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Introduction: The characterisation of active substances is an essential tool to ensure
the traceability and authenticity of legal medicines. Metformin is a well-established
biguanide derivative recommended in oral formulations as a first-line treatment for
type 2 diabetes. With its increasing demand, metformin is likely to be an attractive
target for falsification and substandard production, thus posing health risks to
consumers. Methods that are able to identify even small differences in active
pharmaceutical ingredients (APIs) are deemed necessary. The detection of
fraudulent practices in APIs is not straightforward, and a single technique that can
provide sufficient information to unambiguously address this issue is still not available.

Methods: This study investigated an integrated analytical platform based on NIR,
1H-NMR, 13C-NMR, and high-resolution LC-MS combined with chemometrics to
profile 32 metformin hydrochloride samples originating from several global
authorised manufacturers. The study’s aim was to explore differences in the
chemical characteristics of metformin hydrochloride APIs to identify or predict a
possible classification for each manufacturer in view of prospective authenticity
studies. Different pre-processing methods were applied; bucket tables for 1H- and
13C-NMR were obtained, while mass spectrometry data were processed in targeted
and untargeted modes. Datasets were individually analysed and merged by a
multivariate unsupervised method and performing principal component
analysis (PCA).

Results and Discussion: The results evidenced differences in cluster behaviour,
depending on manufacturers. Each technique has shown a specific clustering
tendency, highlighting how different analytical approaches are able to
characterise metformin APIs. Some manufacturers’ samples, however, showed
similar behaviour independently of the techniques. NIR and 1H-NMR were
confirmed as the more predictive techniques if taken individually; 1H-NMR, in
particular, achieved good separation between the samples of the two most
representative manufacturers. For LC-MS, the targeted approach resulted in a
separation in groups clearer than that of the untargeted approach. Nevertheless,
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the untargeted LC-MS approaches presented in this paper could be a possible
alternative to obtaining different information for drug substances, with several
different and complex synthetic pathways leading to several unknown impurities.
Further grouping of manufacturers emerged by data fusion, highlighting its
potential in the traceability of metformin.

KEYWORDS

APIs, chemometrics, nuclear magnetic resonance, near infrared, liquid
chromatography–mass spectrometry, falsification

1 Introduction

Diabetes mellitus is a chronic metabolic disorder of multiple
aetiologies characterized by hyperglycaemia; it affects over
400 million people worldwide (World Health Organization,
2022). Type 2 diabetes (adult-onset or non-insulin-dependent
diabetes) accounts for 90% of diagnosed cases of diabetes and
represents an increasing threat to public health, with significant
mortality and co-morbidities. Metformin is a well-established
biguanide derivative (Figure 1) recommended in oral
formulations as a first-line treatment for type 2 diabetes due to
its: i) efficacy in controlling blood glucose levels with a low risk of
hypoglycaemia, ii) potential use in monotherapy or in combination
with other glucose-lowering agents, and iii) low costs of production
(Viollet et al., 2012; Rojas and Gomes, 2013; Buse et al., 2020;
Giaccari et al., 2021). WHO reported metformin in the model list of
oral hypoglycaemic agents considered to be essential medicines, that
is, medicines that satisfy the priority healthcare needs of a
population selected with due regard to disease prevalence and
public health relevance, evidence of efficacy and safety, and
comparative cost-effectiveness (World Health Organization, 2021).

With increasing demand, metformin is likely to be an attractive
target for falsification and substandard production. This may pose
health risks to consumers, considering the high dosage in adults (up
to 3 g/day), use in the children (Khokhar et al., 2017), and use in
long-term therapy.

This risk could be due to low-quality drugs with unknown
impurities or residual solvents sourced from the manufacturing
process. Moreover, in 2019, the possible presence of the carcinogenic
impurity N-nitrosodimethylamine (NDMA) in metformin products
resulted in the introduction of new appropriate control strategies as
additional quality requirements for the manufacturers (Keire et al.,
2022). On the other hand, the branching of the supply chain increases
the risk of the falsification of active pharmaceutical ingredients (APIs);
therefore, the traceability of active substances represents an essential
albeit demanding necessity (Raimondo et al., 2022).

The fraudulent use of metformin API, as well as other drug
substances from different unauthorised manufacturers, cannot be
excluded. This kind of fraud is proscribed as pharmaceutical
falsification under European Directive 2011/62/UE (European
Parliament and the Council of the European Union, 2011). The risks
related to this kind of falsification arise from the use of low-cost APIs
manufactured under different, uncontrolled, or unapproved processes.

