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Negative hydrocarbon ions, CnH
− (n = 1–10), are ubiquitous in time-of-flight

secondary ion mass spectrometry, but their utility may have been overlooked.
Recently, however, it has been demonstrated that the ion intensity ratio between
C6H

− and C4H
−, denoted as ρ, can differentiate the chemical structures of

polymers such as polyethylene, polypropylene, polyisoprene and polystyrene,
as well as depth profile the cross-linking degree of poly (methyl methacrylate). It
was found that ρ increases with the carbon density of polymers. Principal
component analysis (PCA), a dimensionality reduction technique, can reveal
hidden data structures through exploring the relationships among the CnH

−

intensities for the four polymers. Assisted by the biplot approach, PCA is key
to uncovering hidden data structures, from which characteristic ions may be
identifiable and their relationships classifiable. The four polymers were classified
by their carbon densities, which dictate the variability of CnH

− intensities and are
captured by the first principal component (PC1). It also became clear that PC1 is
correlated with ρ. This data-driven analytical approach is imperative when
differentiating chemicals with similar structures, especially when diagnostic
ions are lacking. We demonstrate the usefulness of this approach by
examining poly (methyl methacrylate) with different degrees of cross-linking.
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1 Introduction

Time-of-flight secondary ionmass spectrometry (ToF-SIMS) (Benninghoven, 1994) is a
powerful, surface-sensitive analytical technique that provides rich chemical information
hidden in the secondary ions generated from the surface of the specimen bombarded by an
energetic primary ion beam (Fletcher et al., 2007a; Sanni et al., 2002; Urbini et al., 2017;
Chilkoti et al., 1993). The ions captured in an ion mass spectrum for any material amount to
hundreds. However, the difficulties in extracting chemical information from a spectrum
often limit the power of ToF-SIMS as a tool for exploring surface chemistry and identifying
chemical structures of organic materials. This is perhaps one of the reasons why ToF-SIMS
has been underused (Walker, 2008), despite of its potential to provide unique and rich
chemical information (Vickerman and Winograd, 2015; Jones et al., 2007; Cheng et al.,
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2006; Shard et al., 2007; Zheng et al., 2008; Sodhi, 2004; Shard et al.,
2015; Chan et al., 2014; Spool, 2004).

Principal component analysis (PCA) (Gabriel, 1971; Wold et al.,
1987; Abdi and Williams, 2010; Greenacre, 2010; Jolliffe and
Cadima, 2016) is a multivariate technique for dimensionality
reduction. PCA transform a multivariate dataset, a matrix of m ×
n (wherem ≥ n represents the observations and n the variables), into
a set of new n variables called principal components (PCs). The first
PC (PC1) captures the largest possible variance in the original data,
while the second PC (PC2) captures the next largest possible
variance, and so on (Wold et al., 1987). PCs are orthogonal to
each other and are linear combinations of the n original variables,
with the coefficients defining the PCs or eigenvectors. Each of the
measurements against all variables in the original data projects as a
single point, called a PC score, onto each of the n PCs. Therefore, PC
scores have the same dimensionality as the original data,m × n. The
beauty of PCA lies in the fact that if the first two or three PCs explain
most of the variability in the original dataset, one can ignore the
remaining PCs without losing much information. Thus, PCA is a
dimensionality reduction technique; in other words, the originalm×
n dataset can be reduced to an m × 2 or m × 3 PC dataset, enabling
visualization (Gabriel, 1971; Wold et al., 1987; Abdi and Williams,
2010; Greenacre, 2010; Jolliffe and Cadima, 2016) of multivariate
data in the 2D or 3D PCA landscape. This visualization helps to
discover patterns and hidden structures in the data. For example,
clustering of scores in PC1 and PC2 can be used to categorize the
measurements. When the PC1 and PC2 loadings are plotted as
arrows starting from the origin to their (PC1, PC2) values also in the
same PC1 and PC2, one obtains a biplot, which shows correlations
between variables and their impacts on the scores (Gabriel, 1971;
Greenacre, 2010).

Handling ToF-SIMS data involves multivariate analysis due to
the presence of hundreds of ions in an ion mass spectrum. To
manage this complexity, PCA has been applied to reduce the
dimensionality of the multivariate data, revealing hidden
information (Graham and Ratner, 2002; Tyler et al., 2007;
Graham and Castner, 2012; Gajos et al., 2021; Heller et al.,
2017). PCA aids in extracting hidden information from ToF-
SIMS data, enhancing the interpretation of ion mass spectra
(Graham and Ratner, 2002), mitigating topographic or matrix
effects (Graham and Castner, 2012), exploring the orientation
and conformation of proteins (Gajos et al., 2021), and
understanding the aging of Li-ion batteries (Heller et al., 2017).

ToF-SIMS has proven to be a powerful technique for
characterizing the surfaces and interfaces of polymeric coatings
(Mei et al., 2022; Murase et al., 2020; Cristaudo et al., 2019; Shen
et al., 2024). Experimental evidence indicates that no matter how
chaotic the bombardment of the primary ion beam on the surface
may seem, the generated secondary ions must carry certain
information pertinent to the chemical structures or surface/
interface chemistry (Nie, 2016; Nie, 2017; Naderi-Gohar et al.,
2017). This reflects that there are ions with intrinsic relationships
for a material. These relationships may be much more powerful than
individual ions themselves in identifying chemical structures,
leading to enhanced selectivity and specificity for ToF-SIMS. This
is especially useful for materials that do not generate unique ions in
ToF-SIMS, where ratios of appropriate ions might be the only way to
differentiate them.

We have developed ToF-SIMS approaches to exploring
relationships of hydrocarbon ions CnH

−, rather than treating
these ubiquitous ions as stand-alone attributes (Nie, 2016). For
example, the intensity ratio between C6H

− and C4H
−, denoted as ρ,

can gauge carbon densities of polymers (Nie, 2016; Nie, 2017). The
term “carbon density” here refers to the number of carbon atoms are
bonded to a carbon atom, which is close to the C/H ratio but can
differ, as seen when comparing polyethylene (PE) with
polypropylene (PP). Although the C/H ratio is the same for the
monomers, PP has a higher carbon density due to its methyl group
replacing one of the hydrogen atoms in PE. It was also found that ρ
can access cross-linking degrees of poly (methyl methacrylate)
(PMMA) (Naderi-Gohar et al., 2017). Cross-linking of organic
molecules essentially involves hydrogen removal (Trebicky et al.,
2014), leading to an increased carbon density.

However, PCA only states that PC1 has the largest variance
among all PCs without specifying what this variance might mean in
relation to, for example, the physical or chemical properties of
materials under examination in ToF-SIMS data. It is up to the
analyst to determine what PC1, which captures the largest variability
in the original data, signifies. Therefore, interpreting PCA results is
problem-oriented and requires well-defined questions, including the
selection of data to examine initially.

For instance, in a previous PCA study of PE, PP, polyisoprene
(PIP) and polystyrene (PS), it has been clarified that the variability of
C4H

− is the least among polymers with different carbon densities.
This is why C4H

− serves as the best reference to normalize CnH
−

intensities (Nie, 2016). To explore how PCA results can help
understand the relationships among CnH

− ions for the four
polymers, we present a systematic PCA investigation on ion
intensity datasets normalized by each of the ten CnH

− (n = 1–10)
ions and by their sum. It is worth pointing out that no ions are
unique to any of the four polymers, making PCA of CnH

− intensities
an excellent example where more useful information is hidden in the
variability of the intensities of ions rather than their identities. It will
be also demonstrated that the PCA of CnH

− normalized by C4H
− on

the four polymers capturing the variability of carbon density has
applicability in studying cross-linking degrees of PMMA. This was
achieved using the hyperthermal hydrogen induced cross-linking
(HHIC) technology (Trebicky et al., 2014), which removes hydrogen
atoms from hydrocarbon chains of the polymer via bombardment of
energetic H2 projectiles, thereby increasing its carbon density. The
biplot approach (Gabriel, 1971; Greenacre, 2010) in PCA of ToF-
SIMS data will be emphasized for its ability to present PCA results
more efficiently.

2 Materials and methods

2.1 Materials

For the preparation of a thin film, low-density polyethylene (PE)
(Aldrich, Lot # MKBT0433V) with an average molecular weight
(Mw) of approximately ~35,000 and a number-average molecular
weight (Mn) of ~7,700 was utilized. A 1.5 wt% solution of PE in
toluene was spin-coated onto a silicon substrate to produce films
with a thickness of approximately 50 nm. Additionally, a
commercially available biaxially oriented polypropylene (PP) film,
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manufactured via thermal extrusion by 3M, was employed. A
polyisoprene (PIP) sample was prepared by applying cis-
polyisoprene, a synthetic rubber in liquid form (Aldrich, Batch #
07413MD), onto an aluminum foil. Polystyrene (PS) samples were
obtained by sectioning a cross-section from a white-colored Dixie®
6 oz cup. In a previous study, these samples were used to collect
CnH

− data. (Naderi-Gohar et al., 2017).
To assess reproducibility, a new experiment was conducted by

directly collecting ToF-SIMS data from the surfaces of multiple
polyethylene (PE) particles (Aldrich, Lot # MKBT0433V),
polypropylene (PP) pellets (Aldrich, Lot # MKBX 1815V, Mw
~12,000, Mn ~5,000), and polystyrene (PS) pellets (Aldrich, Lot #
MKBS6957V), as well as liquid polyisoprene (PIP) (Aldrich, Batch #
07413MD) deposited on aluminum foil. Additionally, a coating of a
PP-PS mixture was prepared on aluminum foil using a xylene
solution. The weights of the two polymers were initially set to be
equal (approximately 100 mg each) in xylene. However, since the PP
pellets did not fully dissolve, the actual weight ratio of PP to PS in the
mixture was determined to be 2:3.

The preparation of these new samples served two primary
objectives: first, to evaluate the consistency and reproducibility of
ToF-SIMS measurements for these polymers, and second, to
investigate whether a mixture of two polymers exhibits behavior
that reflects the average of its individual components. By comparing
the results from these newly prepared samples with those from
previous analyses, we aimed to validate the reliability of the ToF-
SIMS methodologies developed for characterizing these materials.

