA).

The libraries were prepared following Illumina’s
recommendations. The primers used for locus-specific
amplification of bacteria flank the V4 region. Overhang
sequence of adapters is included in locus-specific primers.
Illumina adapter sequences, which were hybridized with the
immobilized sequences on the sequencing sheet, were:

Forward overhang: 5′-TCGTCGGCAGCGTCAGATGTGT
ATAAGAGACAG-[locus-specific sequence]

Reverse overhang: 5′-GTCTCGTGGGCTCGGAGATGTGT
ATAAGAGACAG-[locus-specific sequence]

The first PCR was performed for locus-specific amplification.
Then, AMPure XP beads were used to purify the PCR reaction,
and the size of the fragments generated in the PCR reaction was
evaluated by agarose gel electrophoresis. The second PCR was
performed to connect the barcodes of the Nextera XT kit, and
new steps for purifying the PCR and validating the libraries were
performed. Subsequently, the libraries were quantified so that
all samples/libraries were joined in an equimolar manner in a
single pool.

A heterogeneous control, the phage phi-X, was combined with
the amplicon pool to introduce complexity to the sequencing.
Finally, the libraries and phi-X have been denatured to allow

1Composition: 1 L of warm water, 1 g of potassium chloride, 80 g of dextrose, 4 g of
sodium bicarbonate, and 5 g of sodium chloride.
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sequencing. Sequencing was performed in IlluminaMiseq system
(Illumina, San Diego, CA, USA) and produced readings were
2 × 250 bp. All raw DNA sequence reads were deposited in
NCBI’s Sequence Read Archive under BioProject PRJNA639165,
submission SUB7576848.

Bioinformatic Analyses
The data were analyzed as a previously published pipeline
(Callahan et al., 2016b), using a set of packages implemented
in the R language2 (R Core Team) and available through the
BioConductor project (Gentleman et al., 2004; Huber et al.,
2015).

First, multiplexed readings were assigned to biological
samples. The DADA2 program (Callahan et al., 2016a), an open-
source package implemented in the R language, was used to
model and correct amplicon errors without building OTUs.
Callahan et al. (2016a) show that DADA2 identified more real
variants in several simulated communities and produced fewer
spurious sequences than other methods. The DADA2 package
has a complete pipeline implemented to transform the sequencer
fastq files into sequences of inferred, dismembered samples and
without chimeras.

The filtering of fastq files was performed to cut the PCR
primers’ sequences and filter the 3′ends of the readings due to
the quality decay (Q < 30), but maintaining the overlap for later
joining of the readings and reassembly of the fragment of the V4
region. The DADA2 algorithm uses a parametric error model,
and each set of amplicon data has a different set of error rates.

After the initial processing of the sequencing data by DADA2,
taxonomies were assigned to each ASV (Amplicon Sequencing
Variants) using an implementation of the DADA2 program of
the naive Bayesian classifier method for this purpose (Wang
et al., 2007). The assignTaxonomy function takes as input a set
of sequences (ASVs) to be classified, and a set of training of
reference sequences with known and assigned taxonomies. The
SILVA database was used as a reference (Glöckner et al., 2017).

The taxonomic classifications generated by DADA2, and
their quantifications, were imported into the phyloseq program
(McMurdie and Holmes, 2013), also implemented in R.
The α and β diversity analyses were performed with the
phyloseq package, as described in Callahan et al. (2016b). For
the β-diversity analysis, a multivariate permutational analysis
of variance (PERMANOVA) was performed, using weighted
UniFrac distances, testing the treatment effect, week, and
interaction. ASVs that have not been classified until the family
level were filtered, and ASVs marked as being the same species
have been clustered. After applying these filters, the tables of gross
abundance and relative abundance counts were obtained.

Then, the taxonomic counts in the phyloseq object were
imported into the edgeR package (Robinson et al., 2010) to
normalize the sizes of each sample’s libraries (Robinson and
Oshlack, 2010), subsequently the counts were transformed to
the base 2 logarithms of the counts per million (log CPM) of
each sample (voom transformation; Law et al., 2014). These
transformations allow the linear models implemented in the

2https://www.R-project.org/

limma package (Ritchie et al., 2015) to analyze differential
abundance. Finally, after adjusting the linear model with limma,
the differential taxonomic abundance was tested for each contrast
(pair of treatments) with moderate t-tests (Smyth, 2004).

