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Over the years, technology has allowed more accurate, more effective, and
prompt food integrity assessments to assure the quality and authenticity of
food material. Thanks to the development of portable and hand-held near
infrared (NIR) as a rapid, reliable, non-destructive, and user-friendly instrument,
on-site food analysis is provided with more feasibility. However, miniaturized NIR
devices have some significant challenges due to the presence of varying noise
resources which can lead to misinterpretation. In this context, chemometric
methods with the capability of resolution, identification, classification, and
calibration play a pivotal role in achieving precise and in-depth comprehension
of the data. In the present mini-review, we will discuss miniaturized NIR
instrumentation, some chemometric concepts, and introduce the most
popular algorithm in food authentication problem. The main feature of this
review is avoiding mathematical details as much as possible to make the
material accessible to a broad audience but highlighting the key features of
chemometric methods with some simple illustrative examples in the scope of
food authenticity.
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Introduction

Growing concerns about food quality and authenticity, as well as the complexity of food
fraud problems, have substantially raised the need for appropriate analytical techniques to
assess the authenticity of food materials (McVey et al., 2021). Over the last decades, near-
infrared (NIR) instrumentation has advanced dramatically, resulting in their wide
application in food industry. The introduction of miniaturized (portable and handheld)
NIR instruments with very small size, commercial engines that a variety of companies can
build into products, and low-cost devices selling directly to the public have made it possible
for both expert and non-expert users to do fast, easy, reliable and on-site food analysis
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(Müller-Maatsch and van Ruth, 2021; Beć et al., 2022). In spite of
their many advantages, miniaturized NIR instruments have several
limitations that make direct interpretation of the spectrum
challenging. In many cases, the generated response requires
spectral processing as well as statistical data analysis in order to
find the spectral differences that are most useful for sample
differentiation. Chemometric and machine learning methods,
which are a subset of artificial intelligence (AI) have been
proposed for dealing with these problems and improving the low
resolution of miniaturized NIR measurements (Houhou and
Bocklitz, 2021). A large part of the development and application
of the miniaturized NIR instrument in the food industry owes to the
ability of various chemometric tools to improve the generated signal
and thus enhance the interpretation. Existing literature has
investigated the application of miniaturized NIR spectroscopy in
the food industries with the focus on device technologies and various
food scopes (Teixeira Dos Santos et al., 2013; Ellis et al., 2015; Jafari
et al., 2021; McVey et al., 2021; Beć et al., 2022), but the necessitates,
important concepts, and the role of various chemometric methods
have not been discussed.

The presented mini-review provides an overview of
miniaturized NIR instrumentation and represents a simple
explanation of chemometric concepts and methods that a user
should know when using a portable NIR instrument in the food
study.

Miniaturized NIR instrument

NIR spectroscopy collects data by observing overtones and
combination transitions in the 12.500–4,000 cm–1 or
800–2,500 nm spectral region where molecular vibrational
excitations occur. These transitions are substantially less probable
to occur than fundamental ones (IR and Raman), which result in a
lower absorption index of a sample in the NIR area. A high number
of overlapping bands in NIR spectra causes the lineshape to become
broader, resulting in a reduction in resolution and making direct
interpretation of spectra more challenging. A miniaturized NIR
instrument has the same main parts as any other device that uses
optical absorption spectroscopy: A light source, a wavelength
selector, and a detector.

One of the most prevalent miniaturized NIR light sources is a
tungsten halogen bulb. Even though heat sources are low-cost and
reliable, their thermal stability is a major concern for handheld NIR
devices as they employ in-field analysis where temperatures vary
widely. The easiest way suggested by vendors is performing regular
reference scans to keep the latest background signal. The second
common NIR radiation sources are light-emitting diodes (LEDs)
which have specefic features make them very sutible for
miniaturezed NIR design. They are very small, cheap, durable
with low voltage and power required. Nevertheless, LEDs have
some limitations in spectroscopy. The radiation band’s
narrowness is one of these limitation. For example, a gallium
arsenide (GaAs) LED has a peak emission of 870 nm and a
bandwidth of just 50 nm. In addition, there is still a severe lack
of available LEDs in NIR region.

Miniaturized NIRs wavelength selector are varies in compared
to benchtop ones, which is more besed onMichelson interferometer.

