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Background: Immunomodulation is widely invoked to explain possible effects of
anesthetic/analgesic drugs on recurrence and survival in cancer patients. By
analogy with immune checkpoint inhibitors, which enhance anti-tumor
actions of immune cells in the tumor microenvironment (TME), we aim to
develop a precision approach to immunomodulation by anesthetic/analgesic
drugs. We explore biomarkers predictive of immunotherapy response [tumor
mutational burden (TMB)] and resistance [fraction genome altered (FGA)] in
relation to anesthetic/analgesic dose to survival response and the expression
of drug target receptor genes.
Methods: Two local clinical cohorts [lung adenocarcinoma (LUAD) and colon
adenocarcinoma (COAD) patients] were analyzed retrospectively to yield
statistical interactions between drugs, outcomes, and TMB/FGA (extending
previously reported results). Bulk tumor gene expression data for solid tumors
from 6,488 patients across 18 solid tumor types was obtained from The
Cancer Genome Atlas (TCGA) and normalized by tumor type. TMB and FGA
for each TCGA patient sample was extracted from cBioPortal. DeSeq was
employed to quantify differential gene expression of target receptors of 79
common anesthetic/analgesic drugs for high/low TMB and FGA. Localization
of these receptors to specific immune cells was estimated using CIBERSORT.
Results: Increased TMB and FGA magnified opioid pro-tumor effects on overall
survival in LUAD, while increased TMB reduced ketamine anti-tumor effects on
recurrence and did not affect ketorolac anti-tumor effects on recurrence. In
COAD, increased TMB (DNA mismatch repair deficiency) magnified opioid
anti-tumor effects on recurrence. Drug target receptor gene expression (and
immune cell-type specificity) correlated with both TMB and FGA as a function
of cancer type.
Conclusions: TMB and FGA may have utility as biomarkers predictive of
individual cancer patient response to anesthetic/analgesic dose effects on
survival due to immunomodulation. Correlation across cancer types of
anesthetic/analgesic target receptor gene expression with TMB and FGA and
with TME immune cell types suggests molecular/omics level targets for
further mechanistic exploration. A precision oncoanalgesia approach in the
cancer patient may ultimately be warranted to optimize oncological outcomes.
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Introduction

The question of whether anesthetic or analgesic drugs can have

oncological effects remains very much incompletely answered (1)

despite being raised over four decades ago (2). A recent line of

inquiry maintains that the way to approach this question is from

the vantage point of modern oncology (3, 4), to focus on the

genomics (and transcriptomics, etc.) from which emerge the

differences between cancer types generally and between

individual patient tumors more specifically, and which are key

determinants in the relationships between drug perturbations and

oncological outcomes such as recurrence and survival (5).

Immunomodulation has long been invoked as the primary

mechanism underlying anesthetic/analgesic drug effects on cancer

(6). The specific formulation of this idea has historically been that

of opioid-induced immunosuppression (7): opioids suppress

immune function and enable tumor cells to escape immune-

surveillance, leading to disease progression. The precision

oncological approach has demonstrated the possibility that in fact

opioids specifically may be either pro- or anti-tumor, depending

on cancer type and variation in individual patient-specific tumor

genomics, and furthermore that mechanisms underlying these

effects may be immune-mediated as well as resulting from drug

action on oncogenic pathways in tumor cells (8–13).

Ultimate validation of this precision approach is prediction of

individual patient susceptibility to oncological effects of analgesic

agents. Recent retrospective work integrating clinicopathologic

and omics data has generated hypotheses for specific tumor

genomic mutations that may be able to predict opioid, ketamine,

and ketorolac effects on oncological outcomes for specific

patients, pending further prospective validation, through direct

on-tumor effects (11–13). The aim of the present work is to

identify factors that may do the same based on immune-

mediated effects of analgesic agents, i.e., to articulate a precision

approach to analgesic-induced immunomodulation.

From the oncological viewpoint, an analogy can be made

between anesthetic/analgesic drugs and immunotherapeutic

agents, in particular immune checkpoint inhibitors (ICI), which

enhance anti-tumor actions of immune cells in the tumor

microenvironment (TME) (14). Recognizing that a particular

anesthetic/analgesic drug may be pro- or anti-tumor depending

on the context (cancer type and individual patient-specific tumor

omics), the common factor here is immunomodulation at the

cellular level, i.e., action on immune cells in the TME. As with

ICI, characteristics of the TME may render a specific patient’s

tumor more susceptible to drug effects on TME immune cells.

