AUTHOR=Verdon Megan , Rawnsley Richard TITLE=The Effects of Dairy Heifer Age at Training on Rate of Learning and Retention of Learning in a Virtual Fencing Feed Attractant Trial JOURNAL=Frontiers in Animal Science VOLUME=1 YEAR=2020 URL=https://www.frontiersin.org/journals/animal-science/articles/10.3389/fanim.2020.618070 DOI=10.3389/fanim.2020.618070 ISSN=2673-6225 ABSTRACT=

A better understanding of factors that influence learning of cattle with respect to new virtual fencing technology is required to inform the development of best practice training protocols and guide the introduction of the technology to naïve dairy cattle. This experiment examined the effect of age on (1) the efficiency of associative pairing of audio and electrical stimuli in dairy heifers and (2) the retention of this associative pairing over a long period of time without use. Fifty-nine Holstein dairy heifers were used in feed attractant trials where audio cues and electrical stimuli were delivered through manually controlled training collars. Heifers were allocated to four treatments that differed in the age at which naïve animals underwent training; these were 6-months (“6M”; n = 15), 9-months (“9M”; n = 15), 12-months (“12M”; n = 15), or 22-months of age (“22M”; n = 14). Animals in the 6, 9, and 12M treatments underwent a second round of training at 22-months of age (i.e., at the same time as naïve 22M heifers). Heifers received an audio stimulus (2 s; 84 dB) when they breached a virtual fence after which a short electrical stimulus (0.5 s; 3 V, 120 mW) was administered if they continued to move forward. If the animal stopped moving forward no further stimuli were applied. There were no effects of age treatment on the total number of interactions with the virtual fence (P > 0.05). During initial training, 22M heifers received a lower proportion of electrical stimuli (i.e., responded to audio without requiring the electrical stimulus; P < 0.001) and more frequently stopped walking (P = 0.01) and turned back (P = 0.008) following administration of the audio cue compared to younger heifers. Previous training at an early age did not improve the responsiveness of heifers to virtual fencing when re-trained at 22-months of age (P > 0.05). We conclude that dairy heifers should be trained to virtual fencing technology close to calving age rather than earlier in their ontogeny and that stock be re-trained following an extended period without virtual fencing technology.