Using micro electromechanical systems (MEMS), it would be
possible to miniaturize a number of wavelength selectors; or
micro-opto-electromechanical systems (MOEMS) if micro-optics
is also included. Generally, they can be based on the more suitable
and feasible machanism such as the Fabry–Perot interferometer,
Hadamard mask, linear variable filter (LVF), or digital micromirror
array.

Regarding to the miniaturized NIR detector, photovoltaic Si
diodes present an appropriate level of sensitivity within the range of
14,285–9,100 cm-1 (700–1,100 nm), and so, ideal only for more
miniature, low-cost spectrometers. On the other hand, the S/N
ratio achieved by this approach is poor and needs some cut-off
filter to decrease the sensitivity of the detector to sunlight. In the
range of 9,500–400 cm-1 (1,050–2,500 nm), InGaAs photodetectors
perform well and are the most commonly used detectors which
allows for fast scanning with high signal-to-noise ratios. InGaAs
detectors are faster in response and have high quantum performance
along with the low dark current for a given sensor surface, allowing
for fast scanning with high signal-to-noise ratios.

Another important feature in miniaturized NIR is optical
material. To a vast extent, optical materials which do not absorb
light in the visible range are also transparent over a significant region
of the infrared light spectrum. Notably, this means that glass optics
may be employed for; however, for optimal performance in the long-
wave (LW-NIR) range, high-quality fused silica (also known as fused
quartz) optic material may be needed. Because there are no of alkali
halides in fused quartz, the cost of miniaturized NIRs is reduced,
their operability in humid conditions is enhanced, and their
performance for on-site and monitoring analysis is highly
improved. When operating in contact mode and rugged analysis,
it is preferable to have a scratch-resistant optical window at the
sample interface for reliable functioning. This function is often
performed by sapphire, although owning to high refractive index
of sapphire, they undergo some optical loss and can only have a
proper function in multi-channel spectrometers (Crocombe, 2018;
Bwambok et al., 2020; Grabska et al., 2021; Grüger, 2021; Beć et al.,
2022).

Why we should use chemometrics?

Modern miniaturized NIR instruments provide multivariate
information describing the composition, state, or evolution of a
specific chemical process. However, NIR instruments have
significant challenges due to various issues in their spectroscopic
data. On the other hand, a portable NIR spectrometer compared to
its laboratory counterpart that is strictly evaluated based on
conventional laboratory parameters for analytical performance,
would typically perform less effectively in terms of resolution,
signal throughput, and signal-to-noise ratio (SNR). Moreover,
fixed or predetermined spectral range and resolution of portable
NIR instruments as well as the fit-for-purpose operational
requirements, such as deployment potential must also be
considered. Besides the complex nature of the data structure,
portable systems may provide answers requiring complex data
interpretation or assessment on the part of the operator. Thus,
data pretreatment and chemometric tools are required for
qualitative and quantitative analysis with the aim of improving
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signal quality, enhancing SNR, solving peak shifting/overlapping
problems, and handling imperfect and variable input data. Herein,
some of the basic chemometric tools for the analysis of NIR data will
be discussed.

Preprocessing

The NIR data preprocessing step has evolved into an integral
part of chemometric modeling. The primary objective of
preprocessing is to eliminate artifacts of spectra to enhance
capability of exploration, calibration, and classification. The
source of variation depends on various factors in a NIR
measurement in both reflectance and transmittance modes. For
instance, in solid food samples with different particle sizes or
heterogeneous shape, the main reasons for data variation that
may lead to shifts in the baseline are differences in effective route
length and dispersion of the light source (scattering). For liquid
samples like oil, scattering is dependent not only on the path but also
on the liquid concentration. The commonly utilized pre-processing
approaches in NIR spectral data can be categorized into two groups:
Scatter correction techniques and spectral derivatives.

The scatter-correction preprocessing techniques consists of
multiplicative scatter correction (MSC), inverse MSC (IMSC),
extended MSC (EMSC), extended inverse MSC (EIMSC), de-
trending, standard normal variate (SNV) and normalization.
These methods are implemented with the goal of decreasing the
physical scatter variability.

