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Identifying specific diagnostic and prognostic biological markers of COVID-19 can
improve disease surveillance and therapeutic opportunities. Mass spectrometry
combined with machine and deep learning techniques has been used to identify
pathways that could be targeted therapeutically. Moreover, circulating biomarkers
have been identified to detect individuals infectedwith SARS-CoV-2 and at high risk of
hospitalization. In this review, we have surveyed studies that have combined mass
spectrometry-based omics techniques (proteomics, lipdomics, and metabolomics)
and machine learning/deep learning to understand COVID-19 pathogenesis. After a
literature search, we show 42 studies that applied reproducible, accurate, and
sensitive mass spectrometry-based analytical techniques and machine/deep
learning methods for COVID-19 biomarker discovery and validation. We also
demonstrate that multiomics data results in classification models with higher
performance. Furthermore, we focus on the combination of MALDI-TOF Mass
Spectrometry and machine learning as a diagnostic and prognostic tool already
present in the clinics. Finally, we reiterate that despite advances in this field, more
optimization in the analytical and computational parts, such as sample preparation,
data acquisition, and data analysis, will improve biomarkers that can be used to obtain
more accurate diagnostic and prognostic tools.
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Introduction

The first detection of SARS-CoV-2, the causing agent of Coronavirus Disease 19
(COVID-19), infection in humans was dated late 2019 in Wuhan, China (Lamers and
Haagmans, 2022). Since its emergence, efforts have been made to understand the disease and
find new biomarkers to develop diagnostic and prognostic methods. The development of
diagnostic methods is essential to detect the disease as soon as possible for disease control,
while prognostic methods are essential to predict if a patient will develop clinical
manifestations ranging from asymptomatic, mild, to severe COVID-19 symptoms. Mild
cases of COVID-19 may present with symptoms similar to the common cold or flu, such as
fever, cough, sore throat, fatigue, body aches, and loss of smell or taste. Severe cases of
COVID-19 can include shortness of breath, chest pain or pressure, confusion, and bluish lips
or face. Severe cases can rapidly progress and require hospitalization. Some patients require
mechanical ventilation or other intensive care that can evolve into acute respiratory distress
syndrome, septic shock and/or multiple organ failure (Berlin et al., 2020).
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Several factors can indicate whether or not an individual will
develop severe COVID-19. There are reports in the literature
indicating that higher age is associated with an increased chance
of admission to ICU (intensive care unit) or death (Romero Starke
et al., 2020; CDC COVID-19 Response Team, 2020; Romero Starke
et al., 2021). Male individuals were also reported to have an
increased risk for severe COVID-19 (Klein et al., 2020; Penna
et al., 2020; Alwani et al., 2021). Regarding comorbidities,
patients with cardiovascular diseases, diabetes, obesity, chronic
kidney disease, hypertension, HIV, and tuberculosis were
reported to have an increased risk of developing severe COVID-
19 (Pranata et al., 2020; Collard et al., 2021; Gimeno-Miguel et al.,
2021; McGurnaghan et al., 2021; Ortiz et al., 2021; Zhou et al., 2021).
Although the individual’s characteristics provide insights into
COVID-19 severity, the molecular patterns allow the
understating of the biological mechanisms responsible for such
responses. Analyzing the changes in proteins, metabolites, lipids,
and other molecules can help find biomarkers that can be further
used to develop diagnostic and prognostic methods. For instance,
the increased expression of the protein ACE2 (angiotensin-
converting enzyme 2), which serves as the receptor for the SARS-
CoV-2 S protein, was reported to be correlated with increased risk of
severe COVID-19 (Pinto et al., 2020; Gheware et al., 2022), it was
also reported that ACE2 expression in nasal and bronchial airways is
lower in children than in adults, which may be a factor that
contributes to children having a lower risk for severe COVID-19
(Aslam et al., 2017; McArdle et al., 2021).

The effects of SARS-CoV-2 infection are complex and
multiple mechanisms may explain severity differences
between groups. Differences in immune responses can also be
used to describe why certain groups are more prone to severe
COVID-19; for instance, it has been reported that females have
an increased dosage of TLR7, a toll-like receptor capable of
recognizing coronavirus RNA, which controls the viral
replication through type I interferon activation (Alwani et al.,
2021). This increased dosage may be responsible for enhancing
viral response, conferring to females increased protection
against SARS-CoV-2 when compared to male individuals
(Spiering and de Vries, 2021). Diabetes is another example of
the complexity behind COVID-19 severity mechanisms. Patients
with severe COVID-19 have an increased presence of
inflammatory markers such as procalcitonin (PCT),
C-reactive protein (CRP), interleukin-6, 10, and 2R (IL-6, IL-
10, IL-2R), and serum amyloid A (SAA) (Zhou et al., 2020;
Mahat et al., 2021). Diabetic patients are known to have a
proinflammatory state, which could contribute to an
increased chance of developing severe COVID-19 (ref 21),
especially by exacerbating the cytokine responses leading to a
severe immune reaction, an event called “cytokine storm”

(Erener, 2020). The higher risk for patients with diabetes was
also correlated with the activation of the NF-kappa-B pathway,
which is known to have an essential role in the cytokine storm
event (Aslam et al., 2017). These studies demonstrate the
heterogeneous effectors that causes COVID-19 severity.

Given this complexity, a systemic view of the infection can
provide valuable information on disease progression by searching
for more specific molecules or a set of molecules that can detect and
monitor the disease.

Since COVID-19 affects many biological pathways, several
biomolecules are regulated during infection. Thus, selecting the
molecules with the highest impact on disease progression is
challenging. High-throughput techniques can be employed to
understand COVID-19 at the molecular level and capture the
complex changes in the host. In this context, mass spectrometry
is a technique that can be used to map systemic changes and has
been applied in COVID-19 biomarker identification. However,
finding the proteins, metabolites, lipids, or other biomolecules
that directly impact COVID-19 pathogenesis can be challenging
due to the large amount of data generated. In this case, machine and
deep learning can be employed to build classification models to
diagnose if a patient has COVID-19 or will develop a severe
condition.

This review shows how mass spectrometry can be applied to
obtain a systemic view of the viral infection and use this information
to find molecules that can be used as biomarkers for diagnosis and
prognosis of the disease. We also show how machine learning and
deep learning (a subfield of machine learning) can assist omics data
analysis, building models for diagnosis and prognosis, focusing on
the supervised learning approach. Finally, we demonstrate how the
Matrix-assisted laser desorption ionization–time of flight mass
spectrometry (MALDI-TOF MS) combined with machine
learning can serve as a method for diagnosis/prognosis of
COVID-19 and discuss the challenges and prospectives of this field.