Nevertheless, in many cases an API produced by unapproved
manufacturers complies with the official quality controls (e.g., the
controls prescribed by the European Pharmacopoeia specific
monograph and general chapters). For this reason, methods able
to detect even small differences in APIs originating from different
manufacturers are deemed necessary.

In recent years, studies of fingerprinting analysis to discover
possible falsifications of medicinal products or APIs have been
performed (Anzanello et al., 2014; Custers et al., 2014; Acevska

FIGURE 1
Metformin molecular structure.
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et al., 2015; Custers et al., 2016a; Raimondo et al., 2020; Deconinck et al.,
2022). The EuropeanOfficialMedicines Control Laboratories (OMCLs)
network performed fingerprinting studies on APIs of different
manufacturers/origins to develop a tool to detect falsification of the
origin of active ingredients (Raimondo et al., 2020; Rebiere et al., 2022).

The detection of fraudulent practices in APIs is not straightforward,
and a single technique that can provide sufficient information to
unambiguously address this issue is still not available. Recent articles
have reported the fingerprinting of APIs of different origins by using a
combination of different analytical techniques (Deconinck et al., 2022;
Rebiere et al., 2022). Spectroscopy techniques combined with
chemometrics are most commonly used for authentication and
traceability (Biancolillo and Marini, 2018; Mees et al., 2018).

NIR spectroscopy, based on chemical composition and physical
properties, is a rapid and non-destructive technique that is considered a
fingerprint technique when associated with chemometric methods
(Roggo et al., 2007; de Peinder et al., 2008; Storme-Paris et al., 2010;
Been et al., 2011; de Silva Fernandes et al., 2012; Custers et al., 2016b;
Rodionova et al., 2018; Rodionova et al., 2019).

NMR spectra provide several kinds of information on the
structure of the main molecule and its impurities (Winning et al.,
2008; Pacholczyk-Sienicka et al., 2021). Indeed, the number of
chemometric studies applied to NMR spectra is rapidly
increasing due to the significant results that this analytical
technique has demonstrated in the field of pharmaceuticals, food,
and plants (Deconinck et al., 2022).

The combination of NMR spectroscopy and multivariate
classification approaches has recently been used to identify the
fingerprints of pharmaceutical chemical substances (Raimondo et al.,
2020; Deconinck et al., 2022; Raimondo et al., 2022) and to detect the
origin of biological molecules such as heparin (Colombo et al., 2022).

LC-MS is considered another analytical technique that, combined
with chemometric analysis, offers significant information that can
detect even slight differences among active substances (Nicolas and
Scholz, 1998; Acevska et al., 2015). In this regard, LC-MS quadrupole-
time-of-flight (Q-TOF) relies on the chromatographic signal of the ion
current or a specific region of chromatograms of trace organic
impurities (Deconinck et al., 2008). This technique has usually been
applied to identify specific compounds that can be linked to side
reactions of the synthetic process of the active substance (Schneider
and Wessjohann, 2010; Chen et al., 2022).

This study investigated an innovative integrated analytical platform
based on NIR, 1H-NMR, 13C-NMR, and LC-MS Q-TOF (with targeted
and untargeted approaches in data processing) combined with
chemometric tools to profile 32 metformin hydrochloride samples
originating from several authorised manufacturers distributed
worldwide. The aim of the present study was to explore differences
in the chemical characteristics of metformin hydrochloride APIs to
identify or predict a possible classification for eachmanufacturer in view
of perspective authenticity studies.

2 Materials and methods

2.1 Sample collection

Metformin API samples were collected from Marketing
Authorization Holders of medicinal products, upon request of the

Italian Medicines Agency during post-marketing surveillance activities
on the legal supply chain. Some 32 samples from 11 worldwide
manufacturers were collected by the National Authority and sent to
the ItalianOMCL for analysis, along with the release certificate from the
manufacturer. Each sample was identified with a chemometric code
(Xn) (see Table 1. Samples of one manufacturer were produced in sites
located in two different countries so that the chemometric code was
different for each site. Multiple lots were made available from eight
different metformin producers. Aliquots of samples were used for NIR,
NMR, and LC-MS analyses.

2.2 Analytical detection

NIR, NMR, and LC-MS were selected in this study to provide
information not only on the molecular structure of metformin
hydrochloride but also on its impurity profile.

