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The purpose of this review is to explore how clinical metabolomics could help
physicians in the future. The recent advent of medical genomics brings new and
interesting technological tools to measure genetic predispositions to a disease.
But metabolomics will allow us to go even further by linking the patient’s
pathological phenotype with gene expression defects and metabolic disorders.
It is in this context that the clinical chemist must adapt and be a force of proposal
to meet these health challenges. He must help the clinician by mastering these
new innovative tools, in order to participate in the implementation of clinical
studies for the discovery of biomarkers, but also to propose the assays of
biomarkers called “signatures,” which can be composite biomarkers or
fingerprints, which will ultimately guide the clinician. He will have to propose
them as clinical chemistry tests. In the first part, we will look at some concrete
examples of the use of clinical metabolomics in clinical research projects that have
led to the identification of a new biomarker. We will use the example of
trimethylamine N-oxide (or TMAO) and review the clinical studies that have
proposed TMAO as a biomarker for cardiovascular diseases. In a second part,
wewill see through bibliographic studies, how themetabolomic fingerprint can be
useful to build a supervised model for patient stratification. In conclusion, we will
discuss the limitations currently under debate.
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1 Introduction

Metabolomics, one of the recent omics techniques, has emerged thanks to the continuous
development of analytical techniques and bioinformatics. In general, the metabolomics
approach is based on the use of advanced analytical chemistry tools, such as nuclear
magnetic resonance (NMR) and mass spectrometry (MS) coupled with different
chromatographic methods [liquid-chromatography (LC-MS) or Gas-chromatography
(GC-MS)] (Alseekh et al., 2021), to measure and characterize the metabolome
corresponding to the molecules < 1.5 kDa. The examination of metabolites follows two
strategies: 1) targeted metabolomics, driven by the measure of a specific set of metabolites
and 2) untargeted metabolomics, driven by an unbiased approach in which as many as
possible metabolites (including unknown metabolites) are measured and compared between
samples. By the latter approach, thousands of metabolite features [i.e., peaks corresponding
to individual ions with a unique mass-to-charge (m/z) ratio and retention time (RT)] can be
routinely detected by LC/MS based methods. The use of either approach is to be decided
based on the desired applications (Roberts et al., 2012; Schrimpe-Rutledge et al., 2016).
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The metabolome can be studied both at the intracellular level,
highlighting functional abnormalities at the cellular level, and at the
peripheral level (for instance in blood plasma), which contains
numerous metabolites (Wishart et al., 2022), reflective of organ
metabolic activity and thus carrying pathophysiological information
to be exploited. It is easy to understand that the study of metabolites
can reveal a dysfunction of one or several organs, since the organs
can be assimilated to highly specialized “metabolic engines” (for
example, the liver produces bile acids and urea, the thyroid gland
produces thyroxine, the adrenal glands produce cortisol and
epinephrine, etc.). Some metabolites in the human blood are
produced endogenously and others come from the environment
(Psychogios et al., 2011). The variability observed in the metabolome
is on the one hand of hereditary origin (Shin et al., 2014; Long et al.,
2017; Lotta et al., 2021), and on the other hand influenced mainly by
gut microbiota (Wikoff et al., 2009), by lifestyle habits such as
smoking (Xu et al., 2013) or physical activity, or by diet (Playdon
et al., 2016). Diet and the microbiome contribute the most to
individual metabolic variability, and make each person’s
metabotype unique (Bar et al., 2020). In contrast, without
significant changes in health status, each individual’s metabotype
is relatively stable over time. Tracking changes in metabotypes over
several years would therefore allow the evolution of health status to
be traced and could provide indications of disease onset (Yousri
et al., 2014).

Metabolomics shares common features with clinical
biochemistry, as the latter has historically sought to determine
standard and abnormal parameters of small molecular
compounds in blood and other biological fluids (e.g., blood
glucose, creatinine, etc.). Among the biomarkers currently used
in clinical laboratory medicine, a large number are metabolites.
Hence, medical biochemists can be considered to have been
practising metabolomics for a long time without knowing it
(Roux et al., 2012). In any case, one of the main assets of
metabolomics is to identify new biomarkers that are easily
transferable to the medical laboratory. To date, we have several
metabolomics normal data sets from these biological fluids (e.g.,
blood (Psychogios et al., 2011), urine (Bouatra et al., 2013), CSF
(Wishart et al., 2008), or feces (Karu et al., 2018)). Clinical
metabolomics can be considered like clinical chemistry, but it is
more comprehensive, faster, and cheaper according to David
Wishart (Wishart, 2019). The term clinical metabolomics
appeared in the literature for the first time in 2009, although the
concept was described shortly before by J.K Nicholson & J. C Lindon
(Nicholson and Lindon, 2008). Indeed, Uta Ceglarek proposes the
following definition: “‘Clinical metabolomics’ aims at evaluating and
predicting health and disease risk in an individual by investigating
metabolic signatures in body fluids or tissues, which are influenced
by genetics, epigenetics, environmental exposures, diet, and
behaviour” (Ceglarek et al., 2009). By definition, metabolic
signatures contain a panel or a combination of affected
metabolites. Although urine analysis has been used as a non-
invasive and cost-effective tool for disease screening, diagnosis,
and monitoring since ancient times, the first study to measure
urinary metabolomic biomarkers of cancer using NMR and MS
was published in 2006. Since then, these techniques have been used
to detect cancers of the urologic system (kidney, prostate, and
bladder) and non-urologic tumors, including those of the breast,

ovary, lung, liver, gastrointestinal tract, pancreas, bone, and blood
(Dinges et al., 2019). And moreover, several papers have proposed
metabolomics as a method for discovering metabolic biomarkers for
several other important diseases such as diabetes, neurodegenerative
diseases (Chang et al., 2022), atherosclerosis, and lung diseases (Xia
et al., 2013a; Wheelock et al., 2013; Wishart, 2016; Letertre et al.,
2021).