Methods

In this review, we searched for PubMed articles with the keys
“Proteomics and Machine Learning”, “Lipdomics and Machine
Learning,” and “Lipdomics and Machine Learning,” all of them
followed by “COVID-19 diagnosis” or “COVID-19 prognosis.” The
articles that contained multiple omics in their methods were marked
as “Multiomics.” Articles that contained omics obtained from other
techniques thanMS were considered in the review only if they were a
multiomics approach containing at least one omics dataset obtained
by MS. Table 1 includes 42 studies that passed these criteria.

Mass spectrometry for biomarker discovery

A biomarker can be a biomolecule that indicates a change in
biological structures or functions and can be used to evaluate the
state of a living organism (Silberring and Ciborowski, 2010). Since
most clinical decisions are based on laboratory tests, biomarkers can
influence clinical outcomes. Many studies aim to find specific
biomarkers for certain diseases, and mass spectrometry is a
common approach to search for them. In short, mass
spectrometry instruments measure the mass-to-charge ratio ions
in the gas phase of proteins, peptides, metabolites, lipids and other
molecules from a given sample (i.e., cells, biofluids and tissues) to
determine their molecular weight, structures, and quantities
(Aksenov et al., 2017). Since this technique allows the
identification and quantification of thousands of molecules, it is
one of the most used technologies in “omics” studies. Proteomics is
the science that aims to identify and quantify the complete set of
proteins, their localization, interactions and post-translational
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TABLE 1 Omics approaches combined with machine and deep learning data analyses to identify diagnostic and prognostic biomarkers for COVID-19.

Title Type of omic Classification
(diagnostic or
prognostic)

Machine
learning/
Deep

learning

Year Possible biomarkers Cohort References

A blood atlas of
COVID-19 defines
hallmarks of disease
severity and
specificity

Proteomic Prognostic Machine
Learning

2022 SAA2, CRP, CCL20, C5a,
CCL2

166 Hospitalized
COVID-19 Patients,
58 Hospitalized
Sepsis Patients,
135 Healthcare
Workers,
22 Influenza
Patients, 42 COVID-
19 Patients,
28 Healthy
Volunteers

Ahern and
COvid-19

Multi-omics Blood
ATlas COMBAT
Consortium (2022)

A mass
spectrometry-based
targeted assay for
detection of SARS-
CoV-2 antigen from
clinical specimens

Proteomic Diagnostic Machine
Learning

2021 204 SARS-CoV-
2 Positive and
159 Negative

Renuse et al. (2021)

A ‘Multiomic’
Approach of Saliva
Metabolomics,
Microbiota, and
Serum Biomarkers
to Assess the Need
of Hospitalization in
Coronavirus Disease
2019

Metabolomic Prognostic Machine
Learning

2022 Mannonate, Myo-inositol,
Pantothenate,3-
hydroxypyridine,
Cyclo(leu-pro)

25 Outpatients,
25 Severe COVID-19
Patients,
180 Healthy
Individuals and
90 Recovered from
COVID-19

Pozzi et al. (2022)

A multiplex protein
panel assay for
severity prediction
and outcome
prognosis in patients
with COVID-19: An
observational multi-
cohort study

Proteomic Prognostic Machine
Learning

2022 CRP, AHSG, SERPING1,
CST3, TF

130 COVID-19
Patients and
34 Hospitalized
COVID-19 Patients

Wang et al. (2022)

A neutrophil
activation signature
predicts critical
illness and mortality
in COVID-19

Proteomic Prognostic Machine
Learning

2021 RETN, LCN2, HGF, IL-8,
G-CSF

40 Hospitalized
COVID-19 Patients,
9 COVID-19
Patients, 13 Healthy
Controls

Meizlish et al. (2021)

A proteomic
survival predictor
for COVID-19
patients in intensive
care

Proteomic Prognostic Machine
Learning

2022 SAA1, SAA2, CRP, ITIH3,
LRG1

35 Hospitalized
COVID-19 (fatal),
15 Hospitalized
COVID-19

Demichev et al.
(2022)

A time-resolved
proteomic and
prognostic map of
COVID-19

Proteomic Diagnostic Deep Learning 2021 AGT, CRP, SERPINA3, PLG 139 Hospitalized
COVID-19 Patients
and 17 Hospitalized
COVID-19 Patients
(fatal)

Demichev et al.
(2021)

Artificial
Intelligence-Based
Prediction of
COVID-19 Severity
on the Results of
Protein Profiling

Proteomic Diagnosis/
Treatment

Deep Learning
and Machine
Learning

2021 ITGB1BP2, MILR1, MATN3,
ROBO2, REN

26 Mild COVID-19
Patients,
33 Hospitalized
COVID-19 Patients
and 28 Controls

Yaşar et al. (2021)

Biological and
Clinical Factors
contributing to the
Metabolic
Heterogeneity of
Hospitalized
Patients with and
without COVID-19

Metabolomic Prognostic Machine
Learning

2021 IL-6, Hexanoylcarnitine,
D-dimer, Albumin,
Tryptophan

543 Hospitalized
COVID-19 Patients
and 288 Hospitalized
non-COVID-
19 Patients

D’Alessandro et al.
(2021)

(Continued on following page)
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TABLE 1 (Continued) Omics approaches combined with machine and deep learning data analyses to identify diagnostic and prognostic biomarkers for COVID-19.

