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Hundreds of molecular species make up the cellular lipidome. In this minireview,
considerations for interpreting membrane and storage lipid profile changes that
are often the focal point of lipidomic studies are discussed. In addition, insights
how themost conservedmolecular patterns are formed in eukaryotic systems and
the consequences for the perturbation of lipid homeostasis are addressed. The
implications of lipid identification specificity and experimental variability on
modeling membrane structure and systemic responses are also discussed. The
profile changes of membrane and storage lipids are bound to the kinetics of the
metabolic system, and experimental design and functional interpretation in
lipidomic research should be adapted accordingly.
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Introduction

Lipids generally have three biological functions as follows: 1) storage of chemical energy,
2) essential structural components for biological membranes, and 3) signaling of molecular
events (van Meer, 2005; Cockcroft, 2021). In many lipidomics applications, membrane and
storage lipids are measured and exploited as the basis for functional associations. For some
structural lipid classes, such as lysolipids, ceramides, and diacylglycerols (and others),
interpretations are often complicated as these lipids can also act as signaling molecules that
might start a cascade of biosynthetic events. However, conventional omics data
interpretation strategies, such as those established for expression data and proteomics,
can be applied much more easily for signaling lipids because of the similar thresholds for
fold-changes of two or more and its clearer functional association. This might be an
oversimplification, but lipid signaling cascades, for instance, for small lipid mediators,
phosphatidylinositides, and sphingosines (and others), can be equivalent to the activation of
protein signaling cascades (Wymann and Schneiter, 2008; Posor et al., 2022). In both cases, a
primary event, which is initiated by a small number of often low abundant molecular entities,
leads to systemic changes on the cellular or organismal level.

From this perspective, lipid metabolic processes that change the make-up of the cell with
respect to the membrane systems, and/or storage compartments follow slower kinetic and
fold-changes and can be rather small but affect a large portion of the lipidome. The resulting
consequences for experiment planning and data interpretation of lipid profiles will be
discussed.
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Lipid identification and quantitation are
the basis for functional associations

Up-to-date mass spectrometry-based lipidomics procedures are
not specific enough to identify lipids at the structure-defined level
(Liebisch et al., 2013; Liebisch et al., 2020). Specifically, the number
of isomeric structures that are actually unresolved by chosen
analytical approach should at least lead to the application of this
recently introduced hierarchical nomenclature. In the case of
complex lipids that are comprised of two or more aliphatic
chains, the number of isomeric molecules can reach hundreds,
which is the result of the limit of specificity at the molecular
species identification level (Liebisch et al., 2013; Liebisch et al.,
2020). For the major and abundant lipid classes of eukaryotes that
make up the membrane systems and the storage pools, the exact

composition of the aliphatic chains are generally not defined with
regards to the sn-position, double-bond position, and cis/trans
isomerism (Shevchenko and Simons, 2010; Schwudke et al.,
2011). However, the higher specificity for lipid identification in
large-scale studies is on the horizon with the application of ion
mobility in lipidomics (Moran-Garrido et al., 2022). Because
changes in the gas phase collision cross section (CCS) can be
minute (≤1%), higher resolution ion mobility is required, and the
associated informatics approaches that properly detect these mass
spectrometric features in three-dimensional datasets (rt, CCS, and
m/z) are just now becoming publicly available (Kirkwood et al.,
2022).

The structure of lipid molecules has a direct influence on the
physical parameters of a biological membrane (Figure 1). The most
obvious impact of structural lipid isomers is found in the packaging

FIGURE 1
Concept for the direct impact of lipid profile alterations on membrane properties. (A) Small structural changes of individual lipid species change the
intermolecular interaction in a membrane, which is demonstrated for simplification only on one leaflet [but in detail discussed in Strandberg et al. (2012)].
The shift of the double-bond position, cis/trans configuration, and sn-position has a direct impact on the average distance between lipids and the
strength of interaction. As result, molecular movements are differently restricted and different phase behavior can be observed, including domain
formation (London, 2022). Changes in the lipid composition further affect thickness of membranes, and differently shaped lipids induce membrane
curvature. Such morphological changes can be achieved by different lipid compositions either by changing a large portion of major abundant molecular
species (*) or changes in the overall mixture (#). (B) Lipid metabolic snapshot in the form of a profile reflects a specific sampling point, which should be
defined by biological checkpoints. Such a stable metabolic state (1) might go through several transitional stages until a new homeostatic state (2) is
reached. The endogenous kinetics of the underlying lipid metabolic networks is generally not known and yields uncertainty, and the turnover time for
individual lipid species has to be considered. Created with BioRender.com.
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density, thickness, compressibility, and phase properties of a
membrane (Figure 1A). The pleiotropic nature of the effects on
membrane biology are a focal point of ongoing research (Palusinska-
Szysz et al., 2022; Saha et al., 2022) [reviewed in Sezgin et al. (2017);
Sych et al. (2022)] and are mostly defined by the direct interaction of
lipids with proteins and the modulation of lipid domains (London,
2022). Another important effect of lipid profile changes concerning
the aliphatic chains and lipid class composition is the maintenance
of membrane asymmetry and morphology that is only possible
within a certain compositional framework (Lorent et al., 2020). A
well-established model is the application of lipid shapes that, based
on the steric requirement of each lipid, allow possible membrane
curvatures to be predicted [Figure 1A; Israelachvili et al. 1977; Cullis
and de Kruijff, 1979; Strandberg et al., 2012; Joardar et al., 2022)].
From this perspective, the need of preferable identification on a
structural refined level and absolute quantitation of lipids (in molar
amounts) is easy to perceive (Shevchenko and Simons, 2010). Large-
scale lipid quantitation and its accuracy remain an open issue in
lipidomics research and also reflect the wide range of analytical
strategies based on LC-MSn and shotgun approaches (Zullig et al.,
2020; Han and Gross, 2022).

