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Forensic science standards often require the analyst to report in categorical terms.
Categorical reporting without reference to the strength of the evidence, or the
strength threshold that must be met to sustain or justify the decision, obscures the
decision-making process, and allows for inconsistency and bias. Standards that
promote reporting in probabilistic terms require the analyst to report the strength
of the evidence without offering a conclusive interpretation of the evidence.
Probabilistic reporting is often based on a likelihood ratio which depends on
calibrated probabilities. While probabilistic reporting may be more objective and
less open to bias than categorical reporting, the report can be difficult for a lay jury to
interpret. These reporting methods may appear disparate, but the relationship
between the two is easily understood and visualized by a simple decision theory
construct known as the receiver operating characteristic (ROC) curve. Implementing
ROC-facilitated reporting through an expanded proficiency testing regime may
provide transparency in categorical reporting and potentially obviate some of the
lay jury interpretation issues associated with probabilistic reporting.
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1 Introduction

In 2009 the National Academies of Science (NAS) issued a report entitled “Strengthening
Forensic Science in the United States: A Path Forward”. (National Research Council, 2009). The
main finding from the report was that “(w)ith the exception of nuclear DNA analysis, . . . no
forensic method has been rigorously shown to have the capacity to consistently, and with a high
degree of certainty, demonstrate a connection between evidence and a specific individual or
source.” In 2019, the Honorable Harry T. Edwards assessed progress of the forensic science
community as “still facing serious problems” in his address to the Innocence Network Annual
Conference. (Edwards, 2019). A significant aspect of the problem was summed up by the
tautology that forensic practitioners addressing the NAS committee often didn’t know what
they didn’t know. This condition becomes especially problematic when the expert is reporting
to the court in categorical terms without reference to, and often without quantitative knowledge
of, the strength of the evidence. Categorical reporting provides a multitude of terms that are not
clearly defined, don’t convey the strength of the evidence nor support more than one
interpretation of the evidence (National Research Council, 2009; Cole and Biedermann,
2019). Without information regarding the strength of the evidence, the court cannot
integrate the analyst’s testimony into the overall evidence assessment.
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The use of statistical data in forensic science can necessitate a
move away from categorical statements to evaluative reporting. Under
evaluative reporting the expert reports on the strength of the evidence
in probabilistic terms and leaves the court to draw its own conclusions.
(Martire et al., 2013; Aitken et al., 2015; Champod et al., 2016;
Biedermann et al., 2017). However, the court may find probabilistic
testimony difficult to interpret without guidance by the expert. The
question is whether judges and jurors can interpret probabilistic
reporting. (Brun and Teigen, 1988; De Keijser and Elffers, 2012;
Friedman and Turri, 2015; Thompson and Newman, 2015; Hans
and Saks, 2018; Eldridge, 2019; Melcher, 2022). A visual
representation of decision theory provides a direct association
between probabilistic statements, their verbal equivalents, and
categorical statements. (Fawcett, 2004; Johnson, 2004; Fawcett, 2006).

2 Two current reporting practices

Reporting in categorical terms requires the analyst to make a
decision regarding the interpretation of the evidence. If the question is
a classification problem, the analyst must decide upon the class
membership of the evidence and report their decision accordingly.
If the problem is one of identification, then the binary categorical
reporting must assign the questioned and controlled sample as coming
from a common source. When reporting is done in categorical terms,
the expert’s opinion is often dogmatic and carries no indication of
evidentiary strength or analyst uncertainty. The opinion can appear
totally subjective and open to bias.

When reporting is done in probabilistic terms, the analyst typically
reports the strength of the evidence as a likelihood ratio or the
logarithm of the likelihood ratio. The likelihood ratio is typically
reported in terms of two competing hypotheses. The report provides
information to the court regarding the strength of the evidence relative
to the two propositions, but a categorical statement is not provided.
The court can then interpret the likelihood ratio, in conjunction with
the prior odds of the two propositions to evaluate the posterior odds of
the two propositions. This Bayesian approach can be argued to suffer
from the need to estimate the prior odds and to arrive at a likelihood
ratio from well-calibrated probabilities.