2.2.1 NIR spectroscopy
NIR spectra were acquired using an Agilent Cary

660 spectrometer (Agilent Technologies Inc., Santa Clara,
California, United States) equipped with a NIR integrating sphere
(PIKE NIR INTEGRATIR™) under the following analytical
conditions: wavenumbers ranging from 4,000 cm−1 to
10,000 cm−1, resolution 4.0 cm−1, and 32 scans. The powder was
transferred into a flat bottom NIR transparent glass vial and
analysed at 20°C–25°C with no sample pre-treatment. Agilent
Resolution Pro® Software version 5.2.0 was used to check the
instrument performance and to process the spectra acquired in
the absorbance scan type (Figure 2). Data extracted were exported
and arranged in a dataset (32 samples and 3,113 wavelengths) efore
processing by chemometric analysis.

2.2.2 NMR spectroscopy
Dimethyl sulfoxide (DMSO-d6) at 99.9% deuteration degree

with 0.03% (v/v) TMS (Cambridge Isotope Laboratories, CIL) was

TABLE 1 List of metformin API samples included in the study.

Manufacturer code Country of origin Number of samples

A India 2

B India 2

D India 1

E India 3

F Spain 1

G Spain 7

H India 1

I Italy 1

L India 3

M Norway 3

N India 6

P France 2
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used. An amount of 10 ± 0.06 mg of the metformin hydrochloride
active substance was dissolved in 3 mL of DMSO-d6 to obtain a
solution of 0.02 M. DMSO-d6 was selected on the basis of Gadape
and Parikh (2011). A rational consideration of the use of deuterium
solvent was performed, considering also the solubility of metformin
in D2O and DMSO-d6. Deuterated DMSO was intentionally used to
obtain metformin hydrochloride and its impurities’ overall spectra
to check the correct assignment of all 1H-NMR protons; if D2O is
used, all exchangeable NH protons disappear from the spectrum.
The sample solution was heated at about 35°C under stirring and
then vortexed for 1 min. The solution (0.7 mL) was transferred to an
NMR tube.

NMR experiments were carried out on a Bruker Avance
NEO spectrometer (Bruker BioSpin Gmbh, Billerica,
Massachusetts, United States) operating at a frequency of
600 MHz (14.1 T), equipped with SMART PROBE iProbe
5 mm with Z-gradient.

Acquisitions and processing were automatically performed
using IconNMR® software (Bruker BioSpin Gmbh, Billerica,
Massachusetts, United States) after TopSpin® version 4.1.3
(Bruker BioSpin Gmbh, Billerica, Massachusetts, United States)
configuration for the matching and tuning, lock on DMSO-d6,
shimming, and acquisition parameters.

The acquisition parameters for monodimensional 1H-NMR
experiments were optimized at a temperature of 298.0 K, pulprog
zg, 32 scans, delay time of 5 s, 90° pulse (10 µs, pldB −12.30 dB), and
spectral window of 20 ppm.

For 13C-NMR, the acquisition parameters were set as follows:
temperature 298.0 K, pulprog zgpg30, 512 scans, delay time 2 s, 90°

pulse (12 µs, pldB −12.30 dB), and spectral window 240 ppm.
A blank acquisition for 1H-NMR and 13C-NMR with only

DMSO-d6 solvent was carried out.
The spectra were processed manually using the data analysis

software package Bruker TopSpin® version 4.1.3, applying 0.3 Hz
line broadening, 0th and 1st order correction phase, and automatic
baseline correction by polynomial and chemical shift calibration to
the DMSO-d6 signal at 2.50 ppm.

The spectra of the 32 samples were aligned using AssureNMR®
(Bruker Corporation, Billerica, Massachusetts, United States);
starting from this processing, 1H- and 13C-bucketed tables were
generated.

The 1H-NMR table was set considering the spectrum from
8.00 ppm to 0.0 ppm. Specific regions of chemical shift with a
bucketing width of 0.05 ppm represent the bucket. Signal regions
of either DMSO-d6 (2.64–2.36 ppm) or H2O (3.43–3.30 ppm) were
excluded from the table. The integration mode was set on the sum of
the intensities; the scaling mode applies the scaling factor to
compare the NMR spectra uniformly. The chosen option was
scaled to the total integral of all buckets, which divides individual
bucket intensities by the total spectral intensity (Bruker
Corporation, 2019). To reduce noise, a smoothing of spectra was
performed using the Savitzky–Golay filter of 10.0 Hz. The data
matrix of the 1H-NMR was composed of 160 variables.