Norris-Williams (NW) derivatives and Savitzky-Golay (SG)
polynomial derivative filters are categorized in the spectral
derivatives methods. The aim of this appraoch is to eliminate or
reduce the effect of both additive and multiplicative effects in the
spectra. Both strategies include a spectrum smoothing step before
computing the derivative (1st order, 2nd order, . . . ) to reduce the
negative effect on the signal-to-noise ratio that would occur with a
conventional finite difference derivative (Rinnan et al., 2009; Mishra
et al., 2020; Schoot et al., 2020).

Pattern recognition

Regarding food authentication, it is crucial to determine whether
the sample/object meets the expected criteria (standards) or belongs
to the interest group or class. Simply put, we usually seek to
categorize samples based on their individual and distinct features
or, more particularly, classifying them. From the perspective of
chemometrics, this notion is included in pattern recognition
methods which are defined as a primarily classification to assign
samples into classes or groups. Classification methods can be
categorized in a variety of ways based on which of their features
is of most concern. As one of the main attributes, classification
methods can be divided into supervised and unsupervised
approaches. Supervised methods try to classify objects based on
their features by using a training set, which consists of samples that
are assigned to predetermined classes. In unsupervised methods,
there are no labeled (predefined) classes and samples are distributed
in different parts of the dataspace based on the similarity and
dissimilarity among the variables. Generally, in a supervised

technique, as opposed to an unsupervised one, there is typically
some prior knowledge about the sample and its characteristics
(Magrı et al., 2013; Brereton, 2015).

Unsupervised data exploration methods as
the first step of data analysis

Data exploration methods assist in extracting buried
information from the data and visualizing it in a manner that is
simple to comprehend and interpret. One of the most popular and
widely-used exploration methods is the principal component
analysis (PCA), which analyzes data regarding all variables
(multivariate approach). PCA is a bilinear decomposition/
projection method that reduces data dimensions to a small
number of factors known as principal components (PCs) or
latent variables (LVs), which are linear combinations of original
variables. In addition, there are non-linear exploratory methods
such as self-organizing maps (SOMs), Kohonen networks,
projection pursuit and curvilinear component analysis (CCA)
that are not yet widely used in the food industry, whose potential
can be investigated in future studies.

Clustering techniques are the other well-known exploratory
multivariate data analysis. The prime objective of cluster
analysis is discovering groups in a data set. This is achieved
by using the concept that objects with more similarity and less
distance in the variable space form a cluster. A popular and
widely-used technique in clustering is hierarchical clustering
analysis (HCA) which operates based on the calculation of
different distances among samples like Euclidean,
Mahalanobis, and Manhattan distance. In HCA, two samples
with the most similarity are identified and joined in a cluster.
The similarity index of the new cluster in comparison to all
other objects is computed based on the employed method
(Vigni et al., 2013).

Class modeling vs discrimination approach

The other classification characteristic is defined using the terms
discrimination and class modeling. Class modeling and
discrimination methods are two types of supervised classification
techniques. Despite the fact that both methods have the same aim,
there are major differences in the implications of their usage.

In the discrimination strategy, the classification model is built
based on the differences among samples/objects from various
classes, resulting in hypersurfaces (multidimensional surfaces)
that divide the whole variable space into the number of classes.
Therefore, each individual (prediction) sample belongs to one of
the model classes, regardless of whether it relates to them.
Supplementary Figure S1A illustrates a discrimination analysis
in which the entire space is comprised of two sub space according
to two classes (solid circles and stars). As is evident from
prediction samples (hollow shapes), triangle and square
objects that are irrelevant to primary classes are classified as
one of them.

Class modeling approaches, on the other hand, concentrate
on the similarities among samples belonging to the same category
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(target class) instead of the differences among classes. By taking
this approach, each class is modeled independently and
positioned in its own isolated area in the feature space of the
model (red dashed and dots in Supplementary Figure S1B).
Supplementary Figure S1B shows that there are three possible
outcomes for a prediction sample: i) Belonging to one of the two
classes represented by the hollow circle and star, ii) belonging to

both classes represented by the hollow square, or iii) neither class
(hollow triangle).

In summary, the discriminating models always classify a new
object into one of the predefined classes, while in the class modeling,
a new object can belong to predefined classes or not. Therefore, to
avoid misunderstandings, users should be attentive when using
discrimination strategies. Discrimination techniques are often

FIGURE 1
(A) A scheme of the classification of chemometric methods based on calibration and classification approches. (B) Chemometrics procedure of raw
NIR spectra and (C) The frequency of chemometric methods used in the NIR study of food.