The first part of this work will emphasize the role of
metabolomics as a tool for the discovery of new biomarkers,
taking as an example the identification of TMAO, and tracing
the history of the validation of this biomarker in cardiac
pathologies. The second part highlights the interest of clinical
metabolomics and the identification of metabolic fingerprints to
characterize the health status of patients in a hospital setting.

2 How metabolomics help to find new
biomarker?

In order to understand how metabolomics can identify new
clinically useful biomarkers, and what are the different steps
essential to do so, we chose to trace the different stages of the
discovery of the metabolite biomarker, Trimethylamine N-oxide
(TMAO), in cardiovascular diseases (CVD) (Figure 1).

The story of the discovery of this potential biomarker begins
with the publication in 2011, when researchers published the first
demonstration of the use of untargeted metabolomics to identify
metabolites’ biomarkers, predictive of CVD development (Wang
et al., 2011). A first part of the study used LC-MS metabolomics on a
“training” cohort. This cohort of 100 plasma from stable patients
undergoing cardiac evaluation had been sampled, before half of
them suffered a myocardial infarction (MI), stroke, or death during
the subsequent 3-year period. Control subjects were age- and sex-
matched subjects who had not experienced a cardiovascular event
during the period. The analysis identified a list of 40 analytes
associated with increased cardiovascular risk. The 40 analytes
selected in this step were defined according to their RT and m/z
ratio detected in the LC-MS analysis. The second step consisted in
using an independent “validation” cohort of 50 new patients, and
allowed to confirm 18 analytes, which met the criteria of
acceptability in the training and validation cohorts. Then, the
structural identification of the 18 small molecules present in the
plasma had been carried out, in particular by using NMR, MSn, LC/
MS/MS and GC/MS/MS and experiments carried out in animals
with orally administered deuterated molecules. Among the
18 analytes, the metabolite with m/z 76 was identified as the
TMAO. Moreover, in these first clinical studies, a significant
correlation was found between the analytes of m/z 76, 104 and
118 (p < 0.001) suggesting a common metabolic pathway. This was
later confirmed, the m/z 104 molecule was choline, and the m/z
118 molecule was betaine. At that time, it was known that lipid-rich
foods of the phosphatidylcholine (PC, also known as lecithin)
family, including mainly eggs, milk, liver, red meat, poultry,
shellfish and fish, were considered to be the main dietary sources
of choline, and thus of TMAO production (Zeisel et al., 2003).

Experiments on animals, notably via oral gavage with choline,
had been decisive in identifying betaine (m/z 118) but also in
understanding the pathophysiological mechanism and the role of
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the microbiota in this mechanism. First, it was found that oral
administration of choline in a controlled animal experiment is
absolutely necessary to observe the accumulation of TMAO in
the blood of the gavaged animals. When d9-PC and/or d9-
choline were administered orally, pretreatment of the mice with a
broad-spectrum antibiotic treatment for 3 weeks affecting the
intestinal microbiota completely suppressed the appearance of
d9-TMAO in the plasma. These results were reversible when the
flora was restored before administering the oral treatment,
confirming the need for the presence of a gut microbiota to
recover plasma TMAO from PC in the diet.

Subsequently, to confirm that plasma levels of TMAO, choline
and betaine were good predictive biomarkers of cardiovascular risk,
a new metabolomics study, but this time targeted on these molecules
of interest, was carried out on a large cohort of patients (n = 1,876).
They had shown that elevated levels of choline, TMAO, and betaine
all showed dose-dependent associations with the presence of CVD
and multiple individual CVD phenotypes, including peripheral
arterial disease (PAD), coronary heart disease (CHD), and
history of MI. An association between increased risk of all CVD
phenotypes and elevated systemic levels of these 3 metabolites,
choline, TMAO, and betaine, was confirmed after adjustment for
traditional cardiac risk factors and medication use.

Finally, the use of animal models once again validated the pro-
atherosclerotic effect of a diet rich in choline or TMAO. The analyses

showed an increase in atherosclerosis and a correlation between the
size of the atherosclerotic plaques and the plasma level of TMAO,
independently of other classical markers such as the level of
cholesterol, triglycerides, lipoproteins, or glycemia, but dependent
on the presence of intestinal microbiota. Choline consumption
increased aortic lesions and atherosclerosis in the animals by a
factor of 3, through a mechanism involving pro-atherogenic aortic
macrophages and the gut microbiota. Finally, the researchers
suggested the involvement of the hepatic enzyme, Flavin
monooxygenase type 3 (FMO3), because its expression level in a
liver biopsy was correlated with the level of plasma TMAO in mice
and in humans.