Thin PMMA (Sigma-Aldrich, Mw ~97,000, Mn ~44,700) films
prepared on silicon wafers by spin-coating at 4000 rpm using a 5 wt
% chloroform solution. Three of four PMMA samples were treated
with HHIC for 10, 100, and 500 s for cross-linking. The HHIC
experiment was performed in a custom reactor with a base pressure
of 2 × 10−6 Torr. Protons were generated using an electron cyclotron
resonance microwave plasma (2.45 GHz, 87.5 mT) using H2,
extracted at −100 eV, and directed into a 50 cm drift zone (2 ×
10⁻³ Torr H2 pressure). Collisions produced neutral H2 projectiles
with a kinetic energy of 5–20 eV, which were filtered by metallic
grids to remove charged particles. The projectiles cleaved C–H
bonds on the PMMA surface, inducing cross-linking while
preserving chemical functionalities. Additional information on

HHIC technology and its use in modifying thin films can be
found elsewhere. (Naderi-Gohar et al., 2017; Trebicky et al., 2014).

Figure 1 displays the chemical structures of the five polymers
investigated in this study, along with their corresponding carbon-to-
hydrogen (C/H) ratios, calculated from their respective monomer
formulas. These ratios provide a fundamental basis for comparing
the compositional differences among the polymers, as detected by
ToF-SIMS.

2.2 Time-of-flight secondary ion mass
spectrometry (ToF-SIMS)

A ToF-SIMS IV instrument from ION-TOF (Münster,
Germany), equipped with a liquid metal ion gun (LMIG), was
used to collect negative secondary ion mass spectra on samples
of PE, PP, PIP, PS and cross-linked PMMA generated by
bombarding the surface using a pulsed 25 keV Bi3

+ primary ion
beam at a fixed incident angle of 45° to the sample surface. The DC
target current of the primary ion beam was measured at
approximately 5 nA, reflecting the flux of ions generated by the
liquid metal ion gun (LMIG) source and delivered to the target. For
ToF-SIMS analysis, the primary ion beamwas pulsed at 10 kHz, with
each pulse maintained at a width of 1 ns. This pulsing mechanism
achieved a target current of approximately 1 pA, which corresponds
to 624 ions per pulse (commonly referred to as a “shot” in ToF-
SIMS). This value was calculated based on the target current (1 pA),
the elementary charge (1.602 × 10−19 C), and the pulse rate (10 kHz).
The base pressure of the analytical chamber was on the order of
1 × 10−7 mbar.

The secondary ions were extracted by a 2-kV electric field
between the sample and the extractor position perpendicular to
the sample surface, imparting them with a kinetic energy of 2 keV (if
singly charged). These ions then traversed a reflectron-type flight
tube and ultimately reached a microchannel plate, generating a
cascade of electrons. A scintillator converted these electrons into
photons, which were amplified and measured by a photomultiplier
tube. The detection system, comprising these three devices,
effectively captured both the quantity of ions and their specific
arrival times, denoted as t, as described by the following equation:

FIGURE 1
Chemical structures andC/H ratios of polyethylene (PE), polypropylene (PP), polyisoprene (PIP), poly (methyl methacrylate) (PMMA), and polystyrene
(PS). This figure is reproduced from Nie (2017), with permission from John Wiley and Sons.
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zqV � 1
2
m

L

t − t0
( )2

where z represents the charge number, q is the elementary charge,
V is the extraction voltage, m is the mass, L is the flight length,
and t-t0 is the flight time. The detection times of these ions were
converted to mass-to-charge ratios (m/z) using ubiquitous
hydrogen and hydrocarbon ions, as well as other known
species when required. In practice, nearly all secondary ions
detected in ToF-SIMS are singly charged (i.e., z = 1). The only
exception observed by this author was calcium, which is typically
detected as Ca+ at m/z 40 but may also appear as Ca2+ at m/z
20 when Ca+ is sufficiently abundant.

The secondary ion mass spectra were collected by rastering
the primary ion beam at 128 × 128 (16,384) pixels over an area of
300 μm × 300 μm, with each pixel bombarded by one shot of the
primary ion beam, followed by measurement of the secondary
ions and subsequently the charge neutralization step using a low-
energy electron beam. This process was done with a cycle time of
100 μs, rendering an m/z range up to 900 (Though not applicable
for our experiment, measuring ions having m/z values larger
than 900 requires increase the cycle time). This process was
repeated 18 times, resulting in a primary ion dosage of 2 ×
1011 cm-2, which was much lower than the static limit of 1 ×
1013 cm-2. (Fletcher et al., 2007b). The acquisition time for each
spectrum was 30 s.

The spectrum was calibrated using H−, CH− and C4H
−, which

was sufficient for the hydrocarbon ions dealt with in this article.
Generally, for higher mass ions, calibration using other known
species and evaluation of assignment accuracy, calculated by (m/
z value of the peak–m/z value of the assigned ion)/(m/z value of
the assigned ion) and expressed by ppm, may be required. The
mass resolution, calculated as the m/z value at the peak center
divided by the full width half maximum of the peak, for C2H

− and
C6H

− were 3400 and 4800, respectively. Multiple negative
secondary ion mass spectra from each polymer collected and
used for PCA. The measured ion intensities were corrected for
the dead-time effect of the ion registration system using a Poisson
correction. (Stephan et al., 1994). This adjustment is essential to
account for the finite response time of the detection system,
which can lead to an underestimation of ion counts at high signal
rates. By applying this correction, the data more accurately
reflects the true ion intensities, ensuring the reliability of
subsequent analyses.

2.3 Principal component analysis (PCA)

The intensities of CnH
− (n = 1–10) obtained on each of the four

polymers (PE, PP, PIP and PS) were used for PCA. The data table is a
m× nmatrix, withm =Mtotal rows of measurements (ion intensities)
and n = Ntotal columns of variables (CnH

−). (Nie, 2016). The total
number of measurements (Mtotal) and the total number of variables
(Ntotal) for one of the datasets in this study are 48 and 10,
respectively. For simplicity and clarity, these values are used
throughout the following description. A 48 × 10 data matrix X,
with elements x(m,CnH) representing CnH

− intensity in the mth

measurement, can be described as follows.

X �
x 1, C1H( ) / x 1, C10H( )

..

.
1 ..

.

x 48, C1H( ) / x 48, C10H( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

When the above matrix is standardized, each column is
subtracted by its mean and divided by its standard deviation,
resulting in each of the 10 columns having a unit variance∑48

m�1x(m,CnH)2/(48 − 1) � 1. The prcomp() function (Prcomp,
2024) in R programing language (The R Project for Statistical
Computing) was used to perform PCA not only on the ion
intensity dataset normalized total ion intensity and the sum of all
CnH

− intensities, but also on the ion intensity datasets normalized by
each CnH

− intensity. In the latter case, there are only nine variables
because the intensities of the normalizing CnH

− column are all 1.
Therefore, this column needs to be excluded because its variance is
zero. The data matrices are standardized so that each variable has a
unit variance, meaning that a 48 × 10 or a 48 × 9 data matrix has a
total variance of 10 or 9, respectively.

The purpose of PCA is to project the original dataset onto a new
set of coordinates, known as PCs. In this transformation, the first
principal component, PC1, captures the largest variance in the
original dataset. The second principal component, PC2, accounts
for the largest variance of the remaining unexplained variance, and
this process continues sequentially for subsequent components. The
eigenvectors of XTX, which is the covariance matrix (in our case it is
the correlation matrix, as the dataset is standardized) of X,
correspond to the PCs, while the eigenvalue of each eigenvector
is the variance of each PC. Rather than dealing with the covariance
(or correlation) matrix XTX, singular value decomposition (SVD) of
X provides the same results. Using the SVD approach, the
prcomp(X) function in R utilizes the function svd(X) to return
standard deviations (σ(PCk), square root of variances) of PCs,
PC scores and PC loadings, which are termed as sdev, x, and
rotation, respectively.

Singular value decomposition of X is represented as X = USVT,
where U is the left singular matrix of size m × n, S is a diagonal
matrix of size n × n containing the singular values in descending
order, and V is the right singular matrix of size n × n, with VT

denoting the transpose of V. For a m × n data matrix (m = 48
measurements of variables CnH

−, with n = 1–10), if we denote
singular values, scores and loadings of each PC (denoted as PCk, with
k = 1–10) as d(PCk), s(m, PCk) × d(PCk) and l(PCk, CnH),
respectively, then the three matrices associated with SVD of X
can be expressed as follows.

U �
s 1, PC1( ) / s 1, PC10( )

..

.
1 ..

.

s 48, PC1( ) / s 48, PC10( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S �
d PC1( ) / 0

..

.
1 ..

.

0 / d PC10( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V �
l C1H,PC1( ) / l C1H,PC10( )

..

.
1 ..

.

l C10H,PC1( ) / l C10H,PC10( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The PC scores and loadings returned by x and rotation from
prcomp() are US and V, respectively. Columns of US,
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i.e., s(m, PCk) × d(PCk) present scores of all original measurements
projected on PCk. Columns of V, l(CnH, PCk), with n = 1 to 10,
present loadings of all original variables on PCk, i.e., weights of every
variable on transferring the original data points on PCk. All columns
in U, V and VT are orthogonal unit vectors. The columns in V
correspond to the eigenvectors of correlation matrix of XTX. With
the singular values d(PCk) divided by the square root of 48–1, the
prcomp() function returns standard deviation, sdev, σ(PCk) = d(PCk)���

48−1√
for PCs from S, resulting in a diagonal matrix S9 containing ordered
standard deviations σ(PCk), shown below.

S′ �
σ PC1( ) / 0

..

.
1 ..

.