The 13C-NMR buckets were created, defining the region at
160–35 ppm and a bucketing width of 1 ppm. From the
estimation of intensities, the region of DMSO-d6 was excluded
(40.4–39.6 ppm). Any spectra manipulation was applied
considering that the carbon spectrum of metformin is
represented only by four signals. The data matrix of the
13C-NMR was composed of 125 variables.

2.2.3 LC-MS analyses
All reagents and solvents were of LC-MS grade. An amount of

10 ± 0.5 mg of each sample was weighed and dissolved in a 10 mL
mixture acetonitrile/water 1:1 (v/v) containing 0.1% (v/v) formic
acid. Samples were vortexed until dissolution was visually observed
and then filtered through Nylon 0.22-µm filters. Each sample was
analysed on the day of preparation. Procedural blanks were prepared
with the same solvents used for samples and run in parallel;
specifically, blank samples were injected in triplicate at the
beginning of the analytical session and after each sample run.

MS analyses were performed on a Fast LC Mod.1290 Infinity
system coupled to a Q-TOF mass spectrometer detector Mod.
G6520B (Agilent Technologies) equipped with a Dual ESI source
working in the positive ion mode. Mass parameters were set as
follows: the source’s nitrogen temperature was 300°C, the drying gas
flow rate was 10 L/min, the nebulizer was set at 40 psig, Vcap =
4,000 V, the fragmentor was 100 V, and the skimmer was 65 V. The
MS acquisition range was 100–1,200 Da with a rate of 2 spectra/s.
The system was calibrated with a mixture of reference masses at the
beginning of each working day. The chromatographic analysis
consisted of a 15 min linear gradient elution at a flow rate of

FIGURE 2
NIR spectra of metformin hydrochloride API samples.
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0.4 mL/min from 100% of mobile phase A containing 0.1% (v/v) of
formic acid in 95:5 (v/v) water/acetonitrile to 100% of mobile phase
B containing 0.1% (v/v) of formic acid in 5:95 (v/v) water/
acetonitrile. The system was then returned to the initial
conditions which were kept for 5 min. The chromatographic
column (1.8 µm Zorbax Extend-C18, 2.1 × 50 mm) was
thermostated at 35°C. The injection volume was 1 µL, and the
autosampler was thermostated at 15°C.

Raw chromatographic and spectral data were extracted and
processed using MassHunter Qualitative Analysis® version
B.07.00 software and MassHunter Profinder® version 10.0
(Agilent Technologies).

From each sample data file, raw data in the form of total ion
chromatograms (TIC), i.e., total ion intensity vs. retention time
(R.T.) from 0 to 15 min were extracted by MassHunter Qualitative
Analysis®. A shift of 3 m was observed in the R.T. due to the
electronic characteristic of the instrument; therefore, data were
aligned a posteriori.

A second set of data was obtained for each API sample in
targeted mode by the extracted ion chromatograms (EIC) (intensity
of the targeted ion vs. R.T.) of the known impurities reported in the
EPMetformin Monograph (European Pharmacopoeia, 2022) and of
other possible molecules. The extracted chromatogram of each
calculated m/z values [(M + H)+ ions] was evaluated with a “yes/
no” approach. Peak presence (signal/noise >3) was encoded by 1 and
peak absence by 0.

A third processing approach in “untargeted mode” was
tentatively assessed. MassHunter Profinder® software (Agilent
Technologies, 2017) was used for molecular feature extraction
(MFE), followed by retention time and mass alignment across the
sample dataset. MFE aims to remove chemical background and
rapidly find feature peaks in total ion chromatograms by taking
isotope distribution into account (Benito et al., 2018). Features were
extracted with an algorithm (polynomial interpolation) for common
organic molecules with the following filters: m/z range
(100–1,200 m/z), peak height (>50 counts), ion species
(protonated ion, sodium adduct, potassium adduct, and neutral
loss of water), charge state (set to a maximum of 2), maximum exact
mass (<1,000 Da), peak spacing tolerance (0.0025 m/z, plus 7 ppm),
MFE score (70%), R.T. alignment (0.1%, plus 0.3 min), and mass
alignment (5 ppm, plus 2 mDa). Finally, all the features were
checked to remove those containing atypical peak shapes or
unusual isotopic distributions. Of the extracted features, only
those not present in all samples were regarded as possibly
discriminating and considered. Peak presence was encoded by
1 and peak absence by 0. A list of 104 grouped multiple peak
entities (named extracted compound chromatograms or ECCs),
defined by their mass-to-charge ion ratios, retention time, and
peak intensity, was created and then exported to an Excel
datasheet for further analysis.