In the New England Journal of Medicine published in 2013
(Tang et al., 2013), Prof. Hazen’s team confirmed these observations
by performing a new targeted metabolomics study on a cohort of
patients (n = 4,007) eligible for coronary angiography and followed
for 3 years, and demonstrated the link between PC metabolism by
the gut microbiota and cardiovascular risk. TMAO, choline, and
betaine were measured in plasma using a mass spectrometer
classically used in medical analysis laboratories (ABSCIEX Q
TRAP 5500) coupled to LC. In addition, they conducted a study
in 40 participants supplemented with dietary PC, as well as a capsule
containing a deuterium-labelled PC (d9-PC). Supplementation
increased the concentration of TMAO and d9-TMAO in the
plasma and urine of these patients. For the 6 patients who had

FIGURE 1
The metabolite biomarker discovery process for Trimethylamine N-Oxyde (TMAO) in evaluation of risk of CVD. Abbreviation: PC,
phosphatidylcholine; MI, myocardial infarction.
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received antibiotic treatment for 1 week, plasma detection of TMAO
and d9-TMAO was abolished. 1 month later, the microbiota had
been restored and the patients had been re-supplemented, allowing
to confirm the human gut microbiota-dependent increase in plasma
TMAO and d9-TMAO after PC consumption.

In all patients, after adjusting for traditional risk factors and
other baseline co-variates, high plasma TMAO levels remained a
significant predictor of the risk of severe cardiovascular events. They
observed a gradual increase in risk with increasing TMAO levels.
When the components of major adverse cardiovascular events were
analyzed separately, high levels of TMAO remained significantly
associated with an increased risk of death (hazard ratio, 3.37; 95%
CI, 2.39 to 4.75; p < 0.001) and non-fatal MI or stroke (hazard ratio,
2.13; 95% CI, 1.48 to 3.05; p < 0.001). The inclusion of TMAO as a
covariate had resulted in a significant improvement in risk
estimation compared with traditional risk factors [improvement
in net reclassification, 8.6% (p < 0.001); improvement in integrated
discrimination, 9.2% (p < 0.001); C statistic, 68.3% versus 66.4% (p =
0.01)]. Moreover, a study on a cohort of 760 healthy women at
baseline, shows that long-term increases in TMAO over 10 years
were associated with higher CHD risk (Heianza et al., 2020).

Other clinical studies had also shown the prognostic role for
other cardiac pathologies such as heart failure. Elevated plasma
TMAO was associated with more advanced left ventricular diastolic
dysfunction and was associated with poor prognosis after
adjustment for cardio-renal indices (Tang et al., 2015). In a
recent meta-analysis, 10 articles (12 studies) involving
13,425 participants from 2014 to 2021 were considered to
examine the prognostic value of TMAO in heart failure (Li et al.,
2022). A high level of TMAO correlated with “major adverse
cardiovascular events” and all-cause mortality in heart failure
(RR: 1.28, 95% CI: 1.17, 1.39, p < 0.0001, random-effects model
and RR: 1.35, 95% CI: 1.28, 1.42, p < 0.0001, random-effects model,
respectively). Consistent results were obtained in all subgroups
examined as well as in the sensitivity analysis.

When clinical studies such as those described above provide a
sufficient level of evidence of the potential of a new biomarker,
learned societies work to establish a consensus of interest in order to
be able to propose recommendations on diagnostic or therapeutic
approaches applicable in current practice. This is how this document
from the European Society of Cardiology entitled “2021 ESC
Guidelines on cardiovascular disease prevention in clinical
practice” was written (Visseren et al., 2021). The
recommendations are classified according to the level of evidence
of effectiveness with a scale of I to III, for respectively, “I: Evidence
that a given treatment or procedure is beneficial,” “II: Conflicting
evidence and/or a divergence of opinion about the usefulness/
efficacy,” “III: Evidence or general agreement that the given
treatment or procedure is not useful/effective.” Depending on
their class, they are then Class I, “recommended,” Class II, “may
be considered,” or III “should not be used.” To date, the TMAO
assay has not yet reached sufficient maturity to be taken into account
in these recommendations and as TMAO exhibits complex genetic,
dietary, and hormonal factor regulation, the use of TMAO as clinical
biomarkers remains controversial by some key opinion leaders
(Patanè, 2020). The latest ESC recommendation in 2021 proposes
the use of SCORE-2. SCORE2—an updated algorithm adapted to
identify people at higher risk of developing CVD across Europe

(SCORE2 working group and ESC Cardiovascular risk
collaboration, 2021).

It is therefore the experts in the field who will be able to assess
the value of TMAO as a biomarker of CVD risk. It is now more than
10 years since this biomarker was discovered by an untargeted
metabolomics study, the road is long and winding, and perhaps
one or more other biomarker metabolites will have to be found to be
used in combination with TMAO to reinforce the interest of this
metabolomic approach to improve cardiovascular risk prediction.

3 How clinical metabolomics could
help to better diagnose or prognose
patients by fingerprinting analysis?

In the previous section, we have just seen the role of metabolomics
to discover new biomarkers based on clinical studies. However, a single
metabolite alone cannot often be a biomarker capable of predicting
and/or diagnosing a pathology. A consensus in the community seems
to be towards the use of ametabolic fingerprinting containing a panel of
metabolites, more robust and bringingmoreweight in statisticalmodels
(Dias and Koal, 2016). In this second section, we have chosen to
illustrate the interest that clinical metabolomics could have as a tool to
measure the metabolic fingerprint in order to improve patient
management. Through the examples selected in this section, we will
emphasize the general workflow.