Practically, specific biomarkers may reflect these characteristics

and enable prediction of drug effects.

The fundamental characteristic determining ICI efficacy is tumor

immunogenicity, which can be defined as a tumor’s ability to induce

anti-tumor immune response (15), reflected by high levels of tumor-

infiltrating lymphocytes (TILs). A major contributor to

immunogenicity is tumor mutational burden (TMB), defined as the

number of somatic mutations per megabase of genomic sequence

(16). TMB captures the number of non-silent mutated single base

pairs in tumor DNA, meaning that these mutations result in tumor
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cells producing neoantigens, i.e., new molecules translated from the

mutated DNA that bind to T-cell receptors, are recognized as “non-

self”, and therefore stimulate anti-tumor immune activity (17).

TMB has been extensively studied as a predictive biomarker for

response to ICI (18, 19) and is used clinically to guide ICI

treatment (20), though challenges remain in terms of its general

implementation across cancer types and individuals (21).

We hypothesize that immunomodulation by anesthetic/analgesic

drugs should similarly depend on tumor immunogenicity since these

drugs need to have a substrate (i.e., TILs) to modulate to exert on-

tumor effects (either pro- or anti-tumor). We therefore hypothesize

that TMB may serve as a predictive biomarker for individual patient

susceptibility to immunomodulation by these drugs, manifesting as a

change in the dose-response curves for associations between drug

dose and oncological outcome. We further explore anesthetic/

analgesic target receptor gene expression in relation to individual

patient immunogenicity, as represented by TMB. In addition to

TMB, we explore dose-response and receptor gene expression in the

context of another ICI biomarker, fraction genome altered (FGA),

which measures copy number variation (deletion or new copies of

entire genome segments). FGA reflects duplication or deletion of

DNA in lengths from single genes to entire chromosomes, in

contrast to the single base pair changes captured by TMB, and in

contrast to TMB appears to predict resistance to ICI (22–24).
Methods

Patient cohorts: MSK

We previously retrospectively analyzed two large prospectively

collected datasets for early-stage patients presenting for primary

tumor resection at Memorial Sloan Kettering Cancer Center: 740

patients with lung adenocarcinoma (MSK-LUAD) (11) and 1,157

patients with colon adenocarcinoma (MSK-COAD) (12). In the

present work we revisited these datasets to further probe

relationships between TMB, FGA, drugs, and outcomes.
Patient cohorts: The Cancer Genome Atlas
(TCGA)

The Cancer Genome Atlas (TCGA) (16) contains

clinicopathologic and bulk RNA sequencing gene expression data

for over 20,000 primary cancer samples from 33 cancer types.

We focused on 18 TCGA solid tumor cohorts, corresponding to

6,488 patients (see Supplementary Table S1 for a breakdown of

total samples by cancer type).
Categorization of TMB and FGA into
clinically significant groupings

The MSK-LUAD cohort featured next-generation sequencing

(MSK-IMPACT) (25) of tumor samples removed during surgery,

which enabled calculation of TMB and FGA (among
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other genomic factors). The MSK-COAD cohort featured

immunohistochemical determination of DNA mismatch repair

(MMR) status [either deficient (dMMR) or proficient (pMMR)]

(26). MMR status correlates with TMB, where dMMR patients

have high TMB and pMMR patients have low TMB (27, 28).

TCGA cohorts featured TMB and FGA values for patient tumor

samples, which were obtained through cBioPortal (29–31). TMB

in TCGA was determined by the total number of nonsynonymous

coding mutations.

Distributions for TMB and FGA were calculated separately for

the MSK and TCGA cohorts by plotting log TMB or unnormalized

FGA vs. TMB/FGA rank. Since TMB distributions are known to

differ by cancer type (32), we calculated separate distributions for

the different TCGA cohorts. Consistent with existing literature

and clinical algorithms for immunotherapy response prediction

(33, 34), these distributions were not linear but rather featured

breakpoints dividing the distributions into high (hypermutators)

(35) and low TMB and high, mid, and low FGA. Three

breakpoints were computed for TMB, while two were computed

from FGA. Because TMB was binarized, the choice between the

2nd and 3rd breakpoints was manual; the 1st breakpoint was

discarded as it represented samples with virtually no mutations

and so was too low to be the hypermutation breakpoint.