Title Type of omic Classification
(diagnostic or
prognostic)

Machine
learning/
Deep

learning

Year Possible biomarkers Cohort References

COVID-19
Automated
Diagnosis and Risk
Assessment through
Metabolomics and
Machine Learning

Metabolomic Diagnosis Machine
Learning

2021 Deoxyguanosine, N-stearoyl
valine, PC 34:2,
Eicosaenoylethanolamide,
N-Linoleoyl glycine

246 Hospitalized
COVID-19,
191 Mild COVID-19
Patients and
350 non-COVID-
19 patients

Delafiori et al. (2021)

Development of a
multiomics model
for identification of
predictive
biomarkers for
COVID-19 severity:
a retrospective
cohort study

Proteomics and
Glycoproteomics

Prognostic Machine
Learning

2022 Linoleamide, Leukotriene
A4 hydrolase, Oleamide,
Keratin - type I cytoskeletal
19 KRT19, C-C motif
chemokine 7

272 Hospitalized
COVID-19 Patients,
183 COVID-19
Patients and
182 Controls

Byeon et al. (2022)

Early prediction of
COVID-19 patient
survival by targeted
plasma multiomics
and machine
learning

Proteomic and
Metabolomic

Prognostic Machine
Learning

2022 LysoPC 18:0, Heparin
cofactor 2, Complement
factor H, LysoPC 18:2,
Methylhistidine

32 Hospitalized
COVID-19 Patients,
8 Hospitalized
COVID-19 Patients
(fatal), 23 Controls

Richard et al. (2022)

Gut microbiota,
inflammation, and
molecular signatures
of host response to
infection

Proteomic and
Metabolomic

Prognostic Machine
Learning

2021 SERPINA3, HABP2, LRG1,
SAA2, C9

13 Hospitalized
COVID-19 Patients,
18 COVID-19
Patients

Gou et al. (2021)

Identification of
driver genes for
critical forms of
COVID-19 in a
deeply phenotyped
young patient
cohort

Proteomic and
Transcriptomic

Diagnostic/
Prognostic

Machine
Learning

2022 HBB, HBD, HBE1, SLC4A1,
PRDX2 (genes)

47 Hospitalized
COVID-19 Patients,
25 COVID-19
Patients and
22 Controls

Carapito et al. (2022)

Kynurenine and
Hemoglobin as Sex-
Specific Variables in
COVID-19 Patients:
A Machine Learning
and Genetic
Algorithms
Approach

Metabolomic Prognostic Machine
Learning

2021 C 10:2, LysoPC 26:0, lysoPC
28:0, Alpha ketoglutaric acid,
Lactic acid

117 COVID-19
Patients and 40 non-
COVID-19 Patients

Celaya-Padilla et al.
(2021)

Large-Scale Multi-
omic Analysis of
COVID-19 Severity

Proteomic,
Lipidomics,
metabolomics

Prognostic Machine
Learning

2021 Tenascin Isoform 4, S100-A8,
Quinolic Acid,
L-Kyrunenine, CE 18:0

51 Hospitalized
COVID-19 Patients,
51 COVID-19
Patients,
16 Hospitalized non-
COVID-19 Patients
and 10 non-COVID-
19 Patients

Overmyer et al.
(2021)

Leveraging
metabolic modeling
to identify
functional metabolic
alterations
associated with
COVID-19 disease
severity

Metabolomic Prognostic Machine
Learning

2022 Cyanobenzaldehyde, 9-
hexadecenoyl-sn-glycero-3-
phosphocholine,
Carbamoylamino-4-
hydroxyphenyl acetic acid,
3,4-Hydroxy-1,3-
benzothiazol-6-yl-alanine,
Nitro-1-undecene

36 Severe COVID-19
Patients and
48 COVID-19
Patients

Dillard et al. (2022)

Longitudinal
metabolomics of
human plasma
reveals prognostic
markers of COVID-
19 disease severity

Metabolomic Prognostic Machine
Learning

2021 Kynurenate, PE 16:0, Cer NS,
1- Methyladenosine, LPC
18:1

129 Severe COVID-
19 Patients,
143 COVID-19
Patients and 67 non-
COVID-19 Patients

Sindelar et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Omics approaches combined with machine and deep learning data analyses to identify diagnostic and prognostic biomarkers for COVID-19.

Title Type of omic Classification
(diagnostic or
prognostic)

Machine
learning/
Deep

learning

Year Possible biomarkers Cohort References

Longitudinal
proteomic profiling
of dialysis patients
with COVID-19
reveals markers of
severity and
predictors of death

Proteomic Prognostic Machine
Learning

2021 CCL2, CCL7, CXCL10,
KTR19, AREG

44 Severe COVID-19
Patients,
212 COVID-19
Patients and
51 Controls

Gisby et al. (2021)

Machine learning
and semi-targeted
lipidomics identify
distinct serum lipid
signatures in
hospitalized
COVID-19-positive
and COVID-19-
negative patients

Lipidomics Prognostic Machine
Learning

2022 Deoxycholic acid,
Ursodeoxycholic acid, TG 54:
2, Glycodeoxycholic acid, PC
36:5

126 Severe COVID-
19 Patients and
45 Severe non-
COVID-19 Patients

Castañé et al. (2022)

Machine Learning
Assisted Prediction
of Prognostic
Biomarkers
Associated With
COVID-19, Using
Clinical and
Proteomics Data

Proteomic Prognostic Machine
Learning

2021 264 COVID-19
Patients and
42 Severe COVID-19
Patients (fatal)

Sardar et al. (2021)

Machine Learning-
Based Fragment
Selection Improves
the Performance of
Qualitative PRM
Assays

Proteomic Prognostic Machine
Learning

2022 482 COVID-19
Patients and
1144 Controls

Vanderboom et al.
(2022)

MALDI(+) FT-ICR
Mass Spectrometry
(MS) Combined
with Machine
Learning toward
Saliva-Based
Diagnostic
Screening for
COVID-19

Proteomic Diagnostic Machine
Learning

2022 97 COVID-19
Patients and 52 non-
COVID-19 Patients

De Almeida et al.
(2022)

Metabolite profile of
COVID-19 revealed
by UPLC-MS/MS-
based widely
targeted
metabolomics

Metabolomic Prognostic Machine
Learning

2022 Carnitine C11:DC, Carnitine
C6:0 Isomer 1, Carnitine C16:
3, Carnitine C14:2, Carnitine
C14:2-OH

13 Severe COVID-19
Patients, 31 COVID-
19 Patients and
84 non-COVID-
19 Patients

Liu J. et al. (2022)

Metabolite, protein,
and tissue
dysfunction
associated with
COVID-19 disease
severity

Proteomic and
Metabolomic

Prognostic Deep Learning 2022 CRP, C2, C9, HRG, 15-HETE 28 Severe COVID-19
Patients, 25 COVID-
19 Patients and
53 non-COVID-
19 Patients

Rahnavard et al.
(2022)

Metabolomic
analyses reveal new
stage-specific
features of
COVID-19

Metabolomic Prognostic Machine
Learning

2022 Malate, Pyruvate, Citrulline
and glutamine

34 Severe COVID-19
Patients,
106 COVID-19 and
41 non-COVID-
19 Patients

Jia et al. (2022)

Multi-omic analysis
reveals enriched
pathways associated
with COVID-19 and
COVID-19 severity

Metabolomics,
Proteomics and

RNAseq

Prognostic Machine
Learning

2022 99 COVID-19
Patients and 24 non-
COVID-19 Patients

Lipman et al. (2022)

(Continued on following page)
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TABLE 1 (Continued) Omics approaches combined with machine and deep learning data analyses to identify diagnostic and prognostic biomarkers for COVID-19.