However, the scientific community should not focus on favorite
analytic strategies and the largest ID-number but instead use the
scientific question and data quality as a first priority for the selection
of a lipidomics approach (Kofeler et al., 2021). With regard to the
overall membrane composition, the molar composition is required
to associate membrane phenotypes to lipid profiles that go beyond a
pure description of changes but rather help reconstitute model
membranes and perform functional studies. Furthermore, I
would argue that a lack of standardization and proper
normalization of lipid molarities to parameters like cell number,
weight, protein content, and/or quantifiable phenotype limits the
applicability of lipidomics. To overcome this essentially descriptive
nature of lipidomics, a study plan and biological hypothesis should
be formulated in an interdisciplinary discourse that includes the
essential steps of the analytical method development concerning
sampling and sample preparation. When considering the
heterogenic nature of the biological sample matrix and its
consequences for lipid identification and quantitation, the
correlation between phenotypes and their putative link to the
lipidome can be explored.

The regulation of lipids in response to
perturbations of homeostasis

An intriguing illustration for analytical and biological challenges
that one must face in lipidomics research was formulated by Andrej
Shevchenko (Arnaud, 2011) in an analogy of knights and armies of
the Middle Ages as follows: “Knights are like proteins. Each knight
has a pedigree, a story, an emblem, a flag. Lipids are like armies.
Knights are more visible. It’s easier to write poetry about them, but
in the end it’s the army that wins, the collective of individuals. That’s
the lipids.”

Indeed, a lipid metabolic perturbation that affects the state of a
cell, tissue, organ, or organism often induces quantitative changes in
many related molecules (Figure 1B). Such biosynthetic activities,
which are the basis for cell membrane homeostasis, trafficking, and

autophagy (to mention only the most obvious), require time by
nature to be executed by the lipid metabolic system. This action of a
biosynthetic system has an endogenous inertia to convert lipids. The
turnover rates for membrane and storage lipids have only sparsely
been determined if at all. These measurements should cover time
scales in the range of seconds to days depending on the studied
biological system to gain insights into the kinetics of a transition
between different lipid metabolic states (Figure 1B). Furthermore, a
possible occurrence of a pathology, where the biological system
cannot be converted into another stable homeostatic state, can be
characterized with much better resolution.

Model organisms such as D. melanogaster, Caenorhabditis
elegans, and S. cerevisiae as well as cell culture systems are the
ideal study objects to observe associations between the perturbation
of lipid homeostasis and biological phenotypes. In a drosophila
model of lysosomal storage disease, Hebbar et al. (2017) studied the
emergence of lipid profile changes in association with the occurrence
of neurodegenerative phenotypes. They showed that as an early
phenotype, ceramide and sphingosine levels are altered before signs
of failure of cell autophagy in the form of endomembranous
structures and lipofuscin accumulation occurred. After 14 days of
systemic lipid metabolism perturbation, significant behavioral
alteration caused by neurodegeneration could be determined. A
similar systemic breakdown of lipid homeostasis was observed for
LET-767 RNAi, which is responsible for the elongation of fatty acids
in C. elegans that only showed slight changes at first in TAG profiles
but had in the second generation a fatal effect that led to
developmental arrest and death (Entchev et al., 2008). A detailed
lipid analysis revealed that the breakdown of sphingolipid
biosynthesis was the phenotypic driver caused by a lack of
branched chain fatty acids, which are an essential educt for
sphingosine synthesis. Detailed lipidomics analysis during the
polarization of MDCK cells showed that general reorganization
of the membrane system and maintenance of apical and
basolateral surfaces required molecular adjustments throughout
the lipidome (Sampaio et al., 2011). Within a time frame of
approximately 7 days, a new lipid homeostatic state was reached
signified by elongated sphingolipid acid chain lengths, increased
hydroxylation, and less double bonds. At the same time, for
glycerophospholipids, a higher degree of poly-unsaturated chains
in combination with a tendency for longer chain length was
observed.