Breakpoints were calculated using the R package Segmented (36)

with the mixed-linear segmented models.
Calculation of predicted survival estimates
in the MSK cohorts

The multivariable regression models developed previously

(11–13) were employed to calculate predicted 5-year survival

estimates for model patients for specific TMB and FGA values.
Bulk RNA sequencing gene expression data
and analysis

Bulk RNA sequencing data was analyzed for the same TCGA

patients described above. HTSeq files containing raw RNA

counts were downloaded from the National Institutes of Health/

National Cancer Institute Genomic Data Commons public

database (37). Standard DESeq2 workflow (38) was employed to

normalize the data and calculate differential gene expression for

the TMB and FGA categories described above (i.e., high vs. low

TMB and high vs. low FGA). In brief, genes were prefiltered by

cancer to only include genes where at least 50% of the samples

had non-zero count data. Standard differential expression using

DESeq2 was carried out and log2 fold-change estimate shrinkage

was carried out using the APEGLM method (39). P-values were

automatically adjusted in DESeq2 for multiple testing correction.

Count data was normalized using the variance-stabilized

transform algorithm, which decreases the variance of counts as

compared to the mean of counts for a given gene, along with

outputting expression in log scale.
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Anesthetic/analgesic target receptor genes

A list of 79 genes corresponding to target receptors (or

subunits where applicable) for common anesthetic and analgesic

drugs was compiled, listed in Supplementary Table S2.
Computational estimation of TILs

Computational estimates for immune cell-type proportions for

each patient sample in the TCGA cohorts were previously computed

by Wang and colleagues (40) using the default LM22 immune

composition expression matrices (41) in CIBERSORT (42).
Results

TMB and FGA modify anesthetic/analgesic
dose to survival response curves

Increased intraoperative opioid dose was previously found

to be associated with worse overall survival (OS) in the

MSK-LUAD cohort (11), while intraoperative ketamine (vs.

either dexmedetomidine or no adjunct) (11) and intraoperative

ketorolac were associated with higher recurrence-specific survival

(RSS) (13). TMB was previously found to interact with opioid

dose to modify the opioid-OS association (11), though not with

ketorolac (13). Further analysis of this dataset in this work

demonstrated that TMB interacted with ketamine to modify the

ketamine-RSS association (see below). FGA was previously found

to modify the opioid-OS association (11).

To probe these interactions further, we calculated predicted 5-

year survival estimates for model patients with different TMB

values, derived from the TMB distribution for MSK-LUAD

cohort (Figure 1A) as explained in Figure 1B (TMB values: 1.8

(17th percentile), 3.9 (41st percentile), 10.8 (83rd percentile), and

16.7 (92nd percentile)). The 10.8 muts/mb cutoff separating

hypermutators from non-hypermutators is consistent with

the FDA-defined cutoff (10 muts/mb) above which patients

are considered hypermutators and approved to receive

pembrolizumab (20). TMB interacted with ketamine such that

increased TMB [hypermutation (HM)] opposed ketamine’s

effect to reduce recurrence (Figure 1C, TMB = 1.8: predicted 5-

year RSS = 0.94 with ketamine vs. 0.78 for no adjunct; 3.9: 0.93

vs. 0.78; 10.8: 0.87 vs. 0.78; 16.7: 0.80 vs. 0.77). TMB did not

significantly interact with ketorolac, illustrated by the

overlapping curves for TMB values (Figure 1D, TMB = 1.8:

predicted 5-year RSS 0.81 with ketorolac vs. 0.71 without; 3.9:

0.80 vs. 0.71; 10.8: 0.79 vs. 0.70; 16.7: 0.78 vs. 0.69). TMB

increase magnified the opioid-OS association such that OS

further worsened at higher opioid dose (Figure 1E).

For FGA, the median of each group (high, mid, and low)

was selected from the distribution (Figure 1F) for further

analysis; these were 0.0135 (31st percentile), 0.1442 (78th

percentile) and 0.3975 (96th percentile). Like TMB, FGA increase
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FIGURE 1