2.1 Reporting examples

As an example of categorical reporting, under the ASTME1618-19
standard, the analyst must report the sample as positive or negative for
the presence of ignitable liquid residue. (Materials, 2019). In the case of
comparative glass analysis, for example in a hit-and-run case, ASTM
E2927-16e1 requires the analyst to report the evidence in a binary
fashion as categorically representing an exclusion (different sources of
the questioned and control samples) or an inclusion (same source)
(Akmeemana et al., 2021). In both fire debris and glass analysis, recent
research has focused on evaluation of the strength of evidence as a
likelihood ratio that can lead to probabilistic reporting. (Akmeemana
et al., 2021; Sigman et al., 2021; Whitehead et al., 2022). DNA
evidence, which was recognized as a forensic gold-standard by the
2009 NAS report, has employed likelihood ratios to communicate the
strength of the evidence for some time and advances in reporting
continue, as reported in a recent review. (National Research Council,
2009; Meakin et al., 2021).

2.2 Errors, probabilities, and decisions

Various approaches have been proposed for data testing and
classification, including hypothesis testing by Fisher (circa 1925)
and Neyman and Pearson (circa 1928). (Perezgonzalez, 2015).
Fisher’s test involves establishing a null hypothesis (H0), typically
that the difference in means between two populations or classes is
equal to zero. Once the theoretical distribution is established for H0,
the probability or p-value for any new data is calculated under H0 and
represents a cumulative probability of the observed result or a more
extreme result. Results with a low p-value are taken as evidence against
H0 explaining the observed results. The Neyman-Pearson approach
specifically considers an alternative hypothesis (HA) that represents a
population which exists alongside a different population represented
by the main hypothesis (HM). The samples in the population
corresponding to HM are typically designated as class 0 and those
in the adjacent population as class 1. The two populations exist
alongside one another in the sense that they are each distributed
over a common parameter or score, however the populations differ by
some degree. The difference between populations is known as the
effect size and could be as simple as the difference between the means
of the two. The smaller the effect size, the more difficult it is to
determine the difference between the two populations and to correctly
predict a new observation’s membership within each population
(i.e., correct classification). Binary classifiers (two classes) classically
attempt to minimize the expected classification error, defined as the
weighted sum of type I and type II errors (defined below). (Tong et al.,
2018). The Neyman-Pearson approach recognizes that in real-world
cases these two error types may not be equally important, and it strives
to limit the size of the more important (higher priority) error. Class
labels can be arbitrarily switched so it is customary in the Neyman-
Pearson approach to refer to the prioritized (more important) error as
type I. Type I error refers to the conditional probability of mistakenly
assigning a ground truth class 0 as belonging to class 1. This type I
error is known as a false positive. The conditional probability of
assigning a class 1 sample to class 0 is a false negative. For example, in
fire debris analysis, samples that don’t contain ignitable liquid residue
would constitute class 0. The priority error (to be avoided) is to classify
a class 0 sample as class 1 (i.e., containing ignitable liquid residue). The
probability of committing a type I error is designated as α and the
probability of committing a type II error is designated β. The goal in
developing a Neyman-Pearson classification system is to keep α below
a defined value (typically 0.05 or less) while also keeping β as small as
possible. Data analysis methods that take into account type I and II
errors are well-known and widely practiced in the analytical sciences.
(Ortiz et al., 2010).

An approach to implementing a Neyman-Pearson classification
without requiring assumptions regarding the probability
distributions of the populations, is the “umbrella” method of
Tong which utilizes receiver operating characteristic (ROC)
curves. (Tong et al., 2018). The ROC method was developed by
electrical engineers during World War II for the purpose of
characterizing the abilities of RADAR operators to discern
between targets of concern and noise that distracts from
detection of the target. (Calì and Longobardi, 2015). The ROC
method is especially useful for binary decisions between two
competing propositions. This is often the case in forensic
science where the propositions of the prosecution, Hp, and the
defense, Hd, often fall within a hierarchy of propositions. (Cook
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et al., 1998; Evett, 1998; Evett et al., 2000a). The propositions Hp

and Hd can be defined such that they correspond to HM and HA, as
discussed above. Applying the ROC method requires a ground-
truth data set that must be evaluated and ranked relative to the two
propositions by a score. Higher scores are associated with stronger
evidence in support of a positive target detection, typically
represented by Hp in forensic science. The scores are
sequentially treated as target-detection thresholds, such that any
sample with a score equal or exceeding the threshold is assigned as
positive for the target. The score-ranked data can be evaluated to
determine the true positive rate (TPR) and false positive rate (FPR)
of target detection at each threshold. A plot of TPR as a function of
FPR, ordered by score, will produce a ROC curve. (Fawcett, 2004;
Johnson, 2004; Fawcett, 2006; Fawcett and Niculescu-Mizil, 2007;
Calì and Longobardi, 2015). Each point on the ROC curve
represents a decision threshold and projection at a right angle
onto the respective axes gives the TPR and FPR statistics.