First of all, clinical metabolomics analysis is performed on a
human biospecimen which has a care, research or other purpose,
and which requires to take into account the ethical and legal aspects -
the most important of which is permission (The Belmont Report,
2014). 1) In the United States, Institutional Review Boards (IRBs) are
responsible for the regulatory oversight of research involving human
research subjects (National Archives and Records Administration,
2018) 2) In other countries, an Independent Ethics Committees
(IECs) may be responsible. They are typically directed by the
Nuremberg Code, Declaration of Helsinki and guidelines
established by the Council for the International Organization of
Medical Sciences (CIOMS) and the principles of Good Clinical
Practice (GCP).

If care is the goal of clinical metabolomics, then the biospecimen
should be analyzed in a clinical chemistry laboratory, and the
analyses will be performed according to the following overall
protocol flow (Figure 2):

1. Samples collection, transport, aliquoting
2. Quenching and metabolites extraction
3. Sample drying and pellet resuspension
4. Chromatography separation (GC or LC)
5. Mass spectrometry or NMR (except step 2 to 4 for NMR)
6. Data processing, metabolites identification and data analysis
7. Validation and transmission of the results

First, the objective is to obtain a robust statistical model with a
learning and validation cohort. Then the sample of a patient will be
analyzed with this model and the result returned to the patient and/
or clinician within 1–2 working days. Hence, the turn-around time
for metabolomic fingerprinting should takes about 1–2 days.
However, this turn-around time is only important in relation to
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the targeted pathology or the usefulness of the information for
therapeutic management. The current turnaround time for clinical
metabolomics analysis therefore excludes the possibility of using it,
today, as emergency biomarkers. However, it remains compatible
with all pathologies for which the vital prognosis will not be engaged
in case of a delay of more than 2 days. This seems to be particularly
well indicated, for example, for the diagnosis of rare diseases,
cancers, or chronic diseases, for which diagnostic errancy can
considerably delay patient management (over several years or
even a decade). And this workflow will require great
reproducibility potentially in both analytical, e.g., NMR or LC-
and GC-MS and the automated data handling pipelines.

3.1 Example of metabolic fingerprint for
COVID-19

In order to build a multi-metabolite biomarker model on the
observed effects of COVID-19 disease, and as shown before, the
sample set was divided into cohort for training and cohort for
validation (Kimhofer et al., 2020). Samples were analyzed by a
targeted metabolomics approach with both NMR using Bruker
in vitro diagnostic research (IVDr) methods specifically on
lipoprotein subclass analysis (n = 112), and MS for quantitative
amino acid analysis (n = 35). In this particular case, it should be
noted that all the metabolites used for the acquisition of the

FIGURE 2
Clinical metabolomics’ overall protocol flow. Abbreviation: IS, internal standard; N2, Nitrogen.
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fingerprint were known and their dosage “validated” for in vitro
diagnosis. The data were then analyzed using multivariate analysis
such as principal component analysis and partial orthogonal least
squares discriminant analysis (OPLS-DA). The training cohort
consisted of SARS-CoV-2 positive (n = 7) and negative patients
(n = 8), adjusted for age and sex. OPLS-DA model scores, including
projections of validation sample scores (whole cohort n = 42),
indicated large systematic metabolic differences in plasma of
SARS-CoV-2-positive individuals compared with control patients
and was used to construct an exceptionally strong (AUROC = 1)
hybrid NMR-MS model that enabled detailed metabolic
discrimination between the groups. The predictions of the
validation samples from patients with the disease were 100%
accurate, resulting in a sensitivity, specificity, and positive and
negative predictive values of the model equal to 1, which is
superior to currently used medical biology tests (PCR and/or
serology). Although the objective of this work was not to propose
a diagnostic test for SARS-CoV-2 infection, the models and data
presented here show the possibility of developing such a test with
other samples and a validation of the method.

3.2 Some examples of metabolic fingerprint
for cancer diagnosis

In oncology, and more specifically in solid tumors, single
biomarkers are used for cancer follow-up, but are not sufficiently
effective for screening or diagnosis. In this context, metabolomics
and the acquisition of metabolic fingerprints represent an interesting
tool to detect early-stage cancers, i.e., before the appearance of
clinical signs. In this section, some examples of application will be
mentioned, considering that metabolomics approaches in oncology
have been recently reviewed by Schmidt et al. (2021). Metabolic
fingerprinting of two biological matrices has shown particular
interest in the evaluation of different solid tumors. First of all, a
recent literature review presents multiple examples of the use of
metabolomics as a method for studying the urine of cancer patients
(Dinges et al., 2019). In four studies using MS, comparing the
metabolic profiles of urine from bladder cancer patients and
healthy subjects, OPLS- DA and PLS-DA models with cross-
validation (Pasikanti et al., 2010; Huang et al., 2011; Pasikanti
et al., 2013) or a preliminary test cohort (Issaq et al., 2008)
revealed excellent sensitivities and specificities (100% in both
cases). In these examples, global non-targeted metabolomic
analyses, on a large set of features (RT, and m/z) i.e., known and
unknown molecules, were used to build a model. It should be noted
that this type of modeling probably still does not seem applicable to
the clinic today because the physician will not know exactly where
does the metabolic signature (or information) in the fingerprint
come from. On the other hand, all these studies demonstrate the
high detection capacity of clinical metabolomics on urine samples
for the diagnosis of urinary tract cancers, in which the measured
biofluid is in direct contact with the tumor. Beyond the diagnostic
value, metabolomics has proven to be a powerful method in the
differentiation of bladder tumor stage and grade. For example, five
MS studies have successfully differentiated tumor stage, grade, and
recurrence status (Dinges et al., 2019). Urine is also an interesting
fluid for other cancers such as ovarian cancer, where 90% of patients