0 / σ PC10( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

What US = XV presents is that the original data points in X are
projected on the new basisV, resulting in the transformed scoresUS.
A score of a PC is shown in Equation 1, where themthmeasurements
against all variables are x(m,CnH), with n = 1 to 10 in our case for
the 10 CnH

−. This set of 10 ion intensities are projected on a single
PCk, as a single score, the mth score s(m, PCk) × d(PCk).

s m, PCk( ) × d PCk( ) � ∑10
n�1

x m, CnH( ) × l CnH, PCk( ) (1)

On the other hand, the original data can be recovered from the
scores US and loadings V via X = USVT. For example, as shown in
Equation 2, a single original CnH

− intensity within the mth

measurement x(m,CnH) can be calculated from the mth scores
s(m, PCk) × d(PCk) on all PCs (i.e., k = 1–10).

x m, CnH( ) � ∑10
k�1

s m, PCk( ) × d PCk( ) × l CnH, PCk( ) (2)

As shown in Equation 3, if we keep the first two (i.e., PC1 and
PC2) and ignore the remaining PCs, then the original data is
approximated as follows from their scores only on the first two
PCs. However, how much the original datum is recovered depends
on how good the loading vector of CnH

−, i.e., l(CnH, PCk) explains
the scores s(m,PCk) × d(PCk) corresponding to the original
data x(m,CnH).

x m, CnH( ) � ∑2
k�1

s m, PCk( ) × d PCk( ) × l CnH, PCk( ) (3)

Therefore, as illustrated in Equations 1 and 2, PCA does not alter
the original data; instead, it views the data to uncover underlying
patterns or structures by focusing on their variability. The purpose
of PCA is to visualize multivariate data, via dimensionality
reduction, in 2D or 3D formats for easier interpretation and
analysis. This is realized when dealing with the first two (as
shown in Equation 3) or three PCs. We can thus visualize
measurement scores and variable loadings of PC1 and PC2 as a
score plot and a loading plot, respectively, which, when overlapped,
form a biplot (Gabriel, 1971; Greenacre, 2010). The loading of a
variable plotted in a biplot may be called the loading vector of the
variable and expressed as an arrowed line from the origin of PC1 and
PC2 axes to its PC1 and PC2 loadings. The biplot not only presents
both the scores and loading vectors of the selected PCs, but also

allows for the exploration of additional information correlating the
scores, loadings, and the original data, as detailed below.

We follow the ggbiplot() (VQV, 2024) function from the ggplot2
package in R to display the scores of the 48 measurements as points
and the loadings of the 10 (data normalized by total ion intensity or
sum of the 10 CnH

−) or nine variables (data normalized by a CnH
−

intensity) as arrowed lines, both on the plane defined by PC1 and
PC2. This function provides a correlation circle, within which all
loading vectors are plotted. If a loading vector of a variable is close to
the correlation circle, the variable is well explained by the two PCs.
Conversely, if a loading vector is far away from the correlation circle,
the variable is not explained well by the two PCs, indicating that it
must be explained by other PCs.

In PCA biplots, the type that does not incorporate standard
deviations into the loading vectors is referred to as the correlation
biplot. In a correlation biplot, the focus is on representing the
relationships between variables, which is particularly useful when
the variables are on different scales or when the emphasis is on
interpreting the relative contributions of variables to the PCs. In our
analysis, standardization ensures that each variable contributes
equally to the PCA by scaling their variances to 1. By
multiplying the PC loadings, l(CnH, PCk), by the standard
deviation of the corresponding PC, σ(PCk), the resulting loading
vector, l(CnH, PCk) × σ(PCk), incorporates the variance explained
by the PC. This scaling transforms the biplot into a covariance
biplot, which reflects the absolute contributions of the variables to
the variance in the dataset.

In the covariance biplot generated by ggbiplot(), the radius of the
correlation circle, which is one for a standardized dataset, and the
standard-deviation-incorporated loading vectors are further scaled
(VQV, 2024) by multiplying a fact (e.g., 1.5) to align with the scaled
scores, which is achieved by dividing (m, PCk) × d(PCk) with
σ(PCk). This additional scaling facilitates a more balanced
visualization of the variable vectors and measurement scores.
Without this adjustment, the scores are often positioned too far
from the loading vectors, making the biplot less interpretable. This
refinement enhances the clarity of the relationships between
variables and samples in the PCA results. The ggbiplot() function
also offers data ellipses for the scores associated with each of the four
polymers, providing a clear and effective visual representation of the
grouped scores and their distribution in the biplot. The scores of
each sample are plotted with a 68% confidence level ellipse,
representing one standard deviation around the mean, assuming
the data are approximately normally distributed.

Specifically, scores fromUS and loading vectors fromVS′ for the
first two PCs are plotted. In this context, the projection of a pair of
scores [e.g., s(m, PC1) and s(m,PC2)] from US onto the loading
vector of a variable CnH

− [l(CnH, PC1) and l(CnH, PC2)] from V
approximates the ion intensity of that variable (in the original
dataset) x(m,CnH), as shown below.

x m, CnH( ) � ∑2
k�1s m, PCk( ) × d PCk( ) × l CnH, PCk( )�������������������������∑2

k�1 l CnH, PCk( ) × σ PCk( )[ ]2
√ (4)

The cosine of the angle (or the correlation) between the loading
vectors of two variables CxH

− and CyH
− from VS9 approximates

their correlation in the original dataset, as shown below.
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1
47

∑48
m�1

x m, CxH( ) × x m, CyH( )
� ∑2

k�1
l CxH, PCk( ) × σ PCk( ) × l CyH, PCk( ) × σ PCk( ) (5)

The PCA results (i.e., sdev, x, and rotation) were saved from
prcomp() and ellipses data of each polymer were obtained using the
ellipse (Ellipse, 2024) package. These data are used to plot covariance
biplots, using Microsoft Excel, in this article for the first two PCs.
The scores are divided and the loading vectors multiplied by the
standard deviation, respectively. These biplots offer comprehensive
insights, including measurement scores, variable loadings,
relationships between scores and loadings, as well as the
underlying implications (Equation 4) and correlations (Equation
5) within the original data.

3 Results and discussion

Table 1 presents the normalized intensities of negative
hydrocarbon ions, specifically CnH

− (where n ranges from 1 to
10), calculated as a ratio to the total ion intensity for each
measurement. This normalization ensures that the data are
comparable across samples, reducing variability due to
instrumental or experimental conditions. The normalized
intensities will be standardized using the prcomp() function in R
for PCA, a multivariate statistical technique employed to uncover
patterns and relationships within the dataset. PCA reduces the
dimensionality of the data while preserving the most significant
variance, enabling the differentiation of polymer samples based on
the variability of the CnH

− ions.
Table 2 shows the variances of PC1, PC2, and PC3, as well as the

explained percentage of variance of PC1 and cumulative explained
variance for PC two and PC3, determined by the PCA of 12 datasets
with ion intensities in each measurement normalized to their total
ion intensity (Table 1), the intensities of each CnH

−, and the sum of
the intensities of the 10 CnH

−. The lowest cumulative variance
explained by the first two and three PCs is 87.3% and 98.4%,
respectively, which is the case for the dataset normalized by the
total ion intensity for each of the 48 measurements. Other
normalizations resulted in higher cumulative percentages for the
first two and three PCs.

Because the first two PCs explained the vast majority of the
variance across all datasets, we present the PCA results only for
PC1 and PC2. However, we emphasize that, in principle, this
decision is provisional and contingent on the confirmation of
sufficient cumulative variance explained by these components. In
our analysis, the high cumulative variance—ranging from 87.3% to
over 98.5% for the first two PCs—justifies the sufficiency of retaining
only PC1 and PC2 for our specific datasets. Furthermore, we
examined the higher PCs but found no significant contributions
from them. This approach ensures that our methodology is data-
driven and adaptable to different contexts.

Figure 2A shows scaled covariance biplot for the PCA results for
the ion intensity dataset normalized by total ion intensity (Table 1),
which is further standardized before PCA. We also normalized the
dataset by each of the 10 CnH

− ion intensities, generating PCA

results shown in Figures 2B–F, 3A–E for n = 1 to 10, respectively.
Finally, Figure 3F presents the covariance biplot for PCA results of
the ion intensity dataset normalized by the sum of the 10 CnH

−

intensities. The PCA results in Figures 2, 3 are visualized in biplots
plotted using results of the first two PCmeasurement scores, variable
loadings and standard deviations calculated via prcomp() in R,
displaying overlapped plots of scores (points) divided and
loadings (arrowed lines) multiplied by standard deviation,
respectively. The scaling applied to the scores, loading vectors,
and the correlation circle ensures a more balanced and
interpretable visualization of the PCA results, as elaborated in the
methods section.

As shown in Figure 2A, the first two PCs explain 87.3% of the
total variance of the original ion intensities normalized by total ion
intensity, where the total variance is 10 (contributed by the
10 variables each with unit variance). Therefore, PCA leads to
dimensionality reduction, that is, the two new variables (PCs)
can describe the total variance of 10 of the original datasets with
only 12.7% of the total variance unexplained. The first two PCs for
CH− (Figure 2B), C2H

− (Figure 2C), C3H
− (Figure 2D), C4H

−

(Figure 2E) and C5H
− (Figure 2F) normalization explain 98.3%,

90.2%, 90.1%, 97.7% and 97.3% of the total variance, respectively. As
shown in Figures 3A–E, the first two PCs for datasets normalized by
the remaining CnH

− explain more than 95% of the total variance.
Figure 3F demonstrates that normalization by the sum of the CnH

− is
effective, as the scores for each polymer cluster are well separated
from each other and the first two PCs explain 95.5% of the
total variance.

Therefore, PCA allows the visualization of the relationships
between measurements and between variables, as well as between
these two groups in the first two PCs. For example, as shown in
Figure 2A, the scores for the four polymers are clustered, with rather
large variations for PE, PP and PIP on PC2. Clearly, PCA can
differentiate the polymers via the variability in their ion intensities.
This is a useful analytical approach because the ion mass spectra of
these polymers are quite similar. More precisely, there are no unique
ions to any of the four polymers. In this situation, one relies on the
variability of ions, rather than their identities, to differentiate
the polymers.