Statistical Analysis
The experimental design was a randomized block design, with
the animals allocated in the blocks according to birth weight,
age, and sex. Before model construction, the normality of
residues for all variables was verified by the Shapiro -Wilk test
using the PROC UNIVARIATE procedure of SAS 9.4 (SAS Inst.
Inc., Cary, NC). Average daily gain (ADG), starter concentrate
intake, consumption of the liquid diet, feed efficiency, and
rectal temperature were analyzed as time repeated measures,
using the MIXED procedure of SAS (version 9.4, SAS Institute
Inc., Cary, NC), according to model: Yijk = µ + Ti + Bj +
Eij + Wk + TWik + Eijk, where, Yijk = variable response; µ

= general mean; Ti = fixed effect of treatment (liquid diets);
Bj = random block effect; Eij = residual error A; Wk = fixed
age effect (weeks); TWik = fixed effect of interaction treatment
and age; Eijk = residual error B. The covariance structures
“compound symmetry, heterogeneous compound symmetry,
autoregressive, heterogeneous autoregressive, unstructured,
banded, variance components, toeplitz, antidependence and
heterogeneous toeplitz” were tested and defined according to
the lowest value obtained for “Akaike’s Information Criterion
corrected” (AICC).

The variable cumulative days per calf affected by diarrhea and
days in fever were analyzed by “RestrictedMaximum Likelihood”
ANOVA for a randomized complete block design (RCBD) using
PROC MIXED. As the days with diarrhea was not normally
distributed, its analysis was performed based on log-transformed
data. If significance was detected by ANOVA F test, the Student’s
T-test was assessed for the comparison among the means. The
fixed variables were evaluated using the following statistical
model: Yji = µ + Ti + bj + eij, where µ = general mean; Ti =
fixed effect of treatment (liquid diets); bj = random block effect;
and eij= residual error.

Kaplan-Meier survival curves were plotted for cumulative
diarrhea events for WM, MR, and AWM groups using SAS
9.4 (SAS Inst. Inc., Cary, NC). The endpoint of interest was
survival time, which was defined as the time to first diarrhea event
(fecal score ≥ 3; 1 to 4-point scale) or the end of the study in
days. For this, a data set was organized containing the variables
treatment (WM,MR, and AWM), time (representing the disease-
free survival time), and status (censoring indicator, with the
value 1 indicating an event time and the value 0 indicating a
censored time). The STRATA command of SAS 9.4 (SAS Inst.
Inc., Cary, NC) was used to test the null hypothesis between
different survival curves according to the log-rank (Mantel-Cox)
test. Mantel Haenszel hazard ratio and its confidence interval
were performed using the Cox proportional hazard model using
the slope of the survival curve. It was conducted to compare the
rate of a diarrhea event occurring between the treatments over
time. Additionally, Cox proportional hazard model was fitted
to compare the rate of diarrhea incidence up to 15 days after
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TABLE 2 | Performance, intake and health from birth to weaning of calves fed with different liquid diets.

Item Treatment SEM p-value

AWM MR WM LD1 A2 LD × A3

BW (kg)

At birth 32.68 32.32 33.82 3.04 0.171 – –

At weaning 68.16a 61.04b 69.72a 4.89 0.073 – –

ADG (kg/d) 0.599ab 0.528b 0.673a 0.04 0.025 <0.001 0.011

Starter intake (g)4 227.27 285.74 201.52 68.75 0.529 <0.001 0.761

Liquid diet intake (L)4 5.77b 5.88ab 5.98a 0.04 0.097 <0.001 0.043

Feed efficiency4 0.60b 0.51c 0.70a 0.03 <0.001 0.019 0.050

Rectal temperature (◦C) 38.33 38.43 38.44 0.09 0.205 <0.001 0.926

Days with fever5 0.60 2.40 2.00 0.64 0.165 – –

Diarrhea (days)6,7,8 8.04ab 9.83a 4.92b 1.63 0.040 – –

a,bValues within a row with different superscripts differ significantly at P < 0.05. AWM, Acidified whole milk; MR, Milk Replacer; WM, Whole milk. 1LD, liquid diet. 2A, age. 3LD × A,

Interaction between liquid diet and age. 4d 1 – 56; 5number of animals with diarrhea: AWM (n = 3); MR (n =5); WM (n = 4); 6Based on Student’s T-test at P < 0.05. 7Statistical analysis

was based on natural log-transformed data but means are back-transformed to the original scale; 8number of animals with fever: AWM (n = 4); MR (n = 5); WM (n = 4).

enrollment date. For all the analyses, differences detected at P ≤

0.05 were considered significant.