are diagnosed at an advanced metastatic stage (III or IV), and have a
5-year life expectancy of less than 30%. An NMR metabolomics
study (n = 102) established an OPLS-DA model, validated by a
permutation test (R2 = 0.77 and Q2 = 0.6). The validation test (n =
20) correctly predicted classification in 100% of cases.

And, finally, blood is the most commonly used biofluid for
metabolomics studies. The metabolomics approach was applied to
serum samples from patients with advanced metastatic breast cancer
(n = 39) versus localized early disease (n = 46) (Jobard et al., 2014).
NMR analysis followed by multivariate OPLS modeling was used in
this study to define the metabolomic signature of advanced
metastatic human breast cancer. The model able to distinguish
between patients with metastatic and early breast cancer was
obtained and validated with an external test group (n =
112 patients; sensitivity 89.8%, specificity 79.3%).

In all cases, it is important to pay attention to how the authors
use such supervised multivariate statistics and how many patients
have been recruited. The values of R2 and Q2 are essential for the
proper evaluation and robustness of the model obtained. Too many
studies come to hasty conclusions with predictability values (Q2)
lower than 0.5, which would be less accurate than flipping a coin.
And few studies provide receiver operating characteristics (ROC)
curves with associated confidence intervals, the golden standard
method in biomedical fields for performance assessment (Xia et al.,
2013b).

This innovative approach would allow the identification of
predictive biomarkers of therapeutic response, notably to
immune checkpoint inhibitors. This question is currently
addressed by Pr. Toffart in a prospective clinical trial conducted
on 60 patients with non-small cell lung cancer (NSCLC) at the CHU
Grenoble-Alpes (NCT04189679) (Sannicolo et al., 2021). Expected
results would enable the identification of metabolite fingerprints
rather than a single metabolite biomarker, to predict disease
evolution under treatment.

4 Discussion

Untargeted metabolomics help to identify new biomarkers.
Several examples in the literatures exists (Dang et al., 2009).
Here, we have seen through the example of TMAO, the potential
of metabolomics for the discovery of new biomarkers of pathology.
It took more than 10 years, including the most limiting step of the
field, i.e., the structural identification of metabolites and their role in
pathophysiology. But beyond its role in biomarker discovery, we
have seen that metabolomics could also allow the identification of a
metabolic phenotype (metabotype) of different kind of pathologies,
with the possibility of creating supervised models, that allowmedical
analysis laboratories to propose to clinicians the stratification of
patients. Supervised machine learning algorithms, or multivariate
regression models should be useful to build the predictive model for
patient stratification. The challenge here for the hospital is as much
in the recruitment of qualified personnel, as in the computer
equipment necessary to achieve such a technological feat. Finally,
there are still a number of challenges to be met in the field, such as
the development of reference materials (Lippa et al., 2022),
standards, methods and kits (medical device regulatory, FDA,
CE/IVD), approved metabolomics software, reference
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laboratories, and external quality program will be necessary to
improve the quality, robustness and validation of these
approaches. Clinical metabolomics is totally in line with the
evolution of medicine, a personalized medicine and would allow
better upstream selection of patients responding to new therapies
and diagnosis or prognosis of patients.

Author contributions

ALG conceptualized, wrote the first draft, ALG, CP, and BT
review the final version.

Funding

ALG received grant support from the Fondation Université
Grenoble Alpes and Fondation Air Liquide, FINOVI, ANR

AMN, Association Vaincre la mucoviscidose and Gregory
Lemarchal.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Alseekh, S., Aharoni, A., Brotman, Y., Contrepois, K., D’Auria, J., Ewald, J., et al.
(2021). Mass spectrometry-based metabolomics: a guide for annotation, quantification
and best reporting practices. Nat. Methods 18, 747–756. doi:10.1038/s41592-021-
01197-1

Bar, N., Korem, T., Weissbrod, O., Zeevi, D., Rothschild, D., Leviatan, S., et al. (2020).
A reference map of potential determinants for the human serum metabolome. Nature
588, 135–140. doi:10.1038/s41586-020-2896-2

Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., et al. (2013).
The human urine metabolome. PLoS One 8, e73076. doi:10.1371/journal.pone.0073076

Ceglarek, U., Leichtle, A., Brügel, M., Kortz, L., Brauer, R., Bresler, K., et al. (2009).
Challenges and developments in tandem mass spectrometry based clinical
metabolomics. Mol. Cell Endocrinol. 301, 266–271. doi:10.1016/j.mce.2008.10.013

Chang, K. H., Cheng, M. L., Tang, H. Y., Huang, C. Y., Wu, H. C., and Chen, C. M.
(2022). Alterations of sphingolipid and phospholipid pathways and ornithine level in
the plasma as biomarkers of Parkinson’s disease. Cells 11, 395. doi:10.3390/
CELLS11030395

Dang, L., White, D.W., Gross, S., Bennett, B. D., Bittinger, M. A., Driggers, E. M., et al.
(200946272009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nat
462, 739–744. doi:10.1038/nature08617

Dias, D. A., and Koal, T. (2016). Progress in metabolomics standardisation and its
significance in future clinical laboratory medicine. EJIFCC 27, 331–343.