Title Type of omic Classification
(diagnostic or
prognostic)

Machine
learning/
Deep

learning

Year Possible biomarkers Cohort References

Multi-omic profiling
of plasma reveals
molecular
alterations in
children with
COVID-19

Proteomics and
Metabolomic

Prognostic Machine
Learning

2021 F11, F9, FGG, FGA and
SERPINA5

18 COVID-19
Patients and 12 non-
COVID-19 Patients

Wang et al. (2021)

Plasma metabolome
and cytokine profile
reveal glycylproline
modulating
antibody fading in
convalescent
COVID-19 patients

Metabolomic Prognostic Machine
Learning

2022 IL-12p40, IL-6R,
p-Hydroxyphenylacetate,
CAR 18:2, Succinate

47 COVID-19
Patients and 35 non-
COVID-19 Patients

Yang et al. (2022)

Plasma Proteomics
Identify Biomarkers
and Pathogenesis of
COVID-19

Proteomic Prognostic Machine
Learning

2020 ORM1, AZGP1, CFI, FETUB,
S100A8

12 Severe COVID-19
Patients, 10 COVID-
19 Patients and
8 non-COVID-
19 Patients

Shu et al. (2020)

Potential Use of
Serum Proteomics
for Monitoring
COVID-19
Progression to
Complement RT-
PCR Detection

Proteomic Prognostic Machine
Learning

2021 ITIH1, AMBP, APOE, FN1,
MBTPS1

36 Severe COVID-19
Patients and
108 COVID-19
Patients

Zhang Y. et al.
(2022)

Prognostic accuracy
of MALDI-TOF
mass spectrometric
analysis of plasma in
COVID-19

Proteomic Prognostic Machine
Learning

2021 60 Severe COVID-19
Patients and
57 COVID-19
Patients

Lazari et al. (2021)

Proteomic and
Metabolomic
Characterization of
COVID-19 Patient
Sera

Proteomic and
Metabolomic

Prognostic Machine
Learning

2020 SAA2, ALB, CRP, SAA1,
HABP2

28 Severe COVID-19
Patients, 37 COVID-
19 Patients, 53 non-
COVID-19 Patients

Shen et al. (2020)

Proteomics and
Machine Learning
Approaches Reveal a
Set of Prognostic
Markers for
COVID-19 Severity
With Drug
Repurposing
Potential

Proteomic Prognostic Machine
Learning

2021 APCS, LCP1, SERPINA4,
SEMG2, LPA

33 Severe COVID-19
Patients, 18 COVID-
19 Patients and
20 Controls

Suvarna et al. (2021)

Rapid Detection of
COVID-19 Using
MALDI-TOF-Based
Serum Peptidome
Profiling

Peptidome Prognostic Machine
Learning

2021 146 COVID-19
Patients, 152 non-
COVID-19 Patients

Yan et al. (2021)

Repurpose Open
Data to Discover
Therapeutics for
COVID-19 Using
Deep Learning

Transcriptome
and Proteomic

Treatment Deep Learning 2020 - - Zeng et al. (2020)

SARS-CoV-
2 RNAemia and
proteomic
trajectories inform
prognostication in
COVID-19 patients
admitted to
intensive care

RNA and
Proteomic

Prognostic Machine
Learning

2021 78 Severe COVID-19
Patients, 45 COVID-
19 Patients,
74 Severe non-
COVID-19 Patients,
60 non-COVID-
19 Patients

Gutmann et al.
(2021)

(Continued on following page)
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modifications present in cells, tissues, biofluids, or other biological
materials from an organism (Aslam et al., 2017). Several studies have
applied proteomics to identify and quantify circulating and tissue
biomarkers that could help in the clinical decision-making process
(McArdle et al., 2021) and understand the mechanism of SARS-
CoV-2 infection (Bojkova et al., 2020; Kim et al., 2023).
Metabolomics is defined as the qualitative and quantitative study
of the complete set of small molecules (metabolites) and their
interactions within a biological sample (Hasan et al., 2021).
Alterations in metabolic pathways was also demonstrated to be
linked with many human diseases, including viral infection (Birungi
et al., 2010; Chandler et al., 2016; Ussher et al., 2016; Uchiyama et al.,
2017). Moreover, metabolomics has been used to identify and
prioritize diagnostic and prognostic COVID-19 biomarkers

(Shen et al., 2020; McCreath et al., 2021). Lipidomics is the study
of the lipidome, which can be defined as the set of lipid species
expressed in a biological system, such as biofluids, tissues or cells
(Han and Gross, 2003; Yang and Hhan, 2016). Lipids are known to
play a central role in viral infections, as they are required to compose
the structures for both the virus and the cell (Abu-Farha et al., 2020).
The proteome, metabolome, and lipidome are dynamic and
modified based on biotic and abiotic insults such as viral
infections. This review will focus on mass spectrometry-based
omics analyses; however, genomics and transcriptomics are also
considered when used in a multiomic approach.

Mass spectrometry-based omics approaches were used to
characterize the SARS-CoV-2 infection using a wide range of
biological samples, such as plasma, serum, urine, organ autopsies,

TABLE 1 (Continued) Omics approaches combined with machine and deep learning data analyses to identify diagnostic and prognostic biomarkers for COVID-19.