2.3 Relationship between categorical and
probabilistic reporting

The ROC curve has several very useful properties. The curve is
independent of the ratio of ground-truth positive and negative samples.
It is independent of any parametric assumptions. The slope of a tangent to
the curve at any point can be interpreted as a likelihood ratio. (Calì and
Longobardi, 2015). This later property of the ROC curve establishes the
connection between the strengths of evidence (probabilistically reported as
likelihood ratios) and a series of decision thresholds (categorically reported).

The ROC curve is typically plotted in a stepwise fashion; however,
when the number of points is large, the curve will appear smooth, see
Figure 1. Base 10 loglikelihood ratio (LLR) values were used as scores
to create the curve in Figure 1. The scores are labeled along the curve at
positions corresponding to TPR and FPR resulting from these LLR
values as decision thresholds. In other words, the TPR and FPR rates
are related to the strength of evidence required to support a decision in

FIGURE 1
An ROC curve (solid black line) demonstrating the relationship between evidential strength and decision thresholds. The scores that serve as decision
thresholds are labeled next to their corresponding open circle symbols on the curve. The scores correspond to LLR values calculated from calibrated
probabilities. Two blue dashed lines are drawn tangent to the ROC curve and the slope of the lines correspond to the likelihood ratio for the point where the
tangent touches the ROC curve. The tangent line with longer dashes has a slope of 10 and corresponds to the slope of the ROC curve at a score (LLR) of 1
(see the text for additional explanation). The shorter dashed line has a slope of 0.1 and is tangent to the ROC curve at a score (LLR) of −1. The inset diagram
shows probability distributions for classes 0 and 1. The vertical “optimal decision threshold” corresponds to a LLR score of 1 and the shaded areas for a and b
reflect the FPR and FNR (1-TPR) values where the red dashed lines intersect the corresponding axes. The inset diagram demonstrates the essential aspects of a
Neyman-Pearson classifier (see text).
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favor of Hp. The two dashed lines have slopes of 10 (long dash) and 0.1
(short dash). The lines are tangents to the ROC curve at scores
corresponding to their respective slopes (i.e., � 10LLR ).

The straight lines drawn tangent to the ROC curve are also known
as iso-performance lines. The slope of an iso-performance line is equal
to the product of two ratios. The first ratio is the relative prior
probabilities of Hd divided by Hp. The second ratio is the relative
costs of a false positive assignment divided by the cost of a false
negative assignment. All points falling on an iso-performance line
share the same expected costs. This property allows for the selection of
the optimal decision threshold along the ROC curve. An iso-
performance slope is determined based on the known base rates
(prior probabilities) and the acceptable cost ratio. Under this
method, the optimal decision point is the ROC convex hull (CH)
point that lies on the iso-performance line tangent to the curve. The
ROC CH is composed of a series of straight segments connecting the
outermost points on the curve.

The notations A–F in Figure 1 correspond to LLR ranges for which
verbal equivalents have been assigned. (Evett, 1998; Evett et al., 2000b;

Aitken et al., 2015). New evidence (e.g., from casework) would be
scored by the same method used to evaluate the samples that comprise
the ROC curve. The evidential strength of new evidence is easily
shown by plotting it onto the ROC curve. For example, the filled
diamond plotted on the ROC curve in Figure 1 lies in the region of the
curve labeled as “B” and provides moderate support for the
prosecution’s hypothesis, Hp.