RESULTS

Feed Intake and Health of Calves
Body weight at birth did not differ among treatments. However,
at weaning AWM and WM-fed animals tended to have higher
BW when compared to those fed MR (Table 2; P = 0.073). The
starter concentrate intake increased with age (Figure 1B; P <

0.001) but was not affected by treatment or by the treatment
interaction with age (Table 2). The rectal temperature was higher
in the first 4 weeks of life (Figure 1D; P < 0.001), but the
values were not indicative of fever, and it was also not affected
by the treatment or interaction of both factors (Table 2). The
number of days with fever was also not affected by the treatments
(Table 2). The consumption of the liquid diet was affected by
age and interaction of age and treatments, and tended to be
affected by treatment (Table 2; P < 0.001; P = 0.043; P = 0.097,
respectively). At week 1, intake was higher for WM and MR
than AWM (Figure 1A; P = 0.033), and this effect tended to
be observed at week 3 as well (Figure 1A; P = 0.053). The
ADG was affected by treatments, age and interaction of both
factors (Table 2; P = 0.025; P < 0.001; P = 0.011). In the pre-
weaning period, the ADG was variable (Figure 1C), at week 2
and 3 WM animals tended to present greater gain than MR and
AWM, respectively (P = 0.069; P = 0.052). At week 4, WM
had a greater gain than AWM and MR (P < 0.001), and at
weeks 5 and 6, MR-calves had the smallest gain (P = 0.014; P =

0.038, respectively). Feed efficiency was affected by treatments,
age and interaction of both factors (Table 2; P < 0.001; P =

0.019; P = 0.050). The efficiency was also variable during the
pre-weaning period (Figure 1E). At weeks 2, 3, and 4, WM-fed
calves had the greatest feed efficiency (P = 0.031; P = 0.047;
P < 0.001, respectively) and MR-fed calves tended to be less
efficient than AWM calves at weeks 5 and 6 (P = 0.072; P =

0.054, respectively).

Number of cumulative days affected by diarrhea was higher
for calves fed MR compared to WM, whereas AWM-calves were
similar to the two other groups (P= 0.040;Table 2). However, the
Log-Rank model’s diarrhea incidence during the experimental
period did not differ among treatments (Table 3). The median
days for 50% of the animals in each group to be diagnosed
with diarrhea showed no difference among treatments (Figure 2).
However, more MR calves tended to be diagnosed with diarrhea
in the first 15 days (P = 0.09; Table 4), as compared to the
WM calves.

Bacterial Community
Sequencing information (Number of raw reads, number of
quality-filtered reads, Number ASVs identified) is shown in
Supplementary Tables 1, 2.

The microbial profile analysis was performed using data from
the amplicon sequence of the 16S rRNA gene. Table 5 shows
α-diversity indices. The indices were not affected by different
liquid diets. However, all indices were affected by age (P < 0.001),
but there was no interaction between the liquid diet and age
(Table 5).

Samples collected at birth (0) had greater diversity (Shannon)
and richness (Chao1). Weeks 1 and 2 had less diversity (Shannon
and Simpson) and evenness (Pielou), and week 1 had less richness
(Chao1; Figure 3).

β-diversity was affected by the liquid diet (P = 0.001), the
age of the animals (P = 0.001), and also by the interaction of
these factors (P = 0.03). While there were dissimilarities in the
pre-weaning phase, weaned calves’ fecal bacterial community
presented similarities in structure (Figure 4).

Twenty-eight bacterial phyla were identified in
the fecal samples. In general, the predominant phyla
were Firmicutes (42.35%), Bacteroidota (39.37%),
Proteobacteria (9.36%), Fusobacteriota (4.08%), and
Actinobacteriota (3.02%), corresponding to 98.18% of
total (Supplementary Table 3). Abundance of these phyla
over the weeks is shown in Figure 5A. Proteobacteria
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FIGURE 1 | Liquid diet (A) starter intake (B) average daily gain (C) rectal temperature (D) and feed efficiency (E) of dairy calves fed different liquid diets. AWM,

Acidified whole milk; MR, Milk replacer; WM, Whole Milk. *Denotes difference among treatments in the respective week.

decreased at week 1. Bacteroidota was the most abundant
at birth. Firmicutes had the greatest abundance until
week 4, when it was surpassed at week 8 by the
phylum Bacteroidota.