A biplot is also capable of visualizing correlations between
variables and contributions of variables to scores. If the angle
between the loading vectors of two variables is close to 0°, 180°

or 90°, then the two variables are positively correlated, negatively
correlated or uncorrelated, respectively. As shown in Figure 1A,
C6H

− to C10H
− are highly correlated because angles between their

loading vectors are small. For example, the angle between the
loading vectors of C6H

− and C7H
−, shown in Figure 2A, is 8.24°,

as estimated from the correlation of 0.989478808. This value is
derived from the correlation between the loading vectors on
PC1 and PC2, with the standard deviations σ(PC1) and σ(PC2)
incorporated in V, as shown on the right-hand side of Equation 5.
This is very close to the correlation of 0.986733778 (corresponding
to an angle of 9.24°) between C6H

− and C7H
− in the original dataset,

calculated using the left-hand side of Equation 5. The loading plot is
crucial for visualizing relationships, more precisely, the correlations,
among all variables.

As shown in Figure 2A, the contributions of C6H
− to C10H

− to
the scores of PS are significant, as their loading vectors point towards
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TABLE 1 Intensity data of CnH
− ions, normalized to the total ion intensity, for 12measurements each of polyethylene (PE), polypropylene (PP), polyisoprene

(PIP), and polystyrene (PS). Data for 39 out of the 48 measurements are reproduced from Table 1 in Nie (2017), with permission from John Wiley and Sons.

Sample CH− C2H
− C3H

− C4H
− C5H

− C6H
− C7H

− C8H
− C9H

− C10H
−

PE 0.11963 0.32777 0.01940 0.06974 0.00600 0.01312 0.00127 0.00241 0.00030 0.00038

PE 0.11613 0.30857 0.01770 0.06447 0.00564 0.01238 0.00121 0.00239 0.00029 0.00036

PE 0.11838 0.34129 0.01978 0.07145 0.00605 0.01354 0.00122 0.00246 0.00031 0.00037

PE 0.12197 0.36309 0.02131 0.07648 0.00661 0.01437 0.00138 0.00260 0.00036 0.00036

PE 0.12096 0.37774 0.02223 0.07951 0.00684 0.01530 0.00141 0.00276 0.00035 0.00038

PE 0.13069 0.42238 0.02445 0.08632 0.00742 0.01653 0.00150 0.00275 0.00033 0.00047

PE 0.11717 0.34839 0.02023 0.07455 0.00638 0.01519 0.00153 0.00290 0.00039 0.00050

PE 0.10820 0.30584 0.01788 0.06499 0.00569 0.01332 0.00131 0.00252 0.00033 0.00041

PE 0.13769 0.36224 0.02054 0.07218 0.00614 0.01402 0.00136 0.00249 0.00033 0.00039

PE 0.14849 0.38320 0.02177 0.07531 0.00642 0.01493 0.00140 0.00263 0.00031 0.00041

PE 0.14294 0.39292 0.02207 0.07708 0.00662 0.01508 0.00149 0.00265 0.00032 0.00037

PE 0.10528 0.32959 0.01866 0.06204 0.00522 0.01195 0.00129 0.00205 0.00022 0.00035

PP 0.19265 0.38741 0.02571 0.09013 0.00844 0.02129 0.00241 0.00449 0.00065 0.00086

PP 0.17181 0.37180 0.02435 0.08572 0.00804 0.02014 0.00226 0.00426 0.00061 0.00076

PP 0.18318 0.36406 0.02397 0.08355 0.00793 0.01975 0.00232 0.00435 0.00062 0.00083

PP 0.19284 0.38267 0.02483 0.08509 0.00803 0.01993 0.00236 0.00449 0.00066 0.00084

PP 0.18145 0.35082 0.02462 0.08596 0.00818 0.02009 0.00239 0.00426 0.00064 0.00078

PP 0.17684 0.37354 0.02373 0.08561 0.00800 0.02011 0.00219 0.00423 0.00063 0.00084

PP 0.09776 0.19834 0.01301 0.04557 0.00439 0.01131 0.00139 0.00214 0.00033 0.00044

PP 0.10414 0.19963 0.01296 0.04465 0.00419 0.01117 0.00111 0.00213 0.00039 0.00041

PP 0.10718 0.23095 0.01513 0.05277 0.00480 0.01262 0.00130 0.00248 0.00033 0.00043

PP 0.10311 0.21091 0.01379 0.04874 0.00465 0.01177 0.00126 0.00230 0.00031 0.00045

PP 0.09608 0.19263 0.01278 0.04338 0.00419 0.01101 0.00122 0.00219 0.00027 0.00041

PP 0.12577 0.30398 0.01999 0.06809 0.00640 0.01556 0.00162 0.00308 0.00034 0.00043

PIP 0.07594 0.25711 0.01656 0.09296 0.00872 0.02530 0.00275 0.00637 0.00085 0.00135

PIP 0.08007 0.26246 0.01684 0.09342 0.00860 0.02575 0.00284 0.00675 0.00094 0.00138

PIP 0.08078 0.26160 0.01695 0.09292 0.00870 0.02550 0.00287 0.00652 0.00095 0.00143

PIP 0.08015 0.25697 0.01652 0.09371 0.00864 0.02512 0.00293 0.00659 0.00095 0.00137

PIP 0.08002 0.25659 0.01653 0.09419 0.00883 0.02546 0.00288 0.00681 0.00098 0.00139

PIP 0.10004 0.31848 0.02098 0.11970 0.01097 0.03287 0.00356 0.00842 0.00116 0.00184

PIP 0.11471 0.32408 0.02086 0.11386 0.01059 0.03122 0.00335 0.00809 0.00116 0.00176

PIP 0.10725 0.34248 0.02216 0.12400 0.01170 0.03404 0.00397 0.00887 0.00126 0.00197

PIP 0.10071 0.32695 0.02120 0.12169 0.01113 0.03302 0.00351 0.00776 0.00115 0.00189

PIP 0.11540 0.33234 0.02107 0.11565 0.01069 0.03126 0.00333 0.00805 0.00114 0.00180

PIP 0.10802 0.35340 0.02239 0.12705 0.01183 0.03421 0.00387 0.00901 0.00125 0.00200

PIP 0.05079 0.16381 0.01068 0.06099 0.00559 0.01698 0.00195 0.00450 0.00066 0.00102

PS 0.11738 0.18571 0.01271 0.07128 0.00876 0.03873 0.00540 0.01907 0.00354 0.00834

PS 0.11888 0.19685 0.01282 0.06951 0.00833 0.03749 0.00500 0.01798 0.00331 0.00711

(Continued on following page)
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these scores. C2H
− and C3H

− are positively correlated as their
loading vectors overlap. These two ions contribute to the scores
of PP and PE. The loading vectors of CH− and C5H

− are less relevant
to other ions. The loading vector of C4H

− is approximately in the
middle between those of the two groups of ions (i.e., C6H

− to C10H
−

vs C2H
− and C3H

−), indicating that it is not heavily correlated to
either group.

As previously reported, our PCA results clarified that polymers
with larger and smaller carbon densities favor the generation of
larger and smaller CnH

− ions, respectively (Nie, 2016; Nie, 2017). As
a mediumCnH

− ion, C4H
− contributes more than other CnH

− ions to

scores of PIP, which is the polymer with a medium carbon density.
These experimental measurements are the underlying mechanism
for success in using C4H

− as the reference ion to access carbon
densities of polymers and cross-linking degrees of PMMA (Naderi-
Gohar et al., 2017).

From the covariance biplot, one can roughly estimate each
original datum x(m,CnH) from the projection of a
corresponding score determined by s(m, PC1) and s(m, PC2)
onto the loading vector of a variable CnH

−. For example, for the
results shown in Figure 2A, the projection of a score at s(48, PC1) �
−3.470661351 and s(48, PC2) � 1.8242691 onto the loading vector

TABLE 1 (Continued) Intensity data of CnH
− ions, normalized to the total ion intensity, for 12 measurements each of polyethylene (PE), polypropylene (PP),

polyisoprene (PIP), and polystyrene (PS). Data for 39 out of the 48 measurements are reproduced from Table 1 in Nie (2017), with permission from John
Wiley and Sons.

Sample CH− C2H
− C3H

− C4H
− C5H

− C6H
− C7H

− C8H
− C9H

− C10H
−

PS 0.12691 0.20826 0.01322 0.07349 0.00880 0.03958 0.00541 0.01882 0.00359 0.00807

PS 0.13124 0.20658 0.01370 0.07740 0.00939 0.04242 0.00574 0.02085 0.00393 0.00883

PS 0.13404 0.26136 0.01430 0.08501 0.00919 0.04449 0.00550 0.02049 0.00328 0.00816

PS 0.13237 0.25714 0.01401 0.08216 0.00901 0.04304 0.00540 0.02004 0.00319 0.00779

PS 0.13313 0.25001 0.01359 0.07858 0.00877 0.04177 0.00523 0.01967 0.00328 0.00790

PS 0.13815 0.27255 0.01502 0.08911 0.00978 0.04800 0.00589 0.02207 0.00379 0.00937

PS 0.13781 0.24471 0.01413 0.07848 0.00841 0.04083 0.00511 0.01925 0.00315 0.00771

PS 0.09719 0.18206 0.01365 0.08013 0.01000 0.04515 0.00630 0.02116 0.00373 0.00917

PS 0.09516 0.18206 0.01416 0.08391 0.01049 0.04711 0.00663 0.02245 0.00403 0.00996

PS 0.09369 0.16952 0.01115 0.06679 0.00819 0.03709 0.00528 0.01757 0.00321 0.00788

TABLE 2 Variance of PC1 to PC3, alongwith the percentage of explained variance for PC1 and the cumulative explained variance for PC2 and PC3, calculated
for each of the 12 datasets normalized by (1) the total ion intensity, (2) the intensity of individual CnH�ions, and (3) the sum of the intensities of the 10 CnH

−

ions. The ion intensity data were obtained from measurements on polyethylene (PE), polypropylene (PP), polyisoprene (PIP), and polystyrene (PS).