Dinges, S. S., Hohm, A., Vandergrift, L. A., Nowak, J., Habbel, P., Kaltashov, I. A., et al.
(2019). Cancer metabolomic markers in urine: Evidence, techniques and
recommendations. Nat. Rev. Urol. 16, 339–362. doi:10.1038/s41585-019-0185-3

Heianza, Y., Ma, W., DiDonato, J. A., Sun, Q., Rimm, E. B., Hu, F. B., et al. (2020).
Long-term changes in gut microbial metabolite trimethylamine N-oxide and coronary
heart disease risk. J. Am. Coll. Cardiol. 75, 763–772. doi:10.1016/j.jacc.2019.11.060

Huang, Z., Lin, L., Gao, Y., Chen, Y., Yan, X., Xing, J., et al. (2011). Bladder cancer
determination via two urinary metabolites: A biomarker pattern approach. Mol. Cell
Proteomics 10, M111.007922. doi:10.1074/mcp.M111.007922

Issaq, H. J., Nativ, O., Waybright, T., Luke, B., Veenstra, T. D., Issaq, E. J., et al. (2008).
Detection of bladder cancer in human urine by metabolomic profiling using high
performance liquid chromatography/mass spectrometry. J. Urol. 179, 2422–2426.
doi:10.1016/J.JURO.2008.01.084

Jobard, E., Pontoizeau, C., Blaise, B. J., Bachelot, T., Elena-Herrmann, B., and Trédan,
O. (2014). A serum nuclear magnetic resonance-based metabolomic signature of
advanced metastatic human breast cancer. Cancer Lett. 343, 33–41. doi:10.1016/J.
CANLET.2013.09.011

Karu, N., Deng, L., Slae, M., Guo, A. C., Sajed, T., Huynh, H., et al. (2018). A review on
human fecal metabolomics: Methods, applications and the human fecal metabolome
database. Anal. Chim. Acta 1030, 1–24. doi:10.1016/j.aca.2018.05.031

Kimhofer, T., Lodge, S., Whiley, L., Gray, N., Loo, R. L., Lawler, N. G., et al. (2020).
Integrative modeling of quantitative plasma lipoprotein, metabolic, and amino acid data
reveals a multiorgan pathological signature of SARS-CoV-2 infection. J. Proteome Res.
19, 4442–4452. doi:10.1021/acs.jproteome.0c00519

Letertre, M. P. M., Giraudeau, P., De Tullio, P., Rudaz, S., Choi, Y. H., and Luchinat, C.
(2021). Nuclear magnetic resonance spectroscopy in clinical metabolomics and
personalized medicine: Current challenges and perspectives. Front. Mol. Biosci. 8,
698337. doi:10.3389/fmolb.2021.698337

Li, X., Fan, Z., Cui, J., Li, D., Lu, J., Cui, X., et al. (2022). Trimethylamine N-oxide in
heart failure: A meta-analysis of prognostic value. Front. Cardiovasc Med. 9, 817396.
doi:10.3389/FCVM.2022.817396

Lippa, K. A., Aristizabal-Henao, J. J., Beger, R. D., Bowden, J. A., Broeckling, C.,
Beecher, C., et al. (2022). Reference materials for MS-based untargeted metabolomics
and lipidomics: a review by the metabolomics quality assurance and quality control
consortium (mQACC). Metabolomics 18, 24. doi:10.1007/S11306-021-01848-6

Long, T., Hicks, M., Yu, H. C., Biggs, W. H., Kirkness, E. F., Menni, C., et al. (2017).
Whole-genome sequencing identifies common-to-rare variants associated with human
blood metabolites. Nat. Genet. 49, 568–578. doi:10.1038/ng.3809

Lotta, L. A., Pietzner, M., Stewart, I. D., Wittemans, L. B. L., Li, C., Bonelli, R., et al.
(2021). A cross-platform approach identifies genetic regulators of human metabolism
and health. Nat. Genet. 53, 54–64. doi:10.1038/s41588-020-00751-5

National Archives and Records Administration (2018). Code of federal regulations.
45 CFR Part 46 (2018-07-19) Protection of Human Subjects. Available at: https://www.
ecfr.gov/on/2018-07-19/title-45/subtitle-A/subchapter-A/part-46#sp45.1.46.a
(accessed January 11, 2023).