Frontiers in Analytical Science frontiersin.org04

Amirvaresi and Parastar 10.3389/frans.2023.1118590

https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2023.1118590


TABLE 1 Some of the applications of miniaturized NIR coupled with chemometrics for food analysis.

Scope Target Miniaturized
NIR

Chemometric
method

General result Ref

Dairy Authentication of organic milk MicroNIR 1700 PCA, PLS-DA Acceptable discrimination between
organic and conventional milk; less-
successful class assignment of pasture

milk samples

Liu et al. (2018)

Calssification milk sample based on
their quality for improved monitoring

in dairy facilities

microPHAZIR PLSR, ANN Good performance in real-time
monitoring of each cow sample

Muñiz et al. (2020)

Determination of main component in
milk

FieldSpec Pro FR
(ASD Inc.)

LS-SVM, PLSR Handheld SW-NIR spectrometer was
determined to be an excellent detector
for the milk powder analysis, suiting
the needs of industrial application

Wu et al. (2008)

Quantitative analysis of the irradiation
dose (0–6.0 kGy) in milk powder;

irradiation by60Co γ-rays

FieldSpec (ASD Inc.) RC, PLSR, LS-SVM Providing fast and on-site detection of
irradiation doses of milk powder in a

food-safety-monitoring scenario

Kong et al. (2013)

Meat
and fish

Authentication of chicken meat by
miniaturized NIR spectrometer

MicroNIR 1700 PLS-DA, CP-ANN,
SVM, RSDE

Rapid and low-cost authentication and
quality control of meat with

miniaturized NIR

Parastar et al. (2020)

Miniaturized NIR spectroscopy as an
onsite model for studying pork

microbiology

microPHAZIR PCA, PLSR, MPLS Miniaturized NIR spectroscopy can
accurately predict pork’s

microbiological state onsite; packing
environment has no effect

Prado and
Fernández-ibáñez

(2011)

Classifying chicken parts (breasts,
thighs, drumsticks) using a portable
NIR spectrometer; analyzing physical
and chemical properties (pH, color)
and chemical composition (protein,

fat, moisture, and ash)

DLN NIRscan Nano LDA, RF, SVM Portable NIR spectroscopy accurately
classified chicken meat in the

processing line and authenticated shelf
samples of processed items

Marivel et al. (2018)

Investigating whole fish and fillets
using a miniaturized NIR

spectrometer; separating high-quality
from low-quality fish

MicroNIR 1700 PCA, SIMCA SIMCA analysis of the spectra
measured by MicroNIR on the skin or

flesh of whole fish or fish fillets
provided correct authentication of the

fish sample Fish

Brien et al. (2013)

Estimate nutrient content (protein,
lipids, and moisture) and distinguish
between sources (farmed vs wild fish)
and conditions (fresh or defrosted fish)

Tellspec Enterprise
Sensor

PCA, LDA, PLSR, RF,
LR, SVM, XGB

Tellspec sensor performed well in
predicting nutritional values (protein,

lipids, and moisture) and
authenticating the source and

condition of all investigated fish species

Gonçalves et al.
(2021)

Fruits and
Vegetables

Developing a portable NIR
spectrometer to distinguish between
organic and inorganic pineapple fruits;

predicting total soluble solid.
Feasibility

SCiO KNN, PCA, LDA, PLSR,
MSC-PCA-LDA

Portable NIR spectrometer with
chemometric instruments proved
suited for quick non-destructive

analysis of pineapple quality; effective
identification of pineapple fraud-

mislabeling conventionally produced
fruits as organic ones

Amuah et al. (2019)

Feasibility study for using a
miniaturized and benchtop NIR

instrument to predict quality-related
parameters (soluble solid content,
firmness, variety and postharvest

storage duration under refrigeration)
in intact plums

microPHAZIR,
Perten DA-7000

MPLS, PLSR, PCR Similar levels of accuracy for miniature
and benchtop NIR for the

measurements of soluble solid content,
variety, and refrigerated-storage time;
the prediction model constructed using
the diode-array spectrometer yielded
superior results for the prediction of

firmness

Pérez-marín et al.
(2010)

Beverage
and syrup

Investigation of the capability of
miniaturized NIR spectroscopy for
assessment of the quality index of

matcha tea

NIRscan Nano PLSR, Si-PLS, GA-PLS,
CARS-PLS, RF-PLS

A model with good ability for
predicting and classifying the content
of polyphenols and amino acids in

matcha tea was developed

Wang et al. (2019)

(Continued on following page)
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used when the number of classes is small and there is the guarantee
that the tested samples exclusively belong to the predefined classes.
As a result, it can be concluded that class modeling approaches are
preferable for addressing food authentication (Rantalainen et al.,
2007; Pomerantsev, 2018; Małyjurek et al., 2020).