The ROC curve in Figure 1 is idealized and composed of a few
thousand likelihood ratios calculated from calibrated probabilities to
demonstrate the direct and highly visual relationship between the
concepts underlying categorical and probabilistic reporting. In
forensic applications, the number of data points would likely be
much smaller. The scores should be numeric values that represent
the degree of support for a sample belonging to the positive class. A
score might not be a calibrated probability. (Whitehead et al., 2022).
The ROC curve could more closely resemble Figure 2. In Figure 2, the
ROC curve is shown as the solid black line and plotted in stairstep
fashion. The dashed gray line connects the points on the ROCCH. The
points on the ROC CH are the only points that qualify as optimal

FIGURE 2
An ROC curve (solid black line) comprised of a small number of loglikelihood-like scores (20 scores). The curve is plotted in a stepwise fashion and the
scores are placed adjacent to open circle symbols. The dashed gray line connects the points comprising the ROC convex hull (CH). The slope of each segment
of the ROC CH is plotted adjacent to the curve. The “Inf” label corresponds to the limiting slope of the ROC CH between scores 3 and 1. The slope of each
segment of the ROC CH can be combined with the skew in the data used to generate the curve to calculate the PAV-equivalent probabilities P (Hp|E)
using Eq 1 (see text for more details).
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operational points for making categorical decisions. (Fawcett, 2004;
2006). Following the Neyman-Pearson approach, the optimal
operational threshold can be selected as a point on the ROC CH
where the FPR (α) is less than a defined criteria (i.e., α ≤ 0.05). Each
segment of the ROC CH represents an iso-performance line on the
ROC plot. (Fawcett, 2006). The slope of each segment of the ROC CH
is labeled next to the segment in Figure 2. Note that “Inf” is used to
note a slope approaching infinity, which is the limit of a positive
change in TPR as the change in FPR approaches 0 from the positive
side, as required due to the ROC curve existing in the first quadrant
(FPR = [0,1], TPR = [0,1]). The slope of a ROC CH where the
denominator was equal to 0 is mathematically undefined, and the
slope of this ROC CH segment may only be considered in the limit.
The probability of Hp given the evidence for scores covered by the
ROC CH segment is calculated by Eq. 1, using the slope of the CH
segment and the skew. The skew is the ratio of true-Hp to true-Hd case
in the training set. (Fawcett and Niculescu-Mizil, 2007).

P Hp

∣∣∣∣E( ) � slope · skew
1 + slope · skew( )

(1)

In Figure 2, P(Hp|E) � 1 for new evidence with a score ∈ 3, 2, 1{ },
P(Hp|E) � 0.5 for a score of 0, P(Hp|E) � 0.2 for a score of −1, and
P(Hp|E) � 0 for a score ∈ −2,−3{ }. These values are calculated based
on a skew of 1.

2.4 Implementing the methodology

Implementing the methodology described here requires a set
of ground truth samples to evaluate following an established
protocol and utilizing an accepted scoring method. Each analyst
must evaluate a number of ground truth samples and use their
assigned scores to generate an ROC curve. The scores should be
loglikelihood-like and larger values should represent stronger
support for Hp (class 1). (Morrison, 2013). The scores can be
obtained, for example, from machine learning, instrumental
measurements, or subjective opinions representing an
expected probability of membership in class 1. (Jøsang, 2016;
Tong et al., 2018; Sigman et al., 2021). The number of samples to
analyze should be determined within the organization and with
the assistance of forensic statisticians. An example of the
approach has been demonstrated in fire debris analysis with
each of three analysts evaluating 20 ground truth samples each.
(Whitehead et al., 2022). The samples must be presented to the
analyst as blind or double-blind tests. This could be viewed as an
extension of current proficiency exam requirements. After the
development of an ROC curve by an analyst, an optimal decision
threshold my be established if reporting in categorical terms is
required. Casework samples must be analyzed and scored
following the same protocols used to develop the ROC curve.
The score obtained for the casework sample allows the
determination of a PAV calibrated probability based on the
covering segment of the ROCCH. Categorical reporting for
the case sample would be dictated by the optimal decision
threshold. The entire process is easily understood and highly
visual.

3 Discussion and conclusion

The relationship between decision-making and evidential
strength has been demonstrated. The relationship is based on
well-known and practiced engineering methods that provide a
highly visual representation of the relationship. Applying these
methods in forensic science could provide transparency to
categorical reporting and potentially obviate some of the
challenges faced by juries when trying to understand and
interpret evidential strength and likelihood ratios. The ROC
method provides a simple path to obtaining pooled-adjacent-
violators (PAV) calibrated probabilities, which are required in
forensic science. A decision threshold on an ROC curve defines
the TPR and FPR rates for the method. In addition, the ROC curve
provides a visualization of the trade-off between the TPR and FPR
as the decision threshold is changed.
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