TMB and FGA modify anesthetic/analgesic dose to survival response curves in two cancer types: TMB distribution for the MSK-LUAD cohort (A);
predicted 5-year survival estimates for model patients with derived TMB values (B) plotted for RSS for ketamine vs. no adjunct (C), RSS for
ketorolac vs. no ketorolac (D), and OS vs. opioid dose (E); FGA distribution for the MSK-LUAD cohort (F); predicted 5-year OS estimates across a
range of opioid doses for model patients with derived FGA values (G); MMR status distribution for the MSK-COAD cohort (H) and predicted 5-year
OS estimates across a range of opioid doses for model patients based on MMR status (I). FGA, fraction genome altered; HM, hypermutator (high
TMB); MME, oral morphine milligram equivalents; MMR, DNA mismatch repair (pMMR, MMR-proficient; dMMR, MMR-deficient), MSK-COAD,
Memorial Sloan Kettering colon adenocarcinoma cohort; MSK-LUAD, Memorial Sloan Kettering lung adenocarcinoma cohort; OS, overall survival;
RSS, recurrence-specific survival; TMB, tumor mutational burden.
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magnified the opioid-OS association such that OS further worsened

at higher opioid dose (Figure 1G). Note that the error on these

predicted values increases for higher opioid dose and FGA

(Supplementary Figure S1) owing to the decreasing number of

patients at both higher MME and high FGA, and so the observed

near 100 percent mortality at high FGA and high opioid dose

should be interpreted in that context, with a focus on the trend of

increasing mortality for a given opioid dose as FGA increases.

In the MSK-COAD cohort, increased intraoperative opioid

dose was associated with lower risk of recurrence (12)

(highlighting that oncological effects of opioids may depend on

cancer type/subtype). For this analysis, a correlate of TMB, MMR

status, was used to determine hypermutation high-TMB status

(Figure 1H). Hypermutation (dMMR) further decreased

recurrence at higher opioid dose. (Figure 1I, modified from the

original figure).
Anesthetic/analgesic target receptor gene
expression is correlated with TMB and FGA

Distributions for TMB and FGA by cancer type are shown for

the TCGA lung adenocarcinoma cohort (TCGA-LUAD) in

Figures 2A,B and for the TCGA colon adenocarcinoma cohort

(TCGA-COAD) in Figures 3A,B (and for all 18 TCGA cancer

types in Supplementary Figure S2, S3 for TMB and FGA

respectively with breakpoints provided in Supplementary

Table S3, S4 for TMB and FGA respectively). For TCGA-LUAD,

the breakpoint separating high and low TMB was 23.57 muts/
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mb. The breakpoints separating low to mid FGA and mid to

high FGA were 0.318 and 0.494, respectively. For TCGA-COAD,

the TMB breakpoint was 5.9 muts/mb, while the breakpoints

separating low to mid FGA and mid to high FGA were 0.004

and 0.465, respectively. Note that these values are determined

from whole-exome sequencing and do not correspond exactly to

those calculated from a targeted oncology panel like MSK-

IMPACT [the harmonization of different panel assays and whole

exome sequencing is the subject of ongoing research (43, 44)].

Differential gene expression for TCGA-LUAD is illustrated in

the volcano plot Figure 2C for high vs. low TMB and in

Figure 2D for high vs. low FGA. For the TMB differential

expression, 6,469 of a total 31,521 genes (20.5%) were

significantly differentially expressed, with 18 of the 59 expressed

anesthetic receptor genes (30.5%) being differentially expressed.

For the FGA differential expression, 16,082 total genes were

differentially expressed (51.0%) with 38 of anesthetic target

receptors (64.4%) being differentially expressed. Differential gene

expression for TCGA-COAD is shown similarly in Figures 3C,D.

For TCGA-LUAD, 12,492 of 28,711 (43.5%) total genes were

found to be differentially expressed for TMB with 32 of the 58

(55.2%) expressed anesthetic receptors being differentially

expressed. In the FGA comparison, 7,479 (26.0%) of all genes

were differentially expressed, and 12 of the 58 (20.7%) of the

anesthetic genes had differential expression. Note that while this

demonstrates overrepresentation of the receptor genes, more

relevant to the current analysis is that there is differential

expression of these genes (and the specific genes that are

differentially expressed).
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FIGURE 2

TMB and FGA modify expression of anesthetic/analgesic target receptor genes in lung adenocarcinoma: Distributions for TMB (A) and FGA (B) and
differential gene expression for high vs. low TMB (C) and FGA (D) plotted for the TCGA-LUAD cohort (horizontal line denotes p= 0.05, vertical
lines denote fold change = ±1 left and right, respectively). FGA, fraction genome altered; HM, hypermutator (high TMB); TCGA-LUAD, The Cancer
Genome Atlas lung adenocarcinoma cohort; TMB, tumor mutational burden.