Linear and non-linear classification

Another differentiation factor between the classification
strategies is based on the mathematical form of the functional
relationship, referring to the geometric shape used to separate
variables in multidimensional (feature) space. Within this frame,
the main categorization is between linear and non-linear
approaches, which in the case of non-linearity, there are some
subdivisions like quadratic and polynomial. When using linear
approaches, decision boundaries are represented as linear
functions of the initial variables. This decision boundary can be a
line, a plane, or a hyperplane to separate, respectively, two, three, or
more than three dimensions. On the contrary, in the non-linear
approach, a more complicated hypersurface is responsible for
splitting data space according to existing classes. For example, in
the quadratic approach, the decision boundaries can be
hyperellipsoids, hyperparaboloids or hyperspheres
(Supplementary Figure S2) (Magrı et al., 2013; Bona et al., 2018;
Rocha et al., 2020).

Multivariate calibration

Calibration techniques provide quantitative information by
establishing a relationship between instrumental measurements to
analytes of interest. In the basic case, calibration model represents a
relationship between a single response or predictor of a device, such
as a single wavelength absorbance in spectroscopy, to a
concentration of an object/sample which is called univariate
calibration. However, currently, the employed approaches are
multivariate calibrations in which multiple measurements are
taken rather than just one (i.e., multiple wavelengths or spectrum
of samples); consequently, for a single measurement, a vector
generates. In the both univariate and multivariate calibration,
there are two main roles and steps i) calibration for model
construction and ii) prediction of new samples. In general,
calibration methods can be divided into linear and non-linear
models. Examples of more frequently used linear models are

multiple linear regression (MLR), principal component regression
(PCR), partial least squares (PLS) and multivariate curve resolution-
alternating least squares (MCR-ALS). In other words, non-linear
models include a vast range of machine learning techniques like as
support vector machine (SVM), artificial neural network (ANN)
(Westad et al., 2013; Saeys et al., 2019). Figure 1A shows a general
view of the classification of chemometric methods.

Model validation

The development of a model is not complete without validation
of its performance. Model validation is crucial in the context of food
authentication in order to prevent misinterpretation of
classification, and quantification of unknown/prediction sample.
The best way to evaluate the validity of a model is by using
representative independent test samples. In the case where the
number of samples is sufficient, the data set is usually divided
into a ratio of 70% training and 30% testing. On the other hand,
cross-validation methods are used for internal validation of the
developed models. Depending on the type of data and the algorithm
used, one/a group of data set is excluded and the model is built with
the remaining samples. Then the excluded samples are evaluated in
the developed model and the prediction residuals are calculated.
This cycle continues until the evaluation of all samples and finally
using the prediction residuals, validation residual variance and root
mean square error in prediction (RMSEP) are computed (Westad
et al., 2013; Westad and Marini, 2015).

Application of miniaturized NIR
spectroscopy and chemometrics in
food industry

The practical application of state-of-the-art miniaturized NIR
spectroscopy has provided solutions to various food industry
challenges (i.e., quality, authenticity, traceability etc.,). On-site
checking of food quality, monitoring products at various stages
of production, and assessing food ingredients without opening food
packaging are among the significant benefits of miniaturized NIR.
The low resolution of these instruments, however, necessitates that
they be coupled with data analysis tools such as chemometrics.
Figure 1B shows the steps of chemometric data analysis methods
that are commonly applied to NIR spectra. In addition, the pie chart
in Figure 1C represents a scheme of the frequency of chemometric

TABLE 1 (Continued) Some of the applications of miniaturized NIR coupled with chemometrics for food analysis.