Title Type of omic Classification
(diagnostic or
prognostic)

Machine
learning/
Deep

learning

Year Possible biomarkers Cohort References

Small-molecule
metabolome
identifies potential
therapeutic targets
against COVID-19

Metabolomic Diagnosis Machine
Learning

2022 LysoPCaC18:2, Carnosine,
βOH-butyric acid, Met SO,
Succinic acid

55 COVID-19
Patients, 155 non-
COVID-19 Patients

Bennet et al. (2022)

The serum of
COVID-19
asymptomatic
patients upregulates
proteins related to
endothelial
dysfunction and
viral response in
circulating
angiogenic cells ex-
vivo

Proteomic Prognostic Machine
Learning

2022 MNDA, STAB1, TLR2 and
HSPA5

35 COVID-19
Patients and
29 Healthy Patients

Beltrán-Camacho
et al. (2022)

Untargeted
lipidomics reveals
specific lipid profiles
in COVID-19
patients with
different severity
from Campania
region (Italy)

Lipidomics Prognostic Machine
Learning

2022 54 Severe COVID-19
Patients, 45 COVID-
19 Patients and
25 non-COVID-
19 Patients

Ciccarelli et al.
(2022)

Detection of SARS-
CoV-2 in nasal
swabs using
MALDI-MS

Proteomic Diagnosis Machine
Learning

2020 211 COVID-19
Patients and
151 non-COVID-
19 Patients

Nachtigall et al.
(2020)

Exploratory Study
on Application of
MALDI-TOF-MS to
Detect SARS-CoV-
2 Infection in
Human Saliva

Proteomic Diagnosis Machine
Learning

2022 105 COVID-19
Patients, 51 Controls

Costa et al. (2022)

MALDI-TOF mass
spectrometry of
saliva samples as a
prognostic tool for
COVID-19

Proteomic Prognostic Machine
Learning

2022 81 Severe COVID-
19, 51 COVID-19
Patients and 36 non-
COVID-19 Patients

Lazari et al. (2022)

The column “Possible Biomarkers” indicates up to five molecules (some works provide more than five) that were selected by machine learning, blank cells indicates that these works did not

provide possible biomarkers selected using machine learning.

This review focuses onmass spectrometry-based omics approaches (proteomics, metabolomics, and lipidomics). However, studies using genomics and transcriptomic approaches were included

when performing a multiomic analysis.
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airway mucus, bronchoalveolar lavage fluid, and saliva (Zeng et al.,
2021; Liu Y. et al., 2022; Zhang Z. et al., 2022; Mansouri et al., 2022;
Muñoz-Prieto et al., 2022). The molecular landscape of these studies
contributed to elucidating the SARS-CoV-2 infection mechanisms
and suggested many protein candidates as biomarkers (Shen et al.,
2020; Danlos et al., 2021; Ren et al., 2021; Shi et al., 2021; Spick et al.,
2021; Liu J. F. et al., 2022; Schuurman et al., 2022). Proteomics of
serum samples obtained by LC-MS/MS determined a total of
93 proteins and 204 metabolites differentially expressed when
compared between severe and non-severe COVID-19 patients
(Shen et al., 2020); The urinary proteome mapped by LC-MS/MS
identified 56 proteins differentially expressed when comparing mild
and severe COVID-19 patients (Li et al., 2020). Many studies have
focused on selecting individual biomarkers among the identified
regulated proteins, mainly associated to as platelet degranulation,
acute inflammatory response, and complement activation-related
proteins (D’Alessandro et al., 2020; Li et al., 2020; Park et al., 2020;
Shen et al., 2020; Liu et al., 2021; Mohammed et al., 2022). Due to the
complexity of the disease, a single biomarker may be insufficient to
indicate with accuracy the changes in the host system and if the
disease is progressing to a severe case. Machine learning can be
applied to search for specific biomarkers among hundreds of
candidates and use sets of biomarkers to build robust
classification models to classify patients or predict if a patient
will progress to severe COVID-19. The combination of mass
spectrometry-based omics and machine learning will be detailed
below in the context of COVID-19, Table 1.

Machine learning applied to omics approach
for COVID-19 research

Machine learning is a technique that allows a computer to
recognize patterns and thus “learn” from a given data. It is a
heavily statistic-based technique that uses algorithms to find
exploitable regularities in data (Laponogov et al., 2021). The
most common applications are supervised and unsupervised
learning (Rajoub, 2020); the former will be the focus of this
work. In a given dataset, supervised learning assumes the
existence of an unknown function y � f(x) or an unknown
probabilistic distribution P(y ∨ x) that dictates the behavior of
input features X and an output label y. Machine learning
algorithms find this relationship by being trained using a set of
samples where the values of the features are assigned to a label yi �
f(xi) (Kelchtermans et al., 2014). For instance, proteomics and
machine learning can be applied to develop a method to diagnose
COVID-19 using plasma samples. In order to use machine learning
for this purpose, it is needed to acquire the proteomic profile of each
patient using a mass-spectrometry technique, being the proteins
(features) identified together with their quantitative information.
The features X are assigned to a label y (if this set of features are from
a COVID-19 positive or negative patient). Additionally, specific
machine learning algorithms, such as decision trees (Mann et al.,
2021), are needed to identify the most important proteins for group
discrimination from the features set, thus finding potential
biomarkers for COVID-19 infection. The studies reported in
Table 1 used supervised learning as a tool for the prognosis and
diagnosis of COVID-19 and will be further discussed here.

A classification task can help discriminate groups, but training
accurate models to perform such a task can be challenging. Sample
collection, sample preparation, data acquisition, and preprocessing
should be carefully planned to generate models that can generalize
outside the training dataset. For instance, if a model is being trained
for COVID-19 diagnosis, it is necessary to include patients with
other infectious diseases in the control group to ensure that the
model will be specific and will not misclassify other virus-infected
patients as COVID-19 positive. Sample preparation and data
acquisition are two variables that can be explored to maximize
the classification performance of a model. Different protein fractions
and preparation methods lead to different protein identifications,
which can be more specific or less specific for the classification task.
Data preprocessing is essential to ensure that the data will be
comparable and avoid overfitting during model training (when
the model “memorizes” the training dataset and performs poorly
in the test dataset).

Machine learning for classification

The most common approach described in the literature for
COVID-19 prognosis is the use of omics data to train models for
predicting if a patient has the disease or if they will develop severe
COVID-19. One of the earliest studies involving this approach used
serum samples of 18 non-severe and 13 severe COVID-19 patients
to obtain a proteomic and metabolomic profile using LC-MS/MS
and UPLC-MS/MS, respectively. Then, the identified proteins (894)
and metabolites (941) were used to train a random forest algorithm
for sample classification with a 10-fold cross-validation, a
resampling technique used to train and test a model several
times using the same dataset, which is helpful for small datasets.
This resulted in a model with a high Receiver Operating
characteristic curve area under the curve of 0.957 (high values
indicates that the model is good at distinguishing between the
classes); the authors proceeded to perform a validation step with
two independent cohorts, one containing 10 patients, which 7 of
them were correctly classified and the other containing 19 patients
which 16 of them were correctly classified (Shen et al., 2020).