Of these 28 phyla, 559 bacterial genera were identified. Among
these genera, the most prevalent were Bacteroides (10.71%),
Lactobacillus (8.11%),Alloprevotella (6.20%), Escherichia/Shigella
(5.21%), and Faecalibacterium (5.07%) (Figure 6).
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TABLE 3 | Log-rank (Mantel-Cox) and Mantel Haenszel hazard ratio comparison between the cumulative incidence of diarrhea from birth to weaning in calves fed with

different liquid diets.

Log-rank χ2 P-value Survival curve comparison Hazard ratio 95% CI P-value

Lower (HR) Upper (HR)

Incidence of diarrhea 2.48 0.288 WM vs. MR 2.23 0.72 11.1 0.130

WM vs. AWM 1.61 0.40 6.48 0.510

MR vs. AWM 0.57 0.15 2.18 0.410

AWM, Acidified whole milk; MR, Milk Replacer; WM, Whole milk.

FIGURE 2 | Median days for 50% of animals to be diagnosed with diarrhea in each group of dairy calves fed different liquid diets. AWM, Acidified whole milk; MR, Milk

replacer; WM, Whole Milk.

TABLE 4 | Incidence of diarrhea up to 15 days relative to birth date in calves fed

with different liquid diets.

Item Treatment

AWM MR WM

Incidence of diarrhea, % 20.0 80.0 60.0

Hazard ratio Baseline 6.87 (0.76–62.4) 4.73 (0.49–46.0)

P-value – 0.09 0.18

AWM, Acidified whole milk; MR, Milk Replacer; WM, Whole milk.

However, the nine most abundant genera exhibited a distinct
abundance profile over time (Figure 5B). At birth, the bacterial
community was dominated by the genus Bacteroides (10.17%). At
week 1, however, Lactobacillus (22.82%) and Escherichia/Shigella
(18.06%) overlapped Bacteroides (13.65%) and were the most
abundant genera, reaching their highest values. After week 1, the
abundance of Escherichia/Shigella and Lactobacillus decreased

considerably until week 10 (0.15 and 0.01%, respectively). Even
though its abundance decreased, compared to the previous
week, Lactobacillus remained the most abundant genus in
week 2, followed by Bacteroides and Fusobacterium (15.29,
13.71, and 10.29%, respectively). At week 4, there was a
predominance of the generaAlloprevotella, Faecalibacterium, and
Fusobacterium (10.00, 8.33, and 6.02%, respectively). At week
8, Alloprevotella reached its highest abundance value (14.71%),
being predominant at this time, and was followed in abundance
by Bacteroides and Prevotella (12.24 and 6.81%, respectively).
At week 10, there was a decline in abundance values for these
three genera. However, Bacteroides remained the most abundant
genus (8.94%), followed by UCG-005 and Rikenellaceae RC9 gut
group (8.68 and 5.21%, respectively), which reached their highest
abundance values at this point. Data for all genera over the weeks
are in Supplementary Table 4.

All taxonomic abundance differential data are reported in
Supplementary Table 5. Figure 7 shows 15 bacterial genera in
a relative abundance of ≥1% on a heat-map. At week 0 and
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TABLE 5 | Fecal microbial diversity of calves fed with different liquid diets.

Indices Diet SEM p-value

AWM WM MR LD1 A2 LD × A3

Shannon 2.51 2.65 2.43 0.07 0.117 <0.001 0.756

Simpson 0.84 0.86 0.82 0.01 0.176 <0.001 0.334

Chao1 62.46 62.98 58.78 3.22 0.586 <0.001 0.733

Pielou 0.63 0.66 0.62 0.01 0.122 <0.001 0.466

1LD, liquid diet. 2A, age. 3LDxA, Interaction between liquid diet and age. AWM, Acidified whole milk; MR, Milk Replacer; WM, Whole milk.