Normalized by PC1 PC2 PC3

Variance Ex. Var. % Variance Cumulative
Ex. Var. %

Variance Cumulative
Ex. Var. %

Total ion 5.943 59.4 2.787 87.3 1.111 98.4

CH� 5.499 61.1 3.344 98.3 0.118 99.6

C2H� 7.008 77.9 1.109 90.2 0.794 99.0

C3H� 6.850 76.1 1.263 90.1 0.785 98.9

C4H� 7.045 78.3 1.744 97.7 0.137 99.2

C4H� 7.623 84.7 1.135 97.3 0.177 99.3

C6H� 8.103 90.0 0.587 96.5 0.206 98.8

C7H� 8.047 89.4 0.588 95.9 0.289 99.2

C8H� 8.204 91.2 0.454 96.2 0.217 98.6

C8H� 8.260 91.8 0.357 95.7 0.282 98.9

C10H� 8.576 95.3 0.291 98.5 0.073 99.3

Sum of CnH� 7.475 74.8 2.075 95.5 0.326 98.8
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FIGURE 2
Principal component analysis (PCA) results, with 68% confidence level ellipses, for polyethylene (PE), polypropylene (PP), polyisoprene (PIP), and polystyrene
(PS), displayed as scaled covariance biplots (i.e., with the PCA scores divided by their standard deviation and the loading vectors multiplied by their standard
deviation). The analysis is based on six ion intensity datasets normalized by total ion intensity (A) and by CnH

− intensity with n = 1 (B), 2 (C), 3 (D), 4 (E) and 5 (F),
respectively. The variances explained by the first two principal components (PCs) for the datasets are indicated in the labels for PC1 (x-axis) and PC2 (y-axis).
The correlation circle and loading vectors are scaled up by a factor of 1.5 for a more balanced and visually interpretable biplot. The normalizing CnH

− ion is
excluded fromeachdataset, as all itsmeasurements for the four polymers are normalized to 1. The scores of PC1 andPC2 for the four polymers are represented as
points, while the loading vectors (arrowed lines) of CnH

− ions are labeled by their respective n for clarity. The results shown in (A, E) are reproduced from Figure 5
and Figure 7, respectively, Nie (2017), with permission from John Wiley and Sons.
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FIGURE 3
Principal component analysis (PCA) results, with 68% confidence level ellipses, for polyethylene (PE), polypropylene (PP), polyisoprene (PIP), and
polystyrene (PS), displayed as scaled covariance biplots (i.e., with the PCA scores divided by their standard deviation and the loading vectors multiplied by
their standard deviation). The analysis is based on six ion intensity datasets normalized by CnH

− intensity with n = 6 (A), 7 (B), 8 (C), 9 (D) and 10 (E),
respectively, as well as by the sum of the intensities of the 10 CnH

− ions (F), with n = 1 to 10. The variances explained by the first two principal
components (PCs) for the datasets are indicated in the labels for PC1 (x-axis) and PC2 (y-axis). The correlation circle and loading vectors are scaled up by a
factor of 1.5 for amore balanced and visually interpretable biplot. The normalizing CnH

− ion is excluded from each dataset, as all its measurements for the
four polymers are normalized to 1. The scores of PC1 and PC2 for the four polymers are represented as points, while the loading vectors (arrowed lines) of
CnH

− ions are labeled by their respective n for clarity.
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defined by l(C10H,PC1) × σ(PC1) � −0.963385438 and
l(C10H,PC2) × σ(PC2) � 0.061623353 is 1.490513115, as
calculated using Equation 4, which closely approximates the
original datum x(48, C10H) � 1.540468817, which corresponds to
the standardized value of the C10H

− intensity from the PS
measurement listed at the bottom of Table 1 (i.e., 0.00788).

Figure 2B shows the biplot for the dataset normalized by CH−.
Compared to Figure 2A, scores and loading vectors rotate roughly
180°, which is not important since only the clustering of scores and
their relationship with the loading vectors provide useful
information. The most notable change is a significant reduction
in scattering of PC2 scores for PP and PIP. The loading vector of
C4H

− explains the scores of PIP extremely well. Loading vectors of
C2H

− and C3H
− are slightly further away from the scores of PE and

PP. The major contributors to scores of PS are C8H
− to C10H

−.
As shown in Figure 2C, when normalized by C2H

−, the scores of
PS become more scattered. The most contributing ion to the scores
of PIP is now C3H

−. The contributing ions to the scores of PS are
C6H

− to C10H
−. Although the loading vector of CH− overlaps with

that of C10H
−, it is not considered a contributor to the scores of PS

because it is short (i.e., far away from the correlation circle),
suggesting that this variable is not well explained by PC1 and PC2.

For the C3H
− normalization case shown in Figure 2D, C6H

− to
C10H

− contribute the most to scores of PS, with C1H
−, C4H

− and
C5H

−making considerable contributions as well. On the other hand,
there are no loading vectors pointing to the PE, PP and PIP. Like
what is shown in Figure 2C, the scores of PS spread on PC2.
Therefore, from Figures 2B–D, it is evident that using smaller
ions CH− to C3H

− to normalize the ion intensity dataset removes
contributing ions to the scores of the two lower carbon density
polymers, PE and PP. Additionally, there are no contributing ions to
the scores of the medium carbon density polymer PIP when C3H

− is
used for normalization.

As shown in Figure 2E, when C4H
− is used for normalization, the

relationships between loading vectors change significantly
compared to those shown in Figures 2B–D. Another observation
from the PCA results in Figure 2E is that the scatter in scores for PP
and PIP is significantly reduced compared to their counterparts
normalized to total ion intensity, as shown in Figure 2A. As shown
in Figures 2F, 3A–E, the loading vectors of C5H

− to C10H
− almost

overlap and point to the scores of PS, while the overlapped loading
vectors of C2H

− and C3H
− point to the scores of PE and PP. These

results are quite similar to those in Figure 2A, where C6H
− to C10H

−

are contributing ions to the scores of PS. However, with
normalization using C4H

−, C5H
− is more relevant to the scores of

PS than when the ion intensity dataset is normalized by total ion
intensity. Similar to Figure 2A, C2H

− and C3H
− are the two

contributing ions to the scores of PE and PP.
It is worth mentioning that the angles between the loading

vector of CH− and those of C6H
− to C10H

− in both Figures 2A, E are
close to 90°, indicating that CH− is not correlated with these larger
CnH

− ions. There are no loading vectors pointing to the PIP scores in
Figure 2E, as the contributing ion, C4H

−, is used to normalize the
dataset and therefore no longer contributes to the variance in the
newly normalized dataset. As discussed above and elsewhere, (Nie,
2017), normalization using C4H

− serves to classify contributing ions
more elegantly and remove information irrelevant to the chemical
structures, resulting in less scattered scores for most of the polymers.

Figure 2F shows that when C5H
− is used for normalization, the

loading vector of C4H
− turns towards the scores of PE and PP. This

suggests that C4H
− contributes more to the scores of PE and PP than

in any of the cases normalized by a CnH
− ion smaller than C4H

−. The
loading vectors of the rest of CnH

− (excluding C5H
−) ions are similar

to those in the C4H
− normalization case.

As shown in Figures 3A–E, using a CnH
− ion (n = 6–10) to

normalize the ion intensity dataset causes the loading vectors of all
ions smaller than the normalizing ion CnH

− to turn towards the
scores of PE and PP. When C10H

− is used for normalization, as
shown in Figure 3E, all ions contribute to PE and PP. We observed
that when larger CnH

− ions are used for normalization, the scores of
lower carbon density polymers, i.e., PE and PP, become more
scattered, as shown in Figures 3D, E. Finally, Figure 3F presents
the biplot for the dataset normalized by the sum of the 10 CnH

− ions.
This normalization effectively separates the scores of the four
polymers and clearly illustrates the contributions of the CnH

−

ions to the scores, which are largely similar to those observed in
the dataset normalized by total ion intensity (Figure 2A). An
additional advantage of this normalization by the sum of the
10 CnH

− intensities, compared to normalization by total ion
intensity, is the significantly reduced scatter in the scores of PE,
PP, and PIP.

By comparing all PCA results in Figures 2, 3 for the 12 datasets
normalized by the total ion intensity, the intensities of CnH

−with n =
1 to 10 and the sum of the intensities of the 10 ions, it becomes clear
that C4H

− is the best reference ion. This is because it maintains the
correlations between ions almost the same as when normalization is
done using total ion intensity, while removing variability irrelevant
to the chemical structures of the polymers. It is evident in Figures 2,
3 that normalization with other CnH

− significantly changes the
correlation of some ions. This highlights that certain ions are
better than others in revealing the chemical structures of the
materials under investigation. Our PCA results exemplify how
PCA provides clues to uncover more useful chemical structures
or information hidden in the data.

Another observation from the PCA results, where ion intensities
were normalized by various CnH

− ions, is that the PC1 scores exhibit
a consistent trend across the four polymers, irrespective of the
specific CnH

− ion used for normalization. This consistency is
clearly illustrated in Figures 2B–F, 3A–E. Specifically, the scores
of PE, PP, PIP, and PS align with increasing carbon density. As
shown in Figures 2A, 3F, this trend is also true in the case where the
total ion intensity and the sum of the 10 CnH

− intensities are used for
normalization, respectively. It is thus clear that the PC1 scores of the
ion intensity data of the four polymers, regardless of how the
intensities of the CnH

− ions are normalized, capture the
variability dictated by the carbon density of the polymers. This
may lead to correlation between PC1 scores and ρ, the intensity ratio
between C6H

− and C4H
−, which has been proved to be a measure of

the carbon density of polymers. (Nie, 2016; Nie, 2017).
To examine the relationship between PC1 scores and ρ, as well as

between PC2 scores and ρ, we plot in Figure 4 the PC1 and
PC2 scores for the 10 ion intensity datasets, normalized by each
of the ten CnH

− (n = 1–10) ions, as a function of ρ. As can be
determined from the intensities of C6H

− and C4H
− in Table 1, the

values of ρ are 19.4% ± 0.6%, 23.9% ± 0.8%, 27.3% ± 0.3%, and
54.1% ± 1.5% for PE, PP, PIP, and PS, respectively. Each PCA score
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point obtained for each intensity dataset is an average over the scores
of a polymer, with both the standard deviations of the scores and ρ
plotted. The four points for the four polymers in each dataset are
connected by a line for clarity.