Nicholson, J. K., and Lindon, J. C. (2008). Systems biology: Metabonomics. Nature
455, 1054–1056. doi:10.1038/4551054a

Pasikanti, K. K., Esuvaranathan, K., Ho, P. C., Mahendran, R., Kamaraj, R., Wu, Q. H.,
et al. (2010). Noninvasive urinary metabonomic diagnosis of human bladder cancer.
J. Proteome Res. 9, 2988–2995. doi:10.1021/pr901173v

Pasikanti, K. K., Esuvaranathan, K., Hong, Y., Ho, P. C., Mahendran, R., Raman Nee
Mani, L., et al. (2013). Urinary metabotyping of bladder cancer using two-dimensional
gas chromatography time-of-flight mass spectrometry. J. Proteome Res. 12, 3865–3873.
doi:10.1021/pr4000448

Patanè, S. (2020). Long-term changes in gut microbial metabolite TMAO, CHD risk,
and its complex regulatory network. J. Am. Coll. Cardiol. 75, 3100–3101. doi:10.1016/j.
jacc.2020.03.077

Playdon, M. C., Sampson, J. N., Cross, A. J., Sinha, R., Guertin, K. A., Moy, K. A., et al.
(2016). Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin.
Nutr. 104, 776–789. doi:10.3945/ajcn.116.135301

Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011).
The human serummetabolome. PLoS One 6, e16957. doi:10.1371/journal.pone.0016957

Roberts, L. D., Souza, A. L., Gerszten, R. E., and Clish, C. B. (2012). Targeted
metabolomics. Curr. Protoc. Mol. Biol. Chapter 30, Unit 30.2.1-24. doi:10.1002/
0471142727.mb3002s98

Roux, A., Xu, Y., Heilier, J. F., Olivier, M. F., Ezan, E., Tabet, J. C., et al. (2012).
Annotation of the human adult urinary metabolome and metabolite identification using
ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-
orbitrap mass spectrometer. Anal. Chem. 84, 6429–6437. doi:10.1021/ac300829f

Frontiers in Analytical Science frontiersin.org07

Le Gouellec et al. 10.3389/frans.2023.1142606

https://doi.org/10.1038/s41592-021-01197-1
https://doi.org/10.1038/s41592-021-01197-1
https://doi.org/10.1038/s41586-020-2896-2
https://doi.org/10.1371/journal.pone.0073076
https://doi.org/10.1016/j.mce.2008.10.013
https://doi.org/10.3390/CELLS11030395
https://doi.org/10.3390/CELLS11030395
https://doi.org/10.1038/nature08617
https://doi.org/10.1038/s41585-019-0185-3
https://doi.org/10.1016/j.jacc.2019.11.060
https://doi.org/10.1074/mcp.M111.007922
https://doi.org/10.1016/J.JURO.2008.01.084
https://doi.org/10.1016/J.CANLET.2013.09.011
https://doi.org/10.1016/J.CANLET.2013.09.011
https://doi.org/10.1016/j.aca.2018.05.031
https://doi.org/10.1021/acs.jproteome.0c00519
https://doi.org/10.3389/fmolb.2021.698337
https://doi.org/10.3389/FCVM.2022.817396
https://doi.org/10.1007/S11306-021-01848-6
https://doi.org/10.1038/ng.3809
https://doi.org/10.1038/s41588-020-00751-5
https://www.ecfr.gov/on/2018-07-19/title-45/subtitle-A/subchapter-A/part-46#sp45.1.46.a
https://www.ecfr.gov/on/2018-07-19/title-45/subtitle-A/subchapter-A/part-46#sp45.1.46.a
https://doi.org/10.1038/4551054a
https://doi.org/10.1021/pr901173v
https://doi.org/10.1021/pr4000448
https://doi.org/10.1016/j.jacc.2020.03.077
https://doi.org/10.1016/j.jacc.2020.03.077
https://doi.org/10.3945/ajcn.116.135301
https://doi.org/10.1371/journal.pone.0016957
https://doi.org/10.1002/0471142727.mb3002s98
https://doi.org/10.1002/0471142727.mb3002s98
https://doi.org/10.1021/ac300829f
https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2023.1142606


Sannicolo, S., Giaj Levra, M., Le Gouellec, A., Aspord, C., Boccard, J., Chaperot, L.,
et al. (2021). Identification of a predictive metabolic signature of response to immune
checkpoint inhibitors in non-small cell lung cancer: METABO-ICI clinical study
protocol. Respir. Med. Res. 80, 100845. doi:10.1016/J.RESMER.2021.100845

Schmidt, D. R., Patel, R., Kirsch, D. G., Lewis, C. A., Vander Heiden, M. G., and
Locasale, J. W. (2021). Metabolomics in cancer research and emerging applications in
clinical oncology. CA Cancer J. Clin. 71, 333–358. doi:10.3322/caac.21670

Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., and McLean, J. A. (2016).
Untargeted metabolomics strategies—challenges and emerging directions. J. Am. Soc.
Mass Spectrom. 27, 1897–1905. doi:10.1007/s13361-016-1469-y

SCORE2 working group and ESC Cardiovascular risk collaboration (2021).
SCORE2 risk prediction algorithms: New models to estimate 10-year risk of
cardiovascular disease in Europe. Eur. Heart J. 42, 2439–2454. doi:10.1093/
eurheartj/ehab309

Shin, S. Y., Fauman, E. B., Petersen, A. K., Krumsiek, J., Santos, R., Huang, J., et al.
(2014). An atlas of genetic influences on human blood metabolites. Nat. Genet. 46,
543–550. doi:10.1038/NG.2982

Tang, W. H. W., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., et al. (2013).
Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N.
Engl. J. Med. 368, 1575–1584. doi:10.1056/NEJMOA1109400