FIGURE 3

TMB and FGA modify expression of anesthetic/analgesic target receptor genes in colon adenocarcinoma: Distributions for TMB (A) and FGA (B) and
differential gene expression for high vs. low TMB (C) and FGA (D) plotted for the TCGA-COAD cohort (horizontal line denotes p= 0.05, vertical lines
denote fold change = ±1 left and right, respectively). FGA, fraction genome altered; HM, hypermutator (high TMB); TCGA-COAD, The Cancer Genome
Atlas colon adenocarcinoma cohort; TMB, tumor mutational burden.
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Anesthetic/analgesic target receptor genes are highlighted

throughout. In TCGA-LUAD, an increase in TMB or FGA

generally causes a subset of same genes to be upregulated (e.g.,

OPRD1, GRIN2D, GRIN1, GRIN2C) and downregulated (e.g.,

GRIN2A, GABRP, CHRNA2), though some may switch, such as

CHRNA9. However, in TCGA-COAD, most of the genes switch

up- or downregulation when comparing an increase in TMB vs.

FGA (e.g., GABRB3, HTR7, CHRNA7, GABRE, CHRNG,

GLRA2). It should also be noted that FGA for TCGA-LUAD and

TMB for TCGA-COAD showed an increase in differential
Frontiers in Anesthesiology 05
expression in both the background genes, as well as the target

receptor genes, as compared to TMB and FGA, respectively. As a

check, differential expression between FGA medium and high

was carried out for TCGA-COAD and TCGA-LUAD

(Supplementary Figure S4). This showed in general less

differential expression than the FGA high vs. low comparisons,

and no additional genes were found to be enriched.

Dot plots showing differential target receptor gene expression

for all 18 TCGA cancer types for both TMB and FGA are

displayed in Figure 4. For TMB (Figure 4A), the genes that are
frontiersin.org
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FIGURE 4

Pan-cancer correlation of TMB and FGA with anesthetic/analgesic target receptor gene expression: Dot plots for differential gene expression of target
receptor genes (vertical axis) separated by TCGA cancer type (x-axis) for high vs. low TMB (A) and FGA (B) Greyed out dots represent non-significant
differential expressions. For gene-cancer type pairs without a dot, DESeq2 did not produce a valid p-value or not enough expression of the gene was
found.
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upregulated significantly most frequently are GRIN1 (5 cancer

types), CHRNA5 (4), PTGS2, HTR3A, HTR1D, GRIN3A,

GRIN2D, and GRIN2B (3). Similarly, the genes that are

downregulated significantly the most frequently are HTR2B,

GRIN2A (7), HTR3A, GABRP, GABRG3, GABRA2, and CHRNA1

(5). With the same determination for FGA (Figure 4B), the

upregulated genes are GABRE (8), OPRK1, GRIN2D, GABRA3,

CHRNA5 (7), HTR3A, GRIN1, ADRA2B, and GABRQ (6), and

the downregulated genes are TLR4 (12), HTR7 (11), CNRIP1

(10), PTGS1, CNR2 (9), HT2RB (8), HT2RA, and GABRP (7).

When comparing pan-cancer if genes were alternatively down-

and upregulated by increasing TMB or FGA, 7 TCGA cancer

types were found to have at least 5 significant genes that were

common between the TMB differential expression experiment

and the FGA differential expression experiment. The 7 types

were BRCA, COAD, GBM, LUAD, LUSC, STAD, and UCEC.

For these types, GBM had 0/10 genes (0%) swap, BRCA had

6/34 (17.6%), LUAD had 3/15 (20%), LUSC had 2/5 (40%),

STAD had 12/21 (57.1%), UCEC had 17/21(81.0%), and COAD

had 8/8 (100%) common genes swap whether they were up- or

downregulated between high/low TMB/FGA. Differential
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expression results for all cancer types may be found in the

Supplementary Data File.
TME immune composition and target
receptor gene expression varies with TMB
and FGA

Consistent with existing literature (45–47), variation in

immune composition correlated with TMB and FGA. TCGA-

LUAD immune composition is shown in Figures 5A,B for TMB

and FGA variation, respectively, while TCGA-COAD immune

composition is shown in Figures 5C,D, respectively. For

hypermutated tumors (high TMB), most cancer types showed a

significant increase in CD8+ T-cells and macrophages, while

noting that many subtypes showed exception to this trend. For

high FGA, CD8+ T-cells, macrophages (all subtypes but

specifically M2 macrophages), and CD4+ memory resting T-cells

are significantly decreased. One exception to this rule is TCGA-

PRAD (figures and data for all cancer types can be found in

Supplementary Data).
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FIGURE 5