As shown in Figure 4A, although the PC one scores for the four
polymers vary depending on the normalizing ion, the trend that
PC1 scores increase with ρ is evident. We discovered that
PC1 scores and ρ are related, regardless of the ion used normalize
the intensity dataset. This observation confirms that both ρ and
PC1 scores reflect carbon density of the polymers. Notably, for
polymers lacking unique ions in their negative ion mass spectra, this
data-driven analytical approach is effective and can quantitatively
differentiate the polymers.

Principal component analysis provides opportunities to reveal
underlying structures in the data. This is advantageous because data
collectedmay not explicitly reflect the information one seeks. In the case
demonstrated in this article, the secondary ion mass spectra provide
information on ions and their intensities measured from polymers,
rather than anything explicitly pointing to their carbon density.While ρ
is a measure of carbon density (Nie, 2016) of polymers, PC1 scores
appear to capture the trend of carbon density of the polymers. In other
words, without PCA, one may not be able to realize the connection
between the carbon density (the structural property of polymers) and
the variability of the CnH

− intensities collected using ToF-SIMS.
Polymers, especially polymeric coatings, are commonly cross-

linked to meet requirements on mechanical strength and thermal
stability. (Chen et al., 2020; Mayumi et al., 2021; Ceylan et al., 2023; Li
and Gau, 2020). Cross-linking can be viewed as a process involving
hydrogen loss, leading to increased carbon densities. Therefore, the
ToF-SIMS approach for gauging carbon density in polymers should
be applicable for assessing the degree of cross-linking of polymers.We
compared cross-linked PMMA with PE, PP, PIP, and PS to validate
the criterion of ρ correlated with the cross-linking degrees of PMMA.
Table 3 presents the CnH

− intensities normalized by the total ion
intensity for each of the 48 measurement for the PMMA samples. As
calculated from the ion intensities of C6H

− and C4H
− in Table 3, ρ for

the control is 32.2% ± 1.0%. The values of ρ for cross-linked PMMA
films treated with HHIC for 0, 100, and 500 s increase to 44.7% ±
1.1%, 55.1% ± 1.1%, and 64.7% ± 2.2%, respectively.

Principal component analysis is conducted by combining the
ion intensity dataset for PMMA in Table 3 and the ion intensity

dataset for PE, PP, PIP, and PS in Table 1. Figure 5 shows the biplot
of the PCA results of CnH

− normalized by C4H
− for PE, PS, PIP and

PS, as well as the pristine (control) and cross-linked PMMA films
obtained by HHIC treatments for different periods. Together,
PC1 and PC2 explain 87.3% of the total variance. The clustering
of the four polymers largely remains the same as shown in Figure 2E,
regardless of the addition of the PMMA data to the dataset for PCA.
As indicated by the inserted box in Figure 5, the clustering of the
scores of the pristine PMMA and cross-linked PMMA align with
direction indicating the increase of carbon density, as defined by the
clustering of the scores of PE, PS, PIP and PS. For the heavily cross-
linked PMMA films treated with HHIC (Trebicky et al., 2014) for
100 and 500 s, the contributing ions are C6H

− to C10H
−. The

correlation of the scores on PC1 with the carbon densities of the
polymers and the cross-linked PMMA films is evident. This provides
a new approach to assessing the cross-linking degree of polymers,
which is an important advancement for extremely thin polymer
films, where conventional techniques (Hirschl et al., 2013;
Bergmann et al., 2023) to characterize their cross-linking degrees
are difficult or impossible.

Therefore, our ToF-SIMS approach offers a novel method for
examining the cross-linking degree of the surface of polymer
coatings. Giving the versatile applications of PMMA, both as a
coating material (Naderi-Gohar et al., 2017; Trebicky et al., 2014)
and as a matrix (Ceylan et al., 2023; Li and Gau, 2020;
Hosseinioun et al., 2019; Liu et al., 2023) for polymer
composites, ToF-SIMS emerges as a highly versatile analytical
technique. It not only enables probing surface chemistry of the
polymer, but also serves as a chemically selective technique for
elucidating their chemical characteristics, particularly in terms of
carbon density.

To evaluate the robustness of ρ as a measure of carbon densities
in polymers and the reproducibility of the PCA approach for
classifying polymers based on their negative ions (CnH

−) detected
by ToF-SIMS, we conducted additional experiments. These included
ToF-SIMS measurements on multiple particles of PP, multiple
pellets of PP and PS, a thick paste of PIP on aluminum foil, and
a film of a PP-PS mixture (2:3 by weight) prepared from their xylene
solution on aluminum foil. These experiments were designed to
verify the consistency of differentiating polymers using their carbon
densities, as evaluated by ρ, and their clustering in PC1 and

FIGURE 4
PC1 (A) and PC2 (B) scores as a function of ρ (the intensity ratio between C6H

− and C4H
−) for polyethylene (PE), polypropylene (PP), polyisoprene

(PIP), and polystyrene (PS). The ten datasets are each normalized by a CnH
− (n = 1–10) as indicated in (A).
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TABLE 3 Intensity data of CnH
− ions, normalized to the total ion intensity, for a pristine poly (methyl methacrylate) (PMMA) film (control) coated on a Si

wafer, and PMMA films subjected to HHIC treatment for 10, 100, and 500 s to induce cross-linking.

Sample CH− C2H
− C3H

− C4H
− C5H

− C6H
− C7H

− C8H
− C9H

− C10H
−

Control 0.01697 0.03823 0.00524 0.01931 0.00397 0.00638 0.00043 0.00185 0.00036 0.00031

Control 0.01730 0.03863 0.00486 0.01941 0.00359 0.00679 0.00022 0.00165 0.00030 0.00031

Control 0.01753 0.03893 0.00513 0.01950 0.00326 0.00673 0.00029 0.00192 0.00026 0.00029

Control 0.01694 0.03832 0.00511 0.01974 0.00339 0.00658 0.00023 0.00168 0.00028 0.00039

Control 0.01729 0.03844 0.00521 0.01905 0.00307 0.00646 0.00029 0.00172 0.00062 0.00034

Control 0.01698 0.03921 0.00468 0.01924 0.00316 0.00627 0.00045 0.00201 0.00064 0.00040

Control 0.01717 0.03830 0.00512 0.01900 0.00288 0.00644 0.00038 0.00201 0.00052 0.00047

Control 0.01659 0.03840 0.00510 0.01918 0.00303 0.00619 0.00043 0.00189 0.00063 0.00044

Control 0.01737 0.03882 0.00475 0.01960 0.00335 0.00612 0.00064 0.00183 0.00044 0.00026

Control 0.01300 0.04823 0.00396 0.01684 0.00312 0.00552 0.00023 0.00131 0.00027 0.00030

Control 0.01313 0.04729 0.00388 0.01674 0.00309 0.00550 0.00018 0.00128 0.00027 0.00031

Control 0.01326 0.04638 0.00381 0.01630 0.00309 0.00535 0.00020 0.00128 0.00029 0.00033

10 s 0.01380 0.02933 0.00321 0.01384 0.00216 0.00613 0.00062 0.00223 0.00026 0.00045

10 s 0.01404 0.02921 0.00327 0.01401 0.00239 0.00618 0.00072 0.00185 0.00026 0.00041

10 s 0.01378 0.02936 0.00303 0.01323 0.00182 0.00600 0.00084 0.00209 0.00025 0.00053

10 s 0.01344 0.02930 0.00342 0.01399 0.00191 0.00643 0.00077 0.00213 0.00026 0.00058

10 s 0.01381 0.02957 0.00311 0.01385 0.00213 0.00606 0.00095 0.00193 0.00034 0.00062

10 s 0.01370 0.02960 0.00318 0.01342 0.00214 0.00614 0.00098 0.00210 0.00050 0.00052

10 s 0.01362 0.02949 0.00316 0.01425 0.00181 0.00625 0.00092 0.00178 0.00040 0.00056

10 s 0.01436 0.02986 0.00320 0.01405 0.00214 0.00599 0.00092 0.00183 0.00043 0.00060

10 s 0.01419 0.02960 0.00321 0.01408 0.00232 0.00652 0.00104 0.00261 0.00068 0.00051

10 s 0.01161 0.03208 0.00259 0.01149 0.00220 0.00519 0.00039 0.00237 0.00036 0.00040

10 s 0.01168 0.03275 0.00260 0.01183 0.00222 0.00526 0.00041 0.00253 0.00036 0.00042

10 s 0.01160 0.03272 0.00263 0.01182 0.00223 0.00533 0.00039 0.00244 0.00035 0.00042

100 s 0.01481 0.03070 0.00228 0.01384 0.00246 0.00779 0.00131 0.00321 0.00154 0.00207

100 s 0.01523 0.03096 0.00234 0.01378 0.00242 0.00755 0.00132 0.00307 0.00181 0.00178

100 s 0.01453 0.03126 0.00239 0.01376 0.00254 0.00745 0.00131 0.00328 0.00173 0.00220

100 s 0.01570 0.02988 0.00223 0.01399 0.00255 0.00771 0.00154 0.00315 0.00194 0.00203

100 s 0.01496 0.03041 0.00230 0.01349 0.00247 0.00723 0.00119 0.00311 0.00164 0.00221

100 s 0.01491 0.03155 0.00255 0.01303 0.00243 0.00735 0.00121 0.00334 0.00167 0.00212

100 s 0.01493 0.03018 0.00239 0.01315 0.00242 0.00744 0.00109 0.00296 0.00173 0.00215

100 s 0.01457 0.03055 0.00239 0.01295 0.00224 0.00724 0.00124 0.00292 0.00174 0.00205

100 s 0.01518 0.03048 0.00255 0.01328 0.00235 0.00711 0.00127 0.00305 0.00195 0.00189

100 s 0.01147 0.02941 0.00198 0.01116 0.00182 0.00612 0.00088 0.00291 0.00132 0.00157

100 s 0.01153 0.02989 0.00199 0.01123 0.00183 0.00622 0.00089 0.00301 0.00140 0.00157

100 s 0.01169 0.02984 0.00200 0.01111 0.00182 0.00603 0.00103 0.00294 0.00143 0.00156

500 s 0.02233 0.04592 0.00335 0.02298 0.00401 0.01483 0.00279 0.00793 0.00253 0.00498

500 s 0.02172 0.04494 0.00296 0.02350 0.00358 0.01584 0.00304 0.00728 0.00195 0.00519

(Continued on following page)
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PC2 scores. Additionally, the PP-PS mixture was used to assess
whether it could reflect the averaged contributions of its component
polymers. Table 4 presents the CnH

− intensities, normalized by the

total ion intensity, for each of the 48 measurements of the four
polymers, along with 12 measurements of the PP-PS mixture.