Tang, W. H. W., Wang, Z., Shrestha, K., Borowski, A. G., Wu, Y., Troughton, R. W.,
et al. (2015). Intestinal microbiota-dependent phosphatidylcholine metabolites,
diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure.
J. Card. Fail 21, 91–96. doi:10.1016/j.cardfail.2014.11.006

The Belmont Report (2014). Ethical principles and guidelines for the protection of
human subjects of research. J. Am. Coll. Dent. 81, 4–13. doi:10.1017/
cbo9780511550089.028

Visseren, F. L. J., MacH, F., Smulders, Y. M., Carballo, D., Koskinas, K. C., Bäck, M.,
et al. (2021). 2021 ESC Guidelines on cardiovascular disease prevention in clinical
practice. Eur. Heart J. 42, 3227–3337. doi:10.1093/eurheartj/ehab484

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., et al. (2011).
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature
472, 57–63. doi:10.1038/nature09922

Wheelock, C. E., Goss, V. M., Balgoma, D., Nicholas, B., Brandsma, J., Skipp, P. J.,
et al. (2013). Application of ’omics technologies to biomarker discovery in inflammatory
lung diseases. Eur. Respir. J. 42, 802–825. doi:10.1183/09031936.00078812

Wikoff,W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009).
Metabolomics analysis reveals large effects of gut microflora on mammalian blood
metabolites. Proc. Natl. Acad. Sci. U. S. A. 106, 3698–3703. doi:10.1073/pnas.0812874106

Wishart, D. S., Lewis, M. J., Morrissey, J. A., Flegel, M. D., Jeroncic, K., Xiong, Y., et al.
(2008). The human cerebrospinal fluid metabolome. J. Chromatogr. B Anal. Technol.
Biomed. Life Sci. 871, 164–173. doi:10.1016/j.jchromb.2008.05.001

Wishart, D. S., Guo, A. C., Oler, E., Wang, F., Anjum, A., Peters, H., et al. (2022).
HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 50,
D622–D631. doi:10.1093/nar/gkab1062

Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and
precision medicine. Nat. Rev. Drug Discov. 15, 473–484. doi:10.1038/nrd.2016.32

Wishart, D. S. (2019). Metabolomics for investigating physiological and
pathophysiological processes. Physiol. Rev. 99, 1819–1875. doi:10.1152/physrev.
00035.2018

Xia, J., Broadhurst, D. I., Wilson, M., and Wishart, D. S. (2013a). Translational
biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics
9, 280–299. doi:10.1007/s11306-012-0482-9

Xia, J., Broadhurst, D. I., Wilson, M., and Wishart, D. S. (2013b). Translational
biomarker discovery in clinical metabolomics: an introductory tutorial.Metabolomics 9,
280–299. doi:10.1007/s11306-012-0482-9

Xu, T., Holzapfel, C., Dong, X., Bader, E., Yu, Z., Prehn, C., et al. (2013). Effects of
smoking and smoking cessation on human serum metabolite profile: Results from the
KORA cohort study. BMC Med. 11, 60. doi:10.1186/1741-7015-11-60

Yousri, N. A., Kastenmüller, G., Gieger, C., Shin, S. Y., Erte, I., Menni, C., et al. (2014).
Long term conservation of human metabolic phenotypes and link to heritability.
Metabolomics 10, 1005–1017. doi:10.1007/s11306-014-0629-y

Zeisel, S. H., Mar, M. H., Howe, J. C., and Holden, J. M. (2003). Concentrations of
choline-containing compounds and betaine in common foods. J. Nutr. 133, 1302–1307.
doi:10.1093/jn/133.5.1302

Frontiers in Analytical Science frontiersin.org08

Le Gouellec et al. 10.3389/frans.2023.1142606

https://doi.org/10.1016/J.RESMER.2021.100845
https://doi.org/10.3322/caac.21670
https://doi.org/10.1007/s13361-016-1469-y
https://doi.org/10.1093/eurheartj/ehab309
https://doi.org/10.1093/eurheartj/ehab309
https://doi.org/10.1038/NG.2982
https://doi.org/10.1056/NEJMOA1109400
https://doi.org/10.1016/j.cardfail.2014.11.006
https://doi.org/10.1017/cbo9780511550089.028
https://doi.org/10.1017/cbo9780511550089.028
https://doi.org/10.1093/eurheartj/ehab484
https://doi.org/10.1038/nature09922
https://doi.org/10.1183/09031936.00078812
https://doi.org/10.1073/pnas.0812874106
https://doi.org/10.1016/j.jchromb.2008.05.001
https://doi.org/10.1093/nar/gkab1062
https://doi.org/10.1038/nrd.2016.32
https://doi.org/10.1152/physrev.00035.2018
https://doi.org/10.1152/physrev.00035.2018
https://doi.org/10.1007/s11306-012-0482-9
https://doi.org/10.1007/s11306-012-0482-9
https://doi.org/10.1186/1741-7015-11-60
https://doi.org/10.1007/s11306-014-0629-y
https://doi.org/10.1093/jn/133.5.1302
https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2023.1142606

	What clinical metabolomics will bring to the medicine of tomorrow
	1 Introduction
	2 How metabolomics help to find new biomarker?
	3 How clinical metabolomics could help to better diagnose or prognose patients by fingerprinting analysis?
	3.1 Example of metabolic fingerprint for COVID-19
	3.2 Some examples of metabolic fingerprint for cancer diagnosis

	4 Discussion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