TME immune cell composition correlation with TMB and FGA: Computational estimates for 22 immune cell-type populations (measured by
CIBERSORT) are plotted as a function of high vs. low TMB (A) and FGA (B) for TCGA-LUAD and for TCGA-COAD (C,D). Bolded x-axis labels
indicate significantly different immune cell-type populations by the Kruskal-Wallis test. CIBERSORT, cell-type identification by estimating relative
subsets of ribonucleic acid transcripts; FGA, fraction genome altered; TCGA-COAD, The Cancer Genome Atlas colon adenocarcinoma cohort;
TCGA-LUAD, The Cancer Genome Atlas lung adenocarcinoma cohort; TMB, tumor mutational burden.
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The anesthetic/analgesic target receptor genes found to be

significantly correlated with TMB or FGA in TCGA-COAD and

TCGA-LUAD were assessed for correlation with the 22 immune

cell populations in each cancer type. Correlation was assessed

using Spearman’s correlation and p-values were computed using

the permutation test from the R package coin (48). Comparison

was done using Spearman’s correlation so as to make no

assumption of the linearity when analyzing the correlation of

immune cell composition with the receptor genes. Data is

provided in Supplementary Data File for the correlation between

all significant genes and immune types with resulting p-values

that were adjusted for multiple hypothesis testing within each

immune cell type for each cancer type. Sample correlation plots

are displayed in Figure 6. Data is shown for the expression of 3

example genes that were significantly differentially expressed for

the TCGA-COAD TMB and TCGA-LUAD FGA categories

(GRIN3A, OPRD1, and GRIN1). There is no clear functional

significance at this time for selection of these genes; they are

used to illustrate how differential expression may be affecting

different immune cells in similar or different ways in various

tumor types. These were compared to the presence of M2-type
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macrophages and CD8+ T-cells, also significantly different when

comparing TCGA-COAD TMB and TCGA-LUAD FGA

categories. As shown, GRIN3A is highly expressed in both

TCGA-LUAD and TCGA-COAD across a wide variety of immune

cells (Figures 6A–D, p < 1e-11 for all 4). However, OPRD1 shows a

significant decreasing expression (p = 0.006) in TCGA-LUAD with

an increase in M2 macrophages, but no change in expression in

TCGA-COAD (p = 0.97). In contrast, GRIN1 shows no significant

change in expression based on CD8+ T-cell level in TCGA-LUAD

(p = 0.58), but an increase in expression is found with an increase

in CD8+ T-cells in TCGA-COAD (p = 0.0004).

Heatmaps displaying Spearman’s rho for TCGA-LUAD

and TCGA-COAD are shown for the significant genes for TMB

and FGA in Figure 7. These plots are both clustered by cell type

and gene expression. As evidenced, specific genes that may be

descriptive of a broader cell type such as GRIN3A or HTR7 for

macrophages are generally upregulated in samples with estimated

higher macrophages, while other genes that may be differentially

expressed in a cancer type due to underlying genomic events in

the tumor such as hypermutation or genomic alteration can

cause significant differences to appear.
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FIGURE 6

Immune cell-type specificity of anesthetic/analgesic target receptor genes: Correlation of expression of highlighted genes with specific immune cell
types for TCGA-LUAD and TCGA-COAD [GRIN3A (A–D), OPRD1 (E–F), GRIN1 (G–H)]. Outliers on the x-axis that were greater than 2 interquartile
ranges above the upper quartile were removed to allow for better visualization. These were still included in the correlation calculations. TCGA-
LUAD, The Cancer Genome Atlas lung adenocarcinoma cohort; TCGA-COAD, The Cancer Genome Atlas colon adenocarcinoma cohort; FGA,
fraction genome altered; HM, hypermutator (high TMB); TMB, tumor mutational burden.
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Discussion

The aim of this study is to begin to develop a precision

approach to immunomodulation by anesthetic and analgesic

drugs to affect outcomes in cancer. At a molecular level, the idea

of immunomodulation translates to action on lymphocytes in the

TME (i.e., TILs), and so analogy is made to immunotherapy, in

particular ICI, which also act on TILs to enhance immune

response against tumor cells. We reason that anesthetic/analgesic

immunomodulation would be sensitive to the level of TILs in the

TME just as ICI are, and would therefore correlate with tumor

immunogenicity, captured by the TMB biomarker. Following the

analogy made to ICI, we also explored FGA, associated with ICI

resistance, even though its relation to TME immune composition

is not as defined.