Usually, machine learning techniques work best with larger
datasets since it is hard to accurately evaluate the model with a
low error (Combrisson and Jerbi, 2015). It is best to use data
obtained by the same method for model validation. The dataset
size limitation is challenging to address, mainly if acquiring data is
time-consuming and expensive but also when the samples are
difficult to obtain. A low number of samples in an omics study
usually leads to a substantially higher number of features than
samples, which is called the curse of dimensionality, causing
most machine learning methods vulnerable to overfitting (Mirza
et al., 2019). Increasing the number of samples and reducing data
dimensionality can reduce model overfitting, usually resulting in
reduced training accuracy and improved performance in test sets.
For instance, plasma proteomics of 18 non-severe and 33 severe
COVID-19 patients using label-free LC-MS/MS identified
1200 proteins, of which 38 were regulated. The authors used the
regulated proteins to train five machine learning algorithms for
classification, achieving an accuracy of 88% using a support vector
machine algorithm; however, they reduced the number of features
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(proteins) by performing a PLS-DA (Partial Least-Squares
Discriminant) analysis and retrieving the 20 most important
proteins. They trained the same models again with 20 features
and achieved an accuracy of 84% (Suvarna et al., 2021). It is
difficult to confirm if the overfitting was reduced with the
dimensionality reduction without a test dataset, but the results
obtained after the PLS-DA analysis indicate that the model
performance before dimensionality reduction was slightly
overestimated.

Both studies used as examples above use a mass spectrometry
technique that can identify the proteins present in the samples,
which is useful for biomarker discovery using machine learning. As
we stated earlier, identifying the most important features for
classification requires the use of less complex and interpretable
models such as Bayesian, decision trees and linear models; for
instance, using linear regression models allows us to access the
weights that describe the coefficients of a curve, thus indicating
which feature has more influence (Mann et al., 2021). This is useful
in omics since it provides a way to search biomarkers among
thousands of molecules without manually analyzing them. This is
useful in omics since it provides a way to search biomarkers among
thousands of molecules without manually analyzing them. This
approach yielded a list of proteins, metabolites, and lipids that
can be used as biomarkers for COVID-19 diagnosis and
prognosis, including Serum Amyloid (SAA1 and SAA2),
C-reactive Protein (CRP), SERPINA3, SERPING, FGG,
Kynurenine, Ursodeoxycholic acid, Carnitine 3:0, Diglyceride 36:
0, IL6, Gal-9, ITGB1BP2 and many other biomolecules (Shen et al.,
2020; Suvarna et al., 2021; Yaşar et al., 2021; Ahern and COvid-19
Multi-omics Blood ATlas COMBAT Consortium, 2022; Castañé
et al., 2022).

The use of proteomics andmachine learning for the prognosis of
COVID-19 has been demonstrated to be accurate compared to the
use of clinical parameters. A study by Demichev et al. (2021) showed
that a model trained with proteomic data achieved a similar
performance of a model trained with clinical diagnostic
parameters (ROC-AUC = 0.98 and ROC-AUC =
0.97 respectively); also, they demonstrated that the machine
learning models significantly outperformed other predictive
scores of COVID-19 risk factors such as age, BMI, CCI, and
molecular predictors such as CRP and IL-6 Demichev et al.
(2021). Another study also demonstrated that proteomic data
could achieve similar performance of clinical parameters for
prognosis classification. Sardar et al. (2021) achieved an accuracy
of 89.47% in a model trained with clinical parameters and 89.01% in
a model trained with proteomic data. This supports the relevance of
proteomic data and machine learning as an important tool for
COVID-19 Sardar et al. (2021).

Multiomics approaches and machine
learning

Since mass-spectrometry can provide information on different
types of “omics,” each one of them depicting the disease in different
ways and explaining the system either by regulation of proteins,
lipids or metabolites, the combination of different types of “omics”
data can elucidate the causative changes that are responsible for the

disease (Hasin et al., 2017). In this context multiple omics
integration can provide more in-depth knowledge of what
changes occur during COVID-19 infection, including omics data
that are not obtained by mass spectrometry, such as transcriptomics
and genomics. For instance, it is already reported that the addition of
proteomic data to genomic and transcriptomic data help elucidate a
disease, demonstrating that the information at protein level
complemented the genomics information, leading to the
identification of multiple pathways and processes taking place
during disease pathogenesis (Subramanian et al., 2020). However,
data integration between multiple omics approaches can be
challenging, especially due to the heterogeneity of the different
omics data and the amount of data generated by them
(Subramanian et al., 2020). Machine learning can be applied to
analyze multiomics data to address some of these limitations.
Although machine learning is still new in multiomics data, it was
already employed in several studies to understand several diseases
(Reel et al., 2021).

For COVID-19 research, the integration of several omics data
helped the elucidation of several pathways. A study performed by
Overmyer et al. (2021) obtained the proteome, metabolome,
lipidome and leukocyte mRNA expressions from 102 COVID-19
patients and 26 non-COVID-19 patients, where they found
219 biomolecules that were associated with COVID-19 severity.
They demonstrated that the multiomics approach yielded a much
more detailed picture of the system behavior during COVID-19
infection, showing the regulation of biological processes related to
lipid transport, acute phase response, neutrophil degranulation and
blood coagulation. Interestingly, the authors performed a
correlation analysis between all omics data (which they called
“cross-ome analysis”) to uncover the connections between
different biomolecule classes. The multiomics data were also used
to train machine learning models for COVID-19 prognosis. They
demonstrate that the data combination yielded higher average
precision and AUC-ROC (area under the receiver operating
characteristic curve) than each dataset.

Another study by Byeon et al. (2022) also reported an increase in
the performance of predictive models when merging multiple omics
datasets. They quantified 1463 cytokines and circulatory proteins,
902 lipids, and 1018 metabolites from 455 COVID-19 patients
belonging to three groups depending on disease severity. They
found that the models trained with all omics data outperformed
each model in the held-out test dataset. The same was observed in
another study where machine learning models were trained to
predict patient survival, Richard et al. (2022) obtained the
proteomic and metabolomic profile of 40 COVID-19 patients,
they further trained models for patient survival prediction; the
model trained using the proteomics and metabolomics data
outperformed both datasets individually.