FIGURE 3 | α-diversity indices in fecal samples from dairy calves fed different liquid diets. Data are visualized as box-plots showing the median and the interquartile

(midspread) range (boxes containing 50% of all values), the whiskers (representing the 25 and 75 percentiles) and the extreme data points. Letters above boxes

indicate significant differences at P > 0.05.

week 10, no genus differed among treatments. Weeks 1 and
4 showed the most significant number of differences among
treatments. Alloprevotella was the most abundant at week 8
(Figure 6), and there was no difference among treatments.
The differences were evident when Alloprevotella had low
abundance (weeks 1 and 2). Bacteroides had higher, while
Bifidobacterium had lower abundance in WM than MR at
weeks 1 and 4. At week 2, Bifidobacterium was lower with
AWM. Butyricicoccus was higher at week 1 for AWM and

WM. Collinsella was more abundant at weeks 2, 4, and 8 for
WM compared to AWM. Faecalibacterium had lower abundance
at weeks 1 and 2 in MR-fed calves. Fusobacterium was less
abundant at weeks 1, 2, 4, and 8 in AWM-fed calves compared
to MR. Lactobacillus was abundant in WM over the weeks.
Parabacteroides, Phascolarctobacterium, Prevotella, Rikenellaceae
RC9 gut group, and UCG-005 were less abundant throughout the
studied weeks, but these genera were more abundant for WM
compared to MR-fed calves.
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FIGURE 4 | Effect of the interaction of liquid diets with the different ages of the dairy calves on the structure of the microbial community in fecal samples in dairy

calves fed different liquid diets. Multidimensional scaling (MDS) showing the weighted UniFrac distance metric. AWM, Acidified whole milk; MR, Milk Replacer; WM,

Whole milk.

DISCUSSION

Composition of the Fecal Bacterial
Community
In the pre-weaning period, the liquid diet is the primary source of
energy and protein. When reaching the small intestine, it serves
as a substrate for the growth of microorganisms (Górka et al.,
2011). Characterizing the gut microbiota in the pre-weaning
phase is of great importance to understand host-microbiome
interactions (Badman et al., 2019). In our study, the fecal bacterial
community was affected by different liquid diets. It is interesting
to note that each diet promoted a greater abundance of specific
microorganisms throughout the pre-weaning period, which have
directly affected animals’ performance and health.

Whole milk, especially unpasteurized milk, in human
nutrition has been described in several studies as capable of
improving intestinal health (Fagnani et al., 2019; Butler et al.,
2020), as it promotes the growth of probiotic microorganisms, as
Lactobactillus, Faecalibacterium, and Bifidobacterium (Hill et al.,
2014). Recent studies have shown that the intake of unpasteurized
whole milk increased the abundance of Lactobacillus in the
human gut microbiota (Butler et al., 2020). In our study, the
consumption of WM was constant in the pre-weaning period,
and higher at week 1 than AWM-fed calves. This consumption
may have stimulated the genus Lactobacillus in these animals
compared to those fed with AWM. Probably, this initial stimulus
remained until week 4, when consumption did not differ
anymore among treatments, as the genus Lactobacillus remained
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FIGURE 5 | Relative abundance of bacterial phyla (A) and genera (B) in fecal samples during pre- and post-weaning in dairy calves fed different liquid diets.

more abundant with MR compared to AWM. Lactobacillus
spp. have been associated with minor infections and diarrheal
disorders, in addition to stimulating the mucosal immune system
(Abe et al., 1995; Macfarlane et al., 2007). It is interesting to note
that the genus Lactobacillus was also present in this period, being
the most prevalent in the first 2 weeks of age, probably helping
to minimize and control diarrhea. The higher initial prevalence
of another beneficial bacteria in feces, Faecalibacterium spp.,
was associated with a lower incidence of diarrhea in the first
4 weeks of life, and increased average daily gain in calves
(Oikonomou et al., 2013). Similarly, in our study, calves fed
WM showed a greater abundance of Faecalibacterium at week
1 and a lower incidence of diarrhea, and consequently higher
ADG and feed efficiency. Probably, WM feeding provides the
necessary substrate for the growth of Faecalibacterium, like
acetate (Duncan et al., 2002). Unfortunately, we did not analyze
short-chain fatty acids in fecal samples to discuss this point.