Scope Target Miniaturized
NIR

Chemometric
method

General result Ref

Feasibility study on determination of
sugar (sucrose) contents in everyday

drinks using miniaturized NIR
spectroscopy

NIRScan Nano OLS, SLR, MLR, SVM,
RF, MPL

High-quality model performance for
sucrose content analysis

Jiang et al. (2019)

PLSR, partial least square regression, PCA, principal component analysis, PLS-DA, partial least squares discriminant analysis, MPLS, modified partial least squares, SVM, support vector

machine, LDA, linear discriminant analysis, SVR, support vector regression, SIMCA, soft independent modeling of class analogy, KNN, k-nearest neighbors, MLR, multiple linear regression,

RF, random forests-, ANN, artificial neural network, CARS, competitive adaptive reweighted sampling, OPLS-DA, orthogonal projections to latent structures discriminant analysis, LS-SVM,

least-squares support vector machine, OLS, ordinary least squares, SLR, single linear regression, MPL, multilayer perceptron, XGB, extreme gradient boosting, RSDE, random subspace

discriminant ensemble, CP-ANN, counter-propagation artificial neural network.
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methods used in food studies regard to miniaturized NIR
instruments. As it is evident, PCA in exploration, PLS-DA in
classification, and PLSR in calibration are the most widely-used
chemometric techniques. Another noteworthy fact is that SIMCA
has been only used in a few studies, although it is a high-potential
method in the context of food authenticity. Various studies have
investigated the capability of miniaturized NIR in the field of food
authentication (Ellis et al., 2015; Müller-Maatsch and van Ruth,
2021; Beć et al., 2022). However, the application of miniaturized NIR
is increasing considerably. Table 1 shows some of the applications of
miniaturized NIR coupled with chemometrics for food analysis. One
research compares a portable NIR device to a benchtop FT-NIR
spectrometer for identifying Atlantic cod fillets and patties from
haddock. LDA and SIMCA, pre-treating spectral data with various
techniques and model validation both internally and externally, was
employed. Best LDA models predicted 100% correctly. Best SIMCA
models predicted with sensitivity >65% and specificity >74%.
McNemar test indicated no significant differences (p > 0.05)
across the instruments (Grassi et al., 2018). Three portable NIR
devices were used to test almond flour authenticity with a benchtop
FT-NIR. 54 almond flours were contaminated with cheap flours in
Brazil. SIMCA, DD-SIMCA, and OCPLS for classification and PLSR
used for predicting sample purity. Classification findings obtained
100% sensitivity and more than 95% specificity for samples with
adulterant amounts over 5% (w/w). PLS models revealed R2 values
over 0.90 and RMSEP between 3.2% and 4.8% for purity. According
to multivariate models, portable NIR equipment can identify and
quantify contaminated almond flour (Marcelino et al., 2023).
Portable NIR spectroscopy coupled with multivariate supervised
classification was suggested to identify peanuts, Brazil nuts,
macadamia nuts, and pecan nuts in cashew nut samples, covering
a broad concentration range (10%–0.1% w/w). Algorithms were
established to estimate cashews pure and adulterated with peanuts,
Brazil nuts, macadamia nuts, and pecan nuts. Interval partial-least-
squares regression (iPLS), genetic algorithm (GA), and iPLS-GA were
explored as variable selection procedures. PLS-DA paired with iPLS-
GA offered the best results, with sensitivity between 81% and 93% and
selectivity between 94% and 100%. (Sheng et al., 2022). We will
summarized some of previous studies based on the variety of
chemometrics method and according to (Beć et al., 2022).

Conclusion

The dramatic advancement of miniaturized NIR
spectrometers (i.e., handheld and portable) has revolutionized
rapid, facile, on-site and non-destructive analysis of samples in
food chemistry. However, these instruments have significant
challenges due to various issues in their spectroscopic data,
like baseline contribution, noise, lack of repeatability, peak
overlap, and low resolution. In this context, chemometric/
machnine learning techniques attempt to extract the required

information from spectra and explore this spectral information
for qualitative or quantitative purposes through mathematical
resolution, pattern recognition, and calibration.

We believe thismini-review article is of general interest to thewhole
food chemistry community as everybody hears these buzzwords daily,
but the real ideas and potential behind the miniaturized spectroscopy
and chemometrics are not widely known and understood yet. We hope
this review will promote further research on miniaturized spectroscopy
in food to solve different problems.
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