Although multiomics approach can provide more in-depth
knowledge of the disease and generate models with higher
performance, the data analysis still imposes some challenges. As
pointed out in a review made by Reel et al. (2021), problems such as
data heterogeneity, especially when merging dataset that uses
different types of normalization and scaling (i.e., proteomics and
transcriptomics), class imbalance, and high data dimensionality
(when the number of features is much higher than the number
of observations) should be taken into consideration to develop
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appropriate pipelines for model training. The use of deep learning
techniques for multiomics has increased in popularity in the past
years, especially in analyzing large-scale multiomics datasets (Reel
et al., 2021). Deep learning has also demonstrated to have superior
performances when dealing with non-linear problems, having great
advances in cancer survival research (Chai et al., 2021). Deep
learning is a subfield of machine learning with a structure
composed of multiple layers of non-linear processing units for
feature extraction and processing (Shinde and Shah, 2018). For
multiomics applications, deep learning is more appropriate, since it
can analyze and extract patterns from large amounts of data
obtained from different sources (Shinde and Shah, 2018). In
omics, Deep Neural Networks, Recurrent Neural Networks and
Convolutional Neural Networks have been applied to predicting
DNA and RNA sequence structure, drug design, protein structure/
function and protein interactions (Zhang et al., 2019). Moreover,
deep learning was also used to develop predictive models for the
diagnosis and prognosis of many types of cancers (Chai et al., 2021)
(Chaudhary et al., 2018; Xie et al., 2019; Tong et al., 2020; Rong et al.,
2021).

For COVID-19, multiomics integration with deep learning is
still in its early stages. However, the technique’s potential has already
been demonstrated. A study developed by Rahnavard et al. (2022)
obtained the proteomic and metabolomic profile of 28 patients with
severe COVID-19 and compared it to a control group composed of
28 healthy patients, 25 non-COVID-19 patients with similar clinical
symptoms and 25 non-severe COVID-19 patients. They evaluated
the performance of three machine learning models - KNN
(k-nearest neighbors), RF (random forest) and LR (linear
regression) and a deep neural network (DNN) for COVID-19
prognosis. Their results demonstrated that DNN outperformed
the other models’ overall accuracy and was better at classifying
the severe COVID-19 patients as well.

In summary, some works have used machine learning models
for multiomics data (Sun et al., 2021; Richard et al., 2022; Liu et al.,
2023), but the number of features used in these studies were
relatively low (less than 300), which could justify the use of
machine learning. Another point to consider is the necessity for
sample processing, choosing deep learning can alleviate this need,
since steps such as feature reduction could be omitted, while
choosing machine learning models would require extensive data
treatment to reduce the features. The integration of multiomics data
for COVID-19 holds great promise.

Diagnosis and prognosis of COVID-19 using
MALDI-TOF MS and machine learning

One of the main reasons to search for biomarkers is to use these
molecules as a surrogate of the disease and its progression to develop
diagnostic and prognostic methods.

A fast, low cost and accurate technique for proteomic data
acquisition is essential to maximizing the potential of machine
learning for diagnosis and prognosis. Matrix-assisted laser
desorption/ionization-time of flight mass spectrometry (MALDI-
TOFMS) is a technique that can analyze biomolecules without prior
chromatographic separation; it is easy to use, requires a low sample
amount, and sample preparation is simplified (Hajduk et al., 2016).

However, MALDI-TOFMS does not provide the details and scale of
protein identifications as other mass spectrometry techniques.
Instead of protein/peptide identifications, the MALDI-TOF MS
spectra mainly provide a series of mass-to-charge ratio peaks
corresponding to the biomolecules analyzed and their intensities.
The set of identified peaks composes a profile with distinctive
features depending on the analyzed sample; for instance, a serum
sample from a severe COVID-19 patient may have a different
MALDI-TOF MS profile than a mild COVID-19 patient. While
it may not be possible to visually recognize patterns in these spectra
for diagnosis/prognosis purposes, a machine learning approach may
be sufficient to perform this task with high precision. Thus,
acquiring proteomic spectra using MALDI-TOF MS combined
with training machine learning models is a tool to detect the
patterns of each group of interest. However, this approach comes
at some costs, such as a lower identification rate (a low number of
peaks can be assigned to a specific biomolecule), and low precision in
quantifying and sampling a subset of molecules due to ionization
suppression (Hajduk et al., 2016).

The first work that performed this analysis for COVID-19 used
362 nasal mucous secretion samples (nasal swabs) for diagnostic
purposes using the proteomic profile acquired by MALDI-TOF MS
(Nachtigall et al., 2020). A total of 211 COVID-19-positive and
151 negative samples were processed, and the spectra obtained were
used to train six different machine-learning algorithms. In this case,
instead of proteins, the data consisted in m/z peaks that represent
unidentified proteins. The authors found 88 protein peaks that were
used to train the models. Their findings indicate that a Support
Vector Machine Radial was the best algorithm for COVID-19
diagnosis, with an accuracy, specificity, and sensitivity of 93.9%,
94.7%%, and 92.6%, respectively (Nachtigall et al., 2020). The
number of samples is higher than in most works that use other
mass spectrometry techniques. This is facilitated by MALDI-TOF
MS experiments requiring less resources than a LC-MS/MS, for
example. The absence of protein identification did not impede
training the classification models. This aspect highlights the
advantages of using MALDI-TOF as a data acquisition method.
However, the authors did not validate the findings using a test set.
Another similar study performed nasal swabs MALDI-TOF MS
proteomics of 226 samples split into 82 for training/validation and
117 for the test (assessing the model’s true performance) (Tran et al.,
2021). The authors used an automated platform denominated
Machine Intelligence Learning Optimizer (MILO) to train and
test the models (Jen et al., 2021). This platform generated
379,269 models, achieving an accuracy of 96.6%. A study with
serum samples also achieved high performance on the training
set for COVID-19 diagnosis, reaching a value of 99% accuracy,
98% sensitivity, and 100% specificity in a dataset of 298 samples
(146 COVID-19 positives and 152 controls) (Yan et al., 2021).

Although MALDI-TOF MS allowed the analysis of large
samples, some aspects still need to be optimized, such as data
preprocessing.