Figure 6A illustrates ρ, the ion intensity ratio between C6H
− and

C4H
−, derived from Tables 1, 4 for two sets of experiments conducted

approximately 10 years apart. The ρ values for PE, PP, PIP, and PS from
both experiments exhibit striking consistency: 19.4% ± 0.6% vs 19.8% ±
0.5% for PE, 23.9% ± 0.8% vs 23.4% ± 0.6% for PP, 27.3% ± 0.3% vs
26.4% ± 0.9% for PIP, and 54.1% ± 1.5% vs 54.2% ± 0.8% for PS. The
close agreement between the ρ values from these independent
experiments—despite differences in the sources of PP (a commercial
film vs pure pellet) and PS (a commercial cup vs pure pellet)—
highlights the robustness of ρ as a reliable metric for estimating the
carbon densities of polymers. This consistency further reinforces the
utility of ρ in characterizing polymer structures across varying
experimental conditions and extended timeframes, demonstrating its
applicability as a stable and reproducible analytical tool.

Additionally, as shown in Figure 6A, the PP-PS mixture exhibits
a ρ value of 42.4% ± 2.6%, which closely aligns with the calculated
value of 41.9%. This calculated value is derived from the measured ρ
values of PP (23.4%) and PS (54.2%) and their weight ratio (2:3). The
agreement between the experimental and calculated ρ values
highlights the applicability of the ρ approach for estimating the
carbon densities of polymer mixtures. This finding underscores the
versatility of ρ as a reliable metric, not only for individual polymers
but also for complex systems such as polymer blends, further
validating its utility in characterizing carbon densities across a
range of material compositions.

The primary limitation in estimating ρ stems from potential
interferences with the C6H

− intensity, which can be influenced by
the presence of species with overlapping or closelymatchingm/z values.
For example, ions such as C3H2OF

−, SiC2H5O
−, C2H3NO2�, andC3H5O2�

can inflate the measured C6H
− intensity, thereby introducing

uncertainties in the determination of ρ. Of course, this and any
other interferences affecting the intensities of CnH

− ions will lead to
their overestimation, ultimately compromising the accuracy and
reliability of the PCA results.

The PCA results of the new experiment dataset, normalized
by the C4H

− intensity, are presented in Figure 6B as a scaled
covariance biplot for PE, PP, PIP, PS, and the PP-PS mixture. The

TABLE 3 (Continued) Intensity data of CnH
− ions, normalized to the total ion intensity, for a pristine poly (methylmethacrylate) (PMMA)film (control) coated

on a Si wafer, and PMMA films subjected to HHIC treatment for 10, 100, and 500 s to induce cross-linking.

Sample CH− C2H
− C3H

− C4H
− C5H

− C6H
− C7H

− C8H
− C9H

− C10H
−

500 s 0.02295 0.04594 0.00301 0.02352 0.00371 0.01460 0.00296 0.00783 0.00219 0.00509

500 s 0.02223 0.04496 0.00289 0.02380 0.00372 0.01559 0.00281 0.00774 0.00226 0.00452

500 s 0.02241 0.04545 0.00280 0.02359 0.00383 0.01500 0.00289 0.00746 0.00237 0.00457

500 s 0.02293 0.04652 0.00309 0.02377 0.00344 0.01473 0.00267 0.00731 0.00231 0.00435

500 s 0.02178 0.04567 0.00292 0.02417 0.00352 0.01509 0.00319 0.00778 0.00200 0.00462

500 s 0.02207 0.04611 0.00284 0.02280 0.00357 0.01541 0.00287 0.00756 0.00236 0.00496

500 s 0.02257 0.04651 0.00291 0.02309 0.00366 0.01576 0.00339 0.00702 0.00227 0.00413

500 s 0.01801 0.03947 0.00238 0.01758 0.00247 0.01128 0.00234 0.00603 0.00147 0.00280

500 s 0.01811 0.03976 0.00235 0.01760 0.00250 0.01156 0.00232 0.00597 0.00147 0.00274

500 s 0.01826 0.03959 0.00240 0.01759 0.00247 0.01120 0.00227 0.00597 0.00145 0.00281

FIGURE 5
Principal component analysis (PCA) results, with 68%confidence level
ellipses, for polyethylene (PE), polypropylene (PP), polyisoprene (PIP), and
polystyrene (PS), as well as pristine (control) and cross-linked poly (methyl
methacrylate) (PMMA), displayedas scaledcovariancebiplots (i.e.,with
the PCA scores divided by their standard deviation and the loading vectors
multiplied by their standard deviation). The cross-linked PMMA films were
obtained by hyperthermal hydrogen bombardment for 10, 100 and 500 s.
The ion intensities of the nine CnH

− ions (n = 1 to 3 and 5–10) are
normalized by the intensity of the C4H

− ion. The variances explained by the
first two principal components (PCs) for the dataset are indicated in the
labels for PC1 (x-axis) and PC2 (y-axis). The correlation circle and loading
vectors are scaled up by a factor of 1.5 for a more balanced and visually
interpretable biplot. The normalizingC4H

− ion is excluded from the dataset,
as all its measurements for the four polymers are normalized to 1. The
scores of PC1 and PC2 for the samples are represented as points, while the
loading vectors (arrowed lines) are labeled by CnH

−. The scores of the
PMMA samples are indicated by the inserted box.
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TABLE 4 Intensity data of CnH
− ions from a new experiment, normalized to the total ion intensity, for 12 measurements each of polyethylene (PE),

polypropylene (PP), polyisoprene (PIP), polystyrene (PS), and a PP-PS mixture.