These examples underline the requirements for systematic
lipidomic studies to establish well-defined sampling times and
consider the kinetic aspects of the biological process to be
studied. In addition, for the study objectives where a lipid
metabolic switch is investigated and not a single “golden
molecule,” this should denote a systemic alteration. Furthermore,
one can postulate that there always should be a panel of lipids
connected by a metabolic network that responds to the systemic
perturbation of lipid homeostasis. Frommy experience and reported
studies, aliphatic chains of structural lipids are one of the building
blocks that are usually modified due to environmental stress, genetic
defects, and cell biological processes. This has two practical
consequences as follows: first, lipid class profiles are defined by
the underlying fatty acid composition, and second, the detection of
many systemic lipidome changes are dependent on the enzyme
kinetics of fatty acid transformation, transport, and exchange. From
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these findings, it can be argued that major abundant structural lipids
should always reflect the overall fatty acid composition. For instance,
this is the case in most eukaryotic system palmitic acids (FA 16:0),
oleic acid (FA 18:1), and stearic acid (FA 18:0). The resulting profiles
of lipid classes— phosphatidylcholine (PC),
phosphatidylethanolamine (PE), and phosphatidylserine (PS)—
are consequently built of 16:0_16:0, 16:0_18:0, 16:0_18:1, 18:1_18:
1, and 18:0_18:1 aliphatic backbones that represent a large molar
percentage of the eukaryotic lipidome.

Regarding the aforementioned examples of systemic lipidome
alterations, the publication of apparently structurally and/or
synthetically unrelated (quite distanced in the metabolic pathway
with many enzymatic steps in between) lipid biomarkers only based
on a descriptive study should be read with caution. It has been
reported that a proper experimental group size, well-described
experimental procedures, a set of quality controls, and a critical
assessment on the possible errors and statistics should be
subsequently considered and outlined (McDonald et al., 2022).
Furthermore, tracer and flux analyses should become an integral
part of functional lipidomic studies whenever possible (Skotland
et al., 2016; Kim et al., 2020; Brandenburg et al., 2022).

The experimental error propagation
defines thresholds for the detection of
lipid profile changes

When lipidmolecular species are preferentially transformedwithin a
metabolic network leading to profile changes, several sources of
experimental variability and their impact should be critically
discussed. For functional studies, it is evident that there is interest in
detecting the primary lipidmetabolic effect. However, biomedical studies
are driven by a phenotypic characterization based upon imaging, fitness,
survival, and other morphological metrics that introduce a bias toward
late sampling time points that will already be dominated by secondary
metabolic events. Driven by the need to have a phenotype characterized,
when it is noticeable without a doubt, one can easily understand that
kinetic aspects of systemicmetabolic changes are often underrepresented
in the literature. I would encourage to increase the number of
experimental groups from only one pair consisting of “Control” and
its counterpart like “Diseased,” “Mutant,” and/or “KnockDown,” to a
reasonable number of phenotypically and kinetically defined
experimental groups (Hebbar et al., 2017). In the context of the
adaptive power of lipid metabolic systems, i.e. the molecular snapshot
that is usually taken in the form of lipid profiles and interpreted, the
reversibility of an observed state/phenotype, its stability, and the number
of involved regulative processes should be considered (Figure 1B).

A further decisive choice for experimental success in pinpointing
primary lipid metabolic alterations is the limit of spatial resolution to
cover tissue heterogeneity and cell biological compartmentalization,
which to some extent can be studied with state-of-the-art lipid MS-
imaging (Fu et al., 2021; Bednarik et al., 2022), coupling of laser
microdissection (Hebbar et al., 2014; Knittelfelder et al., 2018), and
cell fractionation techniques (Schmitt et al., 2022) (Tharkeshwar et al.,
2017) with lipidomics. These complex methodical approaches require
further considerations concerning quantitation, possible contamination,
and limits of specificity, which are discussed elsewhere in detail (Ellis
et al., 2013; Eiersbrock et al., 2020). If such enrichment strategies for the

specimen of interest is not possible, a critical assessment of the averaging
effects of mixing with other molecular pools in the isolated sample is
necessary.

Regarding these concerns, one should examine whether the fold-
change for a lipid quantity is realisticallymeasurable after completing the
analytical workflow. Inmy experience, fold-changes of 0.25 for a lipid are
detectable in well-planned and executed lipidomic studies. This lower
limit of detectable lipid metabolic alteration integrates the experimental
error propagation that is occurring during homogenization and
volumetric processing, and due to batch effects of internal standards
as well as instrument instability. Additionally, I would suggest that
functional lipid metabolic studies be performed with at least six
biological replicates to ensure statistical validity. In the context of
large-scale experiments and an increasing number of variables in
biomedical applications, an appropriate power calculation for
experimental group sizes should be performed. However, in my
experience, high foldchanges of minor lipid species in the context of
systemic metabolic switches are often overvalued in comparison to
smaller changes of major abundant components of a lipidome, even
when the affected molar percentage is magnitudes higher.

Conclusion

In this minireview, I have provided some personal viewpoints on
the experimental limits and interpretation guidelines for the
application of lipidomics to study lipid homeostasis. This is to
raise awareness of some principles in studying systemic lipid
metabolic changes concerning experimental planning and general
data interpretation. The reader is invited to further the discussion on
lipid profiles as a snapshot of membrane compositions in the context
of biophysics and spatial and temporal resolution. The interest in
lipids in biomedical research is rightfully increasing, and the
lipidomic community should pursue the development of
appropriate analytical methods and the provision of high quality
data with a determination to integrate lipidomics into
interdisciplinary research.
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