2.3 Chemometric methods

Analytical data were collected as numeric data for NIR,
1H-NMR, 13C-NMR, and for LC-MS Q-TOF (TIC, EIC, and ECC
data). Each dataset, obtained as previously described, was analysed
individually by a multivariate unsupervised method, performing a

principal component analysis (PCA). The low- and mid-level
fusions were performed, combining two or three techniques and
carrying out a PCA on these new datasets.

The Statistics and Machine Learning Toolbox (The MathWorks,
Natick, MA, United States) and PCA_toolbox for MATLAB-version
1.4 (Milano Chemometrics and QSAR Research Group) (Ballabio,
2015) were used with MATLAB R2022b® software (The
MathWorks, Natick, MA, United States).

3 Results

3.1 NIR spectroscopy

Several pre-processing methods were applied, before the
application of PCA, in this order: multiplicative scatter correction
(MSC), first and second derivative, standard normal variate (SNV),
smooth processing, mean-centering, autoscaling, and a combination
of these methods.

From the evaluation of different pre-treatments, the
combination of SNV, first derivative, and mean-centering was
used for the PCA.

The cross-validation PCA models demonstrated that
PC1 explained 92.38% of variability. The score plot (Figure 3) of
the NIR data showed the trend as clustering in four groups.

The largest group with a positive PC1 and PC2 is mostly
represented by samples from manufacturers N and G with
several contaminations: two samples from manufacturer L
(L2 and L3), B2, A1 and H1, while a second group composed of
more samples is placed at negative PC1 and positive PC2.
Specifically, the three samples M (Norwegian manufacturer)
occur in this last group. The samples P1 and P2 (French
manufacturer) constitute a small group together with sample I1.
Finally, samples E1 and E2 account for the fourth individual group,
with the sample E3 slightly distant.

The T2 value was calculated on the complete dataset
(32 samples) to evaluate whether N2 and L1 could be regarded

FIGURE 3
Score plot of PCA with two principal components using the NIR
dataset.
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as outliers. The T2 value of N2 and L1 confirms the higher distance
with respect to the two principal groups (9.8434 and 12.4503,
respectively). Moreover, considering independently the datasets of
manufacturers N and G, the T2 value > 1 of N3 and G3 confirmed
the behaviour as outliers of these specific manufacturer groups
(Table 2). Also in this specific evaluation, the N2 sample is
confirmed as an outlier for manufacturer N. The PCA without
the four outliers confirms the separation into the four groups
described previously. It was not possible to define a clear
wavelength area of the spectrum that would result in this grouping.

3.2 NMR spectroscopy

Figure 4 shows the monodimensional 1H-NMR overlapped and
aligned spectra of the 32 samples of metformin hydrochloride. The
singlet of the two equivalent methyl groups at 2.92 was observed.
The proton signal of the single -NH group is present at 7.20 ppm; the
proton of the two = NH groups and the protons of the -NH2 group
are assigned to 6.64 ppm (Gadape and Parikh, 2011).

The monodimensional 13C-NMR spectra show the four signals
of metformin hydrochloride carbons at the following chemical shifts
δ: 159.68 (-CH), 158.80 (-CH), 40.52, and 37.90 (2 C of the –CH3).

The data in the bucketed table were pre-treated before PCA
using the autoscaling approach.

The PCAmodel with two PCs explained 77.3% of the variability.
Figure 5A shows the PCA of the 1H-NMR dataset. An overall
separation into two groups representing 93.7% of the sample
population is evident. The remaining samples (n = 2, 6.3%) are
distant from the two groups.

The first group (n = 21 samples, accounting for 65.6% of the
sample population) is represented mainly by samples G (G1–G7)
from the Spanish manufacturer, samples M (M1–3) from the
Norwegian manufacturer, and samples P (P1–2) from the French
manufacturer. In addition, some more samples from
manufacturers E (E2–E3), B (B1–B2), N (N5), H (H1), A (A2),
and L (L1–L2) belong to this group. The evaluation of loading
showed the chemical shift regions (ppm) at 6.50–6.45, 6.45–6.40,
6.40–6.35, 6.35–6.30, 6.30–6.25, 6.25–6.20, 6.20–6.15, 6.15–6.10,
6.10–6.05, 6.05–6.00, 6.00–5.95, 5.95–5.90, 5.90–5.85, 5.85–5.80,

TABLE 2 T-square values of the manufacturers N and G for NIR spectroscopy data.