Sample CH− C2H
− C3H

− C4H
− C5H

− C6H
− C7H

− C8H
− C9H

− C10H
−

PE 0.11500 0.13600 0.00624 0.02220 0.00193 0.00430 0.00047 0.00090 0.00014 0.00017

PE 0.12700 0.14900 0.00644 0.02280 0.00205 0.00464 0.00056 0.00106 0.00018 0.00022

PE 0.13200 0.15000 0.00710 0.02450 0.00227 0.00488 0.00052 0.00111 0.00017 0.00023

PE 0.10800 0.15400 0.00838 0.03280 0.00298 0.00628 0.00069 0.00127 0.00017 0.00028

PE 0.13000 0.13900 0.00741 0.02680 0.00251 0.00548 0.00065 0.00125 0.00018 0.00028

PE 0.10100 0.12300 0.00572 0.02220 0.00199 0.00428 0.00051 0.00085 0.00017 0.00021

PE 0.09080 0.08290 0.00347 0.01210 0.00110 0.00243 0.00028 0.00053 0.00008 0.00013

PE 0.11500 0.12300 0.00533 0.01940 0.00178 0.00381 0.00043 0.00087 0.00013 0.00019

PE 0.11400 0.18100 0.00964 0.03990 0.00362 0.00804 0.00091 0.00165 0.00028 0.00036

PE 0.13100 0.15900 0.00924 0.03530 0.00342 0.00710 0.00079 0.00145 0.00024 0.00030

PE 0.14000 0.14700 0.00767 0.02420 0.00217 0.00485 0.00057 0.00125 0.00021 0.00026

PE 0.11200 0.15100 0.00740 0.02860 0.00258 0.00551 0.00064 0.00126 0.00016 0.00027

PP 0.08824 0.11746 0.00521 0.02265 0.00210 0.00515 0.00056 0.00114 0.00017 0.00022

PP 0.08671 0.11085 0.00521 0.02165 0.00203 0.00506 0.00053 0.00104 0.00016 0.00020

PP 0.08312 0.11879 0.00542 0.02425 0.00224 0.00559 0.00064 0.00126 0.00016 0.00023

PP 0.09540 0.14013 0.00649 0.02728 0.00249 0.00615 0.00068 0.00130 0.00017 0.00024

PP 0.07576 0.11141 0.00501 0.02226 0.00210 0.00539 0.00066 0.00120 0.00019 0.00024

PP 0.09641 0.13986 0.00659 0.02782 0.00255 0.00634 0.00072 0.00137 0.00018 0.00024

PP 0.08478 0.11850 0.00580 0.02371 0.00229 0.00548 0.00061 0.00117 0.00016 0.00022

PP 0.08203 0.09657 0.00459 0.01848 0.00174 0.00430 0.00051 0.00096 0.00015 0.00019

PP 0.07289 0.08459 0.00359 0.01603 0.00144 0.00379 0.00041 0.00080 0.00012 0.00016

PP 0.08886 0.13663 0.00627 0.02872 0.00269 0.00684 0.00080 0.00154 0.00023 0.00029

PP 0.07310 0.08338 0.00371 0.01627 0.00152 0.00396 0.00045 0.00093 0.00013 0.00020

PP 0.09125 0.15041 0.00700 0.03239 0.00308 0.00787 0.00086 0.00173 0.00025 0.00033

PIP 0.07523 0.15323 0.00716 0.04459 0.00394 0.01189 0.00131 0.00300 0.00047 0.00064

PIP 0.08984 0.16729 0.00790 0.04526 0.00402 0.01242 0.00142 0.00322 0.00049 0.00071

PIP 0.07922 0.17477 0.00779 0.04838 0.00409 0.01232 0.00131 0.00297 0.00046 0.00069

PIP 0.08342 0.16715 0.00773 0.04365 0.00374 0.01136 0.00122 0.00289 0.00044 0.00063

PIP 0.08584 0.16643 0.00832 0.04350 0.00381 0.01146 0.00128 0.00293 0.00047 0.00067

PIP 0.09803 0.16978 0.00859 0.04380 0.00392 0.01196 0.00133 0.00305 0.00050 0.00069

PIP 0.09469 0.17382 0.00776 0.04482 0.00379 0.01140 0.00123 0.00277 0.00040 0.00062

PIP 0.09549 0.17424 0.00796 0.04577 0.00401 0.01172 0.00127 0.00289 0.00042 0.00065

PIP 0.08552 0.16266 0.00724 0.04515 0.00378 0.01164 0.00125 0.00286 0.00040 0.00062

PIP 0.06452 0.13396 0.00576 0.03925 0.00333 0.01032 0.00111 0.00245 0.00037 0.00053

PIP 0.07017 0.14055 0.00639 0.04260 0.00375 0.01199 0.00131 0.00299 0.00044 0.00066

PIP 0.08338 0.15831 0.00730 0.04581 0.00398 0.01213 0.00135 0.00306 0.00047 0.00068

PS 0.08642 0.09372 0.00598 0.03173 0.00344 0.01744 0.00244 0.00850 0.00143 0.00367

PS 0.07282 0.11382 0.00686 0.04417 0.00440 0.02421 0.00326 0.01117 0.00184 0.00487

(Continued on following page)
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five samples are well-separated in the PC1 and PC2 landscape,
demonstrating clear differentiation among the polymers.
Notably, the scores of the PP-PS mixture are positioned
between those of PP and PS, reflecting the averaging effect of
the two component polymers in their PCA results. This
observation highlights how the mixture’s properties are
intermediate to its individual constituents.

When compared to the PCA results for the old dataset shown in
Figure 2E, the PCA results for new dataset in Figure 6B exhibits a
roughly similar pattern. However, unlike ρ, which provides a
quantitative measure of carbon densities in polymers, PCA scores
primarily reveal trends related to ρ rather than offering direct
quantification. The primary role of PCA is to separate polymers
based on their distinct variabilities in the intensities of CnH

− ions.
This PCA-enabled ToF-SIMS analytical approach demonstrates
high effectiveness in the PC1 and PC2 landscape for
differentiating polymers and, potentially, their mixtures. The
utility of the PCA approach lies in capturing the inherent
variability in ion intensities, enabling the classification and
identification of polymers and complex blends.

In addition to PCA, methods like partial least squares (PLS)
regression and multivariate curve resolution (MCR) can be applied

to ToF-SIMS data, (Hook et al., 2015), each suited to different
analytical goals. PCA excels in dimensionality reduction and pattern
recognition, as shown by the first two PCs capturing most of the
variance in our datasets, making it ideal for exploratory analysis and
polymer differentiation based on carbon density. PLS, in contrast, is
better for predictive modeling, linking spectral data to specific
properties, but requires well-defined response variables. (Sun
et al., 2024). MCR is particularly useful for resolving complex
mixtures by deconvoluting overlapping spectral contributions,
though it often needs prior knowledge or constraints. (Gallagher
et al., 2004). While PCA is robust for exploratory tasks, PLS and
MCR offer complementary strengths for quantitative analysis and
mixture resolution, respectively. The choice of method therefore
depends on the analytical objectives.

4 Conclusion

Principal component analysis (PCA) of negative hydrocarbon
ions CnH

− (n = 1–10) for polyethylene (PE), polypropylene (PP),
polyisoprene (PIP), and polystyrene (PS), a PP-PS mixture, and poly
(methyl methacrylate) (PMMA) revealed that the first principal

TABLE 4 (Continued) Intensity data of CnH
− ions from a new experiment, normalized to the total ion intensity, for 12 measurements each of polyethylene

(PE), polypropylene (PP), polyisoprene (PIP), polystyrene (PS), and a PP-PS mixture.

Sample CH− C2H
− C3H

− C4H
− C5H

− C6H
− C7H

− C8H
− C9H

− C10H
−

PS 0.08612 0.11029 0.00706 0.03996 0.00400 0.02164 0.00280 0.00975 0.00160 0.00429

PS 0.06540 0.13510 0.00756 0.05867 0.00555 0.03094 0.00391 0.01400 0.00227 0.00576

PS 0.06141 0.11077 0.00621 0.04569 0.00448 0.02501 0.00314 0.01158 0.00194 0.00475

PS 0.09119 0.11499 0.00711 0.03984 0.00419 0.02129 0.00213 0.00949 0.00157 0.00395

PS 0.08683 0.09561 0.00572 0.03379 0.00343 0.01813 0.00246 0.00838 0.00135 0.00359

PS 0.06903 0.11908 0.00751 0.05280 0.00536 0.02830 0.00364 0.01314 0.00215 0.00557

PS 0.08149 0.10028 0.00615 0.03564 0.00379 0.01980 0.00257 0.00986 0.00172 0.00438

PS 0.09967 0.11813 0.00883 0.04263 0.00448 0.02317 0.00311 0.01061 0.00188 0.00469

PS 0.10032 0.11918 0.00825 0.04108 0.00420 0.02200 0.00262 0.00983 0.00165 0.00416

PS 0.10261 0.11644 0.00921 0.04249 0.00447 0.02306 0.00308 0.01080 0.00179 0.00474

PP-PS 0.10044 0.10296 0.00525 0.02186 0.00227 0.00932 0.00121 0.00380 0.00068 0.00155

PP-PS 0.08369 0.11200 0.00524 0.02818 0.00262 0.01151 0.00132 0.00458 0.00071 0.00182

PP-PS 0.08746 0.11978 0.00630 0.03539 0.00341 0.01482 0.00173 0.00584 0.00093 0.00230

PP-PS 0.11133 0.10284 0.00487 0.01834 0.00174 0.00706 0.00089 0.00270 0.00044 0.00106

PP-PS 0.11458 0.11368 0.00570 0.02468 0.00232 0.01128 0.00129 0.00481 0.00077 0.00197

PP-PS 0.12929 0.10731 0.00534 0.01908 0.00181 0.00811 0.00097 0.00326 0.00056 0.00136

PP-PS 0.11758 0.11565 0.00553 0.02034 0.00195 0.00875 0.00109 0.00374 0.00064 0.00149

PP-PS 0.13885 0.13338 0.00722 0.02577 0.00250 0.01201 0.00148 0.00513 0.00094 0.00215

PP-PS 0.10468 0.12352 0.00600 0.02555 0.00243 0.01031 0.00127 0.00403 0.00072 0.00161

PP-PS 0.09802 0.11773 0.00538 0.02241 0.00233 0.00873 0.00118 0.00298 0.00054 0.00317

PP-PS 0.06857 0.09333 0.00444 0.02246 0.00218 0.00937 0.00111 0.00382 0.00059 0.00152

PP-PS 0.09691 0.11554 0.00572 0.02639 0.00242 0.01204 0.00141 0.00503 0.00080 0.00202
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component, PC1, captures carbon density, regardless of whether the
sum of CnH

− intensities, the total ion intensity or which CnH
−

intensity is used for normalization. However, the correlations
between different ions show significant variations depending on
the normalizing CnH

−, revealing that some hydrocarbon ions are
more useful than others in reflecting carbon density. C4H

− proved to
be the best reference ion to normalize other hydrocarbon ions, due
to its relatively low variability for polymers with different carbon
densities. The intensity ratio between C6H

− and C4H
−, ρ, was

correlated to the variability of hydrocarbon CnH
− for PE, PP,

PIP, PS, and a PP-PS mixture, as well as PMMA cross-linked to
different degrees. Our ToF-SIMS results confirmed that the measure
of carbon density is directly related to the cross-linking
degree of PMMA.

Our two experiments, conducted approximately 10 years apart,
confirmed the reproducibility of ρ in quantifying the carbon densities of
PE, PP, PIP, and PS, as demonstrated by their combined values of
19.6% ± 0.5%, 23.8% ± 0.9%, 26.8% ± 0.8%, and 54.1% ± 1.14%,
respectively. This comparative analysis further highlighted the
effectiveness of the covariance biplot of PCA results for classifying
polymers based on their carbon densities. We emphasize that the
secondary ion mass spectra were acquired using a 25 keV Bi3

+

primary ion beam, and the intensities of the CnH
− ions were

Poisson-corrected to account for the dead-time effect of the detector.
The implication of our results is that for a group of materials, their

different chemical structures may be hidden within the data, likely
manifested in their variability. PCA of ToF-SIMS data offers
opportunities to uncover clues that can classify and differentiate even
subtle differences in the chemical structures of the materials being
compared. Our findings are expected to significantly impact the
identification of different molecules or materials with chemical
structures that yield similar secondary ions. In situations where
diagnostic ions are lacking, one needs to rely on the variability of ion
intensities to find clues for exploring the origins of the ions of interest.
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FIGURE 6
Comparison of ion intensity ratio between C6H

− and C4H
−,

denoted as ρ, between the old and new experiments (A). Shown in (B)
are new-experiment principal component analysis (PCA) results, with
68% confidence level ellipses, for polyethylene (PE),
polypropylene (PP), polyisoprene (PIP), and polystyrene (PS), as well as
a PP-PS mixture, displayed as scaled covariance biplots (i.e., with the
PCA scores divided by their standard deviation and the loading vectors
multiplied by their standard deviation). The ion intensities of the nine
CnH

− ions (n = 1 to 3 and 5–10) are normalized by the intensity of the
C4H

− ion. The variances explained by the first two principal
components (PCs) for the dataset are indicated in the labels for PC1
(x-axis) and PC2 (y-axis). The correlation circle and loading vectors are
scaled up by a factor of 1.5 for a more balanced and visually
interpretable biplot. The normalizing C4H

− ion is excluded from the
dataset, as all its measurements for the four polymers are normalized
to 1. The scores of PC1 and PC2 for the samples are represented as
points, while the loading vectors (arrowed lines) of CnH� ions are
labeled by their respective n for clarity.
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