Milk acidification can promote the same benefits as whole
milk, in addition to making the environment unfavorable for
the pathogenic bacteria growth that are sensitive to the lower
pH (Deng et al., 2017; Coelho et al., 2020b). Another benefit
includes the modulation of the digesta’ pH (Coelho et al.,
2020b), which possibly can benefit the growth of other beneficial

microorganisms. Similar to our findings, Deng et al. (2017)
observed a greater abundance of beneficial bacteria in the gut of
calves fed with waste milk acidified with formic acid. Although
this author did not analyze the fecal score, they did investigate
the expression of intestinal mucosa genes, and suggested an
improvement in general health conditions. Besides in our work,
milk acidification increased the age for the first case of diarrhea
when compared to WM (15 vs. 9 days). Yanar et al. (2006) also
found similar results when acidifying milk replacer with formic
acid. Although use of formic acid on acidification process was
acceptable, Zou et al. (2017) observed higher inflammation scores
in the jejunum and ileum. In general, studies with acidified milk
have shown beneficial results for the calves’ health as shown in
our results on the bacterial community.

Other bacterial genera are described as commensal and
beneficial to the gut environment, such as Alloprevotella,
Parabacteroides, and Phascolarctobacterium (production of
succinate and acetate, lower inflammatory activity; Sakamoto
and Benno, 2006; Watanabe et al., 2012; Li et al., 2018) or
Anaerovibrio and Butyricicoccus (improvement of the intestinal
barrier; Eeckhaut et al., 2013; Chen et al., 2019). These bacteria
were more abundant at weeks 1 and 2 in samples collected from
animals fed WM and AWM. The abundance of these genera may
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FIGURE 6 | Bacterial relative abundance for the genus level in fecal samples in dairy calves fed different liquid diets. Each bar represents the identification of the

analyzed sample: Axx-Sy, where Axx is the animal, Sy, the week in which the collection was performed. AWM, Acidified milk; MR, Milk Replacer; WM, Whole milk.
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FIGURE 7 | Differential abundance in most abundant bacterial genera in fecal samples of dairy calves fed different liquid diets. Data are visualized as heat-map.

Comparisons are among treatments within week. Means followed by the same letter are not significantly different by the t-test (P > 0.05). Genera rows without letters

were not significantly different. AWM, Acidified milk; MR, Milk Replacer; WM, Whole milk.

indicate the modulating effect of these liquid diets on the gut
bacterial community.

The composition of MR can alter the gut microbiota (Badman
et al., 2019). Some studies report that MR may contain
oligosaccharides that act as feed components with high bioactive
potential, which can help establishing a beneficial gut microbiota
(Aldredge et al., 2013; Badman et al., 2019). Besides, the presence
of vegetable oils in MR can affect the bacterial community. The
MR in the present study contained coconut oil and palm oil.3

Recent studies suggest that coconut oil may have a beneficial
role in modulating the human bacterial community, increasing
Lactobacillus and Bifidobacterium’s population (Djurasevic et al.,
2018; Rolinec et al., 2020), as observed in our study. However,
palm oil may not have the same beneficial effects as coconut

3Trouw Nutrition: Personal Communication.

oil (Mancini et al., 2015). Palmitic acid, present in palm oil,
affects the integrity of the intestinal epithelium, causing an
unbalanced immune response and stimulating the production
of inflammatory cytokines, favoring a pro-inflammatory bowel
condition (Ghezzal et al., 2020). This condition may be
related to the greater abundance of Collinsella at weeks 2,
4, and 8. This genus is associated with pro-inflammatory
dysbiosis (Candela et al., 2016; Astbury et al., 2020), increasing
intestinal permeability, reducing expression of tight junctions in
enterocytes, and stimulating gut leakage (Chen et al., 2016). The
loss in intestinal integrity has probably favored diarrhea in MR-
fed calves leading to lower ADG, efficiency and BW at weaning
compared to WM-fed calves.

Other observations regarding the bacterial community were
common to the different liquid diets. We have observed in
our data that the abundance of the genera Lactobacillus,
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Bifidobacterium, and Faecalibacteirum decreased with age.
Despite their effect on gut development, they were overcome
by competition overtime with fiber-degrading bacteria (Dill-
McFarland et al., 2017), such as the genera Fibrobacter
and Ruminococcus (Supplementary Table 4). The presence of
carbohydrate fermenting bacteria, such as Bacteroides during
pre-weaning, suggests an increased ability to use complex
carbohydrates from the starter including cellulose, hemicellulose,
resistant starch, and xylans, which reach the large intestine
(Dias et al., 2017; Zhang et al., 2017). Although the AWM
and WM-fed calves had greater abundance of Bacteroides
than the calves MR-fed, this did not impact the starter
concentrate intake.