Challenges and prospectives

Optimizing a pipeline involving mass spectrometry and
machine learning for biomarker discovery in the context of
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diagnosis and prognosis is essential for developing high-
performance models that can be generalized outside the training
data. Although the studies mentioned in this review are promising,
the combinations and impact of different analytical sample
preparation, data acquisition, and machine learning methods are
still poorly explored. Several protein fractions could be analyzed for
COVID-19, such as glycoproteins, phosphoproteins, protein in
vesicles, and protein aggregates, which were already described to
influence COVID-19 and other diseases such as cancer (Harsha and
Pandey, 2010; Nagaraj et al., 2010; Drake and Kislinger, 2014; Pan
et al., 2016; Basile et al., 2022; Pongracz et al., 2022). This variety of
biomolecules can be accessed through different sample preparation
methods such as solid phase extraction (SPE), magnetic beads, silica
beads, ultrafiltration, dialysis, hydrophilic interaction
chromatography (HILIC) and metal oxide affinity
chromatography (MOAC) for example, (Hajduk et al., 2016).
Also, samples such as plasma and serum could benefit from
depletion methods to remove the highly abundant proteins, since
the top 20 most abundant proteins compose roughly 97% of the total
protein mass in plasma samples, for example, (Anderson and
Anderson, 2002). The depletion of these proteins results in
increased sensitivity of the mass spectrometer to detect less
abundant proteins (Qian et al., 2008).

Although sample preparation is important, the patient cohort
should be carefully chosen before starting the experiments. Patients
with a certain disease must be paired with individuals that do not
have that disease but present similar symptoms to avoid bias. For
instance, severe COVID-19 patients should be paired with patients
suffering from a severe condition caused by other respiratory viruses
to ensure that the analysis will yield specific markers for severe
COVID-19. Selecting the appropriate number of samples is also
important since it improves the accuracy of machine learning
algorithms. Sometimes it is not possible to have a large patients
cohort thus, it is important to evaluate the epidemiological and
analytical factors involving the studied disease and the mass
spectrometry platform used to acquire the data, in order ensure
that the protein expression variability will be enough to capture
differences or the number of samples should be larger (Nakayasu
et al., 2021). A power analysis could also be performed to find a
minimal sample size (Cohen, 1992).

Sample storage is also important to ensure the integrity of the
experiments. It is recommended to aliquote serum samples for single
use since multiple cycles of freezing and thawing can result in
protein degradation, resulting in low-quality samples that will fail
or limit the identification of potential biomarkers (Valo et al., 2022).
For urine, it is recommended to store the samples immediately after
removal of cells or debris at −20°C and subsequently at −80°C
(Thongboonkerd, 2007). Implementing appropriate pre-analytical
factors such as biofluid collection methods and storage conditions,
can be based on guidelines reported in the literature.

MALDI-TOF MS target plate preparation is another step that
requires optimization. A process known as the analyte suppression
effect occurs in complex biological samples, which is the
competition between co-existing components of the sample for
desorption and ionization (Lou et al., 2015). This means that the
ionization efficiency will vary with the presence of ions that can
suppress the peak intensity of other ions; also, low reproducibility of
peak intensity can be caused by matrix amount and crystallization

process variability (Hajduk et al., 2016). Therefore, it is advisable to
perform a standardization step prior to sample processing. In this
standardization step, the target molecules that will be measured in
the experiment should be evaluated since the MALDI matrices will
impact this step. For instance, the alpha-cyano-4-hydroxycinnamic
acid matrix is suited for peptides, while sinapinic acid is suitable for
proteins larger than 3 kDa (O’Rourke et al., 2016). However, if the
targets are lowmolecular weight compounds, some organic matrices
may present signals in the low mass-to-charge range, which will
interfere with the analyte signals; a review performed by Calvano
et al. (2018) discusses the matrices for low molecular weight
compounds and provides a comprehensive overview on MALDI
matrices and their applications.

Data processing can also be addressed to achieve more stable
results. Usually, the procedures for MALDI data processing involve
quality control, normalization, transformation, smoothing, baseline
correction, peak detection, and binning (alignment) (Hajduk et al.,
2015; Hajduk et al., 2016). There are many method variations to
perform each one of these tasks, and each type of data will respond
better to a certain method. Thus, evaluating them to find the optimized
data processing pipeline is necessary. Also, sample processing on
different days or with the same equipment in other laboratories can
cause peak mass shift (Rossel et al., 2021); subsequently, data shift will
impair the classification model’s performance. Internal standards could
be implemented to solve this issue.

While multiomics holds great promise in improving the
understanding of a disease or in the generation of more robust
machine learning models, data integration is considered a major
bottleneck to multiomics studies (Pinu et al., 2019). If choosing for
an interpretable model using a machine learning approach, the high
dimensionality of the dataset will impose a great challenge for the
analysis. Therefore, reducing features is a necessary step. This can be
done by performing a feature selection step, which will select a
smaller set of features that holds enough information to characterize
the groups, or perform a feature extraction method to combine the
features and transform them in another set of features (such as a
Principal Component Analysis) that also holds enough information
of the entire dataset (Picard et al., 2021). If interpretability is not an
issue (meaning that it will not be possible to understand which
features are used for learning and used to find biomarkers), a Deep
Learning approach could be used in concatenated multi-omics data
(Picard et al., 2021). The handling of missing data, which frequently
arises during multi-omics data integration, should be considered
since many statistical approaches do not process missing values.
Data imputation often introduces less bias than the complete
removal of the features with missing values (Liebal et al., 2020).

Conclusion

The virus and host interaction during the infection triggers
many biological pathways. A systemic view of the host system
regulation is necessary to capture disease progression. Mass
spectrometry can be used for this purpose by identifying systemic
alterations of proteins, peptides, lipids, metabolites, and other
biomolecules. Finding biomarkers or using this information for
disease prognosis can be complex, but machine learning can be
helpful in this task. Mass spectrometry and machine learning
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combined yielded interesting results, generating models for COVID-
19 prognosis and diagnosis. However, the lack of analytical and
computational validation resulted in several studies finding the same
biomarkers for COVID-19, which were not translated into a clinical
routine. Method optimization is needed to increase model
performance and to find new biomarkers. This can generate
more robust models for COVID-19 diagnosis and prognosis. The
development of prognosis and diagnosis methods may not need the
identification of biomolecules; the MALDI-TOF MS profile can be
used in this context without the need for biomarker identification,
generating models capable of classifying samples using only MS
features. Finally, deep learning and multi-omics approaches are a
combination that is still poorly explored and yield better results than
the combination of single-omics data and machine learning. Deep
learning could also be used to reduce the data processing steps
required for simple machine learning applications. This review
describes the application of mass spectrometry and machine
learning as potential tool for COVID-19 diagnosis and prognosis.
The methods described here apply to other diseases.
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