Sample of the manufacturer N T2 value samples N Sample of the manufacturer G T2 value samples G

N1 0.412341795446355 G1 0.142857263560516

N2 4.14478390215936 G2 0.142857077214758

N3 4.16666666666665 G3 5.14285714285710

N4 0.535525218154310 G4 0.142857093360324

N5 0.433185220522437 G5 0.142857196905209

N6 0.307497197050887 G6 0.142857090101632

— — G7 0.142857136000459

FIGURE 4
Overlapped aligned mono-dimensional 1H-NMR spectra of metformin hydrochloride samples.
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5.70–5.65, 3.35–3.30, 2.80–2.75, 2.75–2.70, 1.90–1.85, 1.25–1.20,
and 0.85–0.80.

In the second group (n = 9 samples, accounting for 28.1% of the
sample population), samples N are predominant, notwithstanding
N5 being placed in the first group. Other samples of different
manufacturers are present: E1, A1, I1, and D1. All samples of
this group, excluding I1, originated from India. The loadings
associated with this group are in the chemical shift regions
(ppm) at 8.00–7.95, 7.95–7.90, 7.90–7.85, 7.85–7.80, 7.80–7.75,
7.65–7.60, 7.60–7.55, 7.55–7.500, 7.50–7.45, 7.45–7.40, 7.40–7.35,
7.00–6.95, 6.95–6.90, 6.90–6.85, 6.85–6.80, 6.80–6.75, 6.75–6.70,
6.70–6.65, and 4.25–4.20.

Sample F1 is the only one frommanufacturer F, originating from
Spain. Adjacent to F1 is the sample L3, which is farther from
L1 and L2.

For the 13C-NMR, the PCA was performed using mean-centring
pre-treatment and three components (68.0% explained variability).
All samples were clustered together in one cloud, although grouping
tendency was represented as well as the samples of manufacturer M
(M1–M3) (Figure 5B).

3.3 LC-MS Q-TOF spectrometry

The evaluated data on LC-MS encompassed TIC data (total ion
intensity vs. R.T.), EIC (extracted ion chromatograms), and ECC
(extracted compound chromatograms). Only the EIC can be
considered a targeted approach (Verzele et al., 2007), while both
total ion intensity and molecular feature extraction (ECC data) are
seen overall as untargeted analyses (Erny et al., 2016; Martínez-
Bueno et al., 2019; Erny and Santos, 2021; Xue et al., 2022). Figure 6
shows an example of ECC of an unknown molecule in metformin
samples with average mass = 326.0007 Da and R.T. at 7.3 min.

The TIC dataset, comprising 1801 variables, was pre-treated
with smooth and mean-centering. The PCA models with two PCs
explained 91.75% of the variability. Figure 7A shows that the TIC
data do not provide a clear separation of the samples. A major cloud

is influenced by PC2, and it is represented by all M samples (M1–3),
samples G (G1, G2, G5, and G6), N (N3, N4, N5, and N6), E (E1 and
E3), P2, H1, I1, B1, and L2; the second group samples are more
scattered: N (N1 and N2), G (G4 and G7), L (L3 and L1), F1, P1, E2,
D1, and A1. Interestingly, L1 and N2 are closer than observed in
PCA obtained by NIR data.

The EIC dataset included 14 identified variables. Only 3 m/z
signals corresponding to the known Eur. Ph. impurities E (1-
methylbiguanide), C (N2,N2-dimethyl-1,3,5-triazine-2,4,6-
triamine (N,N-dimethylmelamine)), and B [(4,6-diamino-
1,3,5-triazin-2-yl)guanidine] were not systematically present/
absent in all samples and were therefore considered
analytically distinctive.

The PCA (Figure 7B) shows a separation of the samples into
groups (explained variance 82.86%). The most abundant group
influenced by PC1 is represented by all samples from producer
M (M1–3) and E (E1–3), along with B (B1, B2), D, and a single
contamination by A. Samples G and N are not clearly explained by
different clusters and are fairly scattered along the plot. Sample H
stands for an individual point, well separated from all the others. All
L samples are grouped together. The loading more associated with
this group is represented