Before week 10 of life, there was an increase in Prevotella
genus’ abundance probably due to the increasing starter
concentrate intake. This genus has a wide range of metabolic
capacities (Petri et al., 2013b; Rubino et al., 2017), as it can
use soluble carbohydrates, pectins, proteins, and hemicellulose
(Huws et al., 2016). In studies targeting the ruminal bacterial
community, Prevotella was shown to be the predominant
genus. However, although increasing with time, abundance
of Prevotella in our study remained low, confirming the
work of Lourenco et al. (2020) in beef calves, which was
probably due to low consumption of a solid diet and
competition with other genera. Indeed, starting at week 10,
the abundance of Prevotella started to drop, probably due to
the increase in abundance of Fibrobacter and Ruminococcus
and the change from individual to group-housing. In a study
with chimpanzees, Amaral et al. (2017) also observed a
decrease in the Prevotella genus after the animals had been
housed collectively.

α and β-Diversity of the Fecal Bacterial
Community
The GIT of newborn calves was traditionally considered sterile
at birth and quickly colonized by a diverse microbial population
(Mayer et al., 2012). Recent studies have indicated the presence
of microorganisms in the meconium of newborn calves (Alipour
et al., 2018; Elolimy et al., 2019), and the fetal GIT (Guzman
et al., 2020). In our study, we also found a significant
bacterial community in the meconium, which may indicate
microbial colonization during the fetal period. However, most
microorganisms present in meconium were not found at 7 d of
life. The greater α-diversity at birth (week 0) suggests that most
of the microorganisms at this point are transient, and perhaps
they may have a role to play in the initial colonization after birth.
According to Fischer et al. (2018), these initial microorganisms
can interact uniquely with the host, leading to a high individual
bacterial community variation.

The decrease in the α-diversity between weeks 1 and 2 may be
a consequence of the development of microorganisms adapted
to the extra-uterine environment and, mainly, to colostrum and
the liquid diet. The increase in α-diversity has been related to
calves’ age in the pre-weaning period, as observed by Badman
et al. (2019) and Oikonomou et al. (2013). Lower α-diversity
in this period can also be associated to higher incidence of
neonatal diarrhea, as observed in other studies (Oikonomou
et al., 2013; Xie et al., 2013; Nakamura et al., 2017; Zeineldin

et al., 2018). Diarrhea is a gut disorder associated with dysbiosis in
the bacterial community, and its higher incidence was indicated
by the highest average of the fecal score between weeks 1
and 2 (Coelho et al., 2020b). When comparing the bacterial
community and the diarrhea data, we can associate this disorder
to the genera Escherichia/Shigella and Fusobacterium, which were
more abundant in weeks 1 and 2. The genus Escherichia/Shigella
includes the enterotoxigenic Escherichia coli species, which
are responsible for most cases of neonatal diarrhea in calves
(Rigobelo et al., 2006; Izzo et al., 2011). Fusobacterium species
appear abundant in dysbiosis conditions (Huh and Roh, 2020),
and is associated with inflammatory bowel diseases (Ohkusa,
2003). Excessive growth of E. coli can be limited by lactic acid-
producing bacteria, such as Lactobacillus spp. (Ripamonti et al.,
2013).

This subsequent increase in α-diversity will likely assist the
development of GIT and the following transition from a liquid
to an exclusively solid diet. In general, there is a shift in the
microbiota to that of adult animals, as the animal increases
the starter concentrate intake, which develops the rumen and
prepares for weaning (Lallès, 2012). Besides, analysis of β-
diversity indicated similarities among treatments, mainly at
week 10 when calves were already weaned, group-housed, and
under the same management. Cohabitation allows hosts to share
microorganisms (Song et al., 2013; Wang et al., 2016; Diao et al.,
2019), decreasing dissimilarity among animals.

The different liquid diets altered the fecal bacterial
community during the pre-weaning period. The supply
of whole milk was associated with a higher abundance of
beneficial bacteria and consequently higher performance.
The supply of acidified whole milk can be an alternative for
the pre-weaning period, considering the gut microbiota,
even if the calves are less efficient than those fed with
whole milk. The supply of milk replacer must be carefully
evaluated. However, differences in the initial colonization
due to different liquid diets are alleviated after weaning,
when animals share a common environment and solid
diet composition.
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