The first major finding of this paper is that there is in fact

evidence for TMB and FGA modifying the dose-response curves

for analgesics and survival: specifically, TMB and FGA modify

the opioid-OS association in LUAD, TMB modifies the

ketamine-RSS association in LUAD, and TMB modifies the

opioid-recurrence association in COAD. This fundamentally

supports the hypothesis that these drugs may have effects on

recurrence and survival through immunomodulation. Further,

the magnitude of this effect may depend on individual patient

tumor immunogenicity and TILs infiltration.

The second major finding is that gene expression of common

anesthetic/analgesic drugs correlates with TMB (and FGA) and

that the pattern of this relationship (and the immune cell types

correlated with receptor expression) depends on specific cancer

type. Just as ICI target receptor PD-1 is expressed on TILs (and
Frontiers in Anesthesiology 08
both target receptors PD-1 and PDL-1 and are themselves

biomarkers of response) (49), the expression levels of various

anesthetic/analgesic target receptors appear to vary with

immunogenicity and may account at least partially for the

observed drug interactions with TMB and FGA (Table 1).

Regarding opioids, the canonical receptor OPRD1 is correlated

with TMB for both LUAD and COAD, though in opposite

directions (upregulated in LUAD and downregulated in COAD)

(Figures 2, 3). This is consistent with TMB modification of the

opioid survival/recurrence curves for both cancers as well as the

difference in directionality of opioid effect (pro-tumor in LUAD,

anti-tumor in COAD) (Figures 1E,I). Upregulation of OPRD1

and OPRK1 with increasing FGA (Figure 2) is consistent with

FGA modification of the opioid-survival curves in LUAD

(Figure 1G). Increased TMB and FGA are both correlated with

upregulation of OPRD1 in LUAD, consistent with both TMB

and FGA magnifying the pro-tumor opioid-survival association

in LUAD (Figures 1E,G). Regarding ketamine, TMB modification

of the dose-RSS curves in LUAD (Figure 1C) is consistent with

its correlation with GRIN gene expression (Figure 2). By contrast,

ketorolac’s target receptors PTGS1 and PTGS2 are not correlated

with TMB in LUAD (Figure 4), consistent with TMB not

modifying the dose-survival curves (Figure 1D); in this way

ketorolac can be seen as a negative control compared with the

other drugs.

The results in Figure 4 are consistent with data in the

literature as well. Variation of target receptor expression with

cancer type is consistent with previous work looking more

generally at opioid receptor genes and tumor gene expression

(not specifically immune gene expression) (50). It is notable that
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FIGURE 7

Immune cell-type specificity of anesthetic/analgesic target receptor gene expression: Heatmaps illustrating correlations of target receptor gene
expression and immune cell type in TCGA-LUAD for receptors correlated with TMB (A) and FGA (B) and in TCGA-COAD (C,D). FGA, fraction
genome altered; HM, hypermutator (high TMB); TCGA-COAD, The Cancer Genome Atlas colon adenocarcinoma cohort; TCGA-LUAD, The
Cancer Genome Atlas lung adenocarcinoma cohort.

TABLE 1 Comparison of clinical (drug) and transcriptomic (receptor gene) interactions with TMB and FGA.

Drug Cancer type Outcome Dose-response TMB/FGA
interaction

Modification of
dose-response

Target
receptor gene

Correlation with
TMB/FGA

Opioids LUAD OS Pro-tumor TMB Increased pro-tumor OPRD1 Upregulated

FGA Increased pro-tumor OPRD1, OPRK1 Upregulated

COAD Recurrence risk Anti-tumor TMB (dMMR) Increased anti-tumor OPRD1 Downregulated

Ketamine LUAD RSS Anti-tumor TMB Reduced anti-tumor GRIN1 Upregulated

GRIN2A Downregulated

GRIN2C Upregulated

GRIN2D Upregulated

Ketorolac LUAD RSS Anti-tumor None None PTGS1 Unchanged

PTGS2 Unchanged

COAD, colon adenocarcinoma; FGA, fraction genome altered; LUAD, lung adenocarcinoma; MMR, DNA mismatch repair (dMMR, MMR-deficient); OS, overall survival; RSS, recurrence-

specific survival; TMB, tumor mutational burden.
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serotonergic receptor differential expression correlates with TMB

and FGA in a variety of cancers (Figure 4), considering recent

evidence that these drugs may have oncological effects (51) and

representation in TCGA-LIHC specifically (Figure 4) is consistent

with recent clinical evidence in hepatocellular carcinoma (52).

Interestingly, high TMB and FGA modify the opioid dose

to survival response in the same direction in LUAD, whereas

high TMB and FGA predict opposite responses for ICI.

This does not contradict the underlying hypothesis that opioid

immunomodulation acts on the same TILs substrate as

immunotherapy but rather highlights the possibility that the

specific pathways regulated may be different for different drugs,

which may be affected differently with increase in copy number

alteration. Similarly, increased TMB magnifies the pro-tumor

opioid-OS association in TCGA-LUAD while reducing the anti-

tumor ketamine-RSS association. This likely reflects different

pathways of interaction between these specific drugs and TILs,

not to mention differences in direct on-tumor effects of drugs

(vs. drug regulation of TILs action to affect tumor). These

findings underscore that immunomodulation is nuanced, a

finding consistent with recent epidemiological evidence that

opioids may decrease ICI efficacy (53–56) while evincing [in the

case of COAD or triple-negative breast cancer (TNBC)] anti-

tumor effect.

We recently proposed a mechanism for such opioid-ICI

interaction, based on analysis of gene expression and

drug-induced transcriptomic signatures, suggesting that

opioids and ICI regulate a common gene network in CD8+

T-cells in the TME, but in opposite directions (57). Drug

interaction with ICI may depend on pathways separable from

drug immunomodulation more generally with possibly opposing

effects on survival. This may partially explain our findings that

ketamine can be simultaneously anti-tumor (i.e., lower recurrence

risk) due to direct on-tumor effects, that this may be mitigated

through ketamine interaction with TILs (i.e., reducing the RSS

improvement with increasing TMB), and also be neutral with

respect to ICI efficacy (predicted in the mechanistic modeling of

drug-ICI interaction).

Limitations of this study include the following. First, the

clinical data related to opioids and ketamine derives from

intraoperative dosing. While it is reasonable that these effects

extend (and are perhaps even more pronounced) in chronic

dosing for cancer pain, this remains speculative. Second, at

present we have limited data relating drugs, outcomes, and

TMB and FGA. Consequently, we have focused on opioids,

ketamine, and ketorolac in analysis of the clinical data

supporting TMB and FGA modification of drug-survival dose-

response, while the target receptor exploration is broader. Ideally,

we would have the requisite data to similarly analyze other

anesthetic/analgesic agents for dose-response and TMB/FGA

modification. Similarly, the clinical data is limited to two cancer

types (LUAD and COAD). A third limitation is that we have

employed bulk gene expression data to make inferences about

immune cells specifically. Ideally, we would demonstrate these

relationships in single-cell data derived from specific immune cell

populations in the TME (in combination with the bulk data,
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which is needed for calculation of TMB and FGA). This data,

however, is limited and not sufficient for pan-cancer analysis.

Furthermore, it is often derived from only a few patients,

whereas elucidating correlation with TMB and FGA requires

larger patient samples. Future research could employ single-cell

immune cell data to corroborate expression of target receptors on

TILs, as we have already done for TNBC (9). Finally, while the

exploratory analysis of target receptor gene expression (and

correlation with TMB/FGA) suggests an underlying mechanism

to explain individual patient variation in immunomodulation by

anesthetic/analgesic drugs, this is beyond the scope of the present

work. The possible regulation by these receptors of specific

downstream oncogenic pathways is not elucidated here, nor is

the relation between expression level and degree of regulation,

both of which are necessary to formulate a mechanism for

variation of immunomodulation by the drugs to affect outcomes.

Additionally, the current exploration focuses specifically on

immunomodulation, while noting that these drugs may have

direct on-tumor effects as well.

Future research should aim to understand whether TMB and

other markers related to immunogenicity and TILs infiltration

can modify relationships between other anesthetic/analgesic

drugs and outcomes and in other cancer types, whether those

drugs are dosed in the intraoperative or chronic settings. Models

for studying immunotherapy are well described and may be

applicable here; these include syngeneic mouse tumor models,

genetically engineered mouse models (GEMMs), cell line-derived

xenografts (CDX), patient-derived xenografts (PDX), humanized

mouse models, and tumor organoids/spheroids (58). Ultimately,

prospective validation is important, which could definitively

establish these markers as predictive. As the cost of acquiring

omics data continues to decrease (59), its incorporation in

prospective studies will become more feasible. Throughout, it is

imperative to look at specific cancer types and subtypes

individually, as immunogenicity fundamentally varies between

cancer types (60). Our results argue strongly for a precision

approach to understanding immunomodulation by anesthetic/

analgesic drugs in cancer to inform future research and

ultimately for application at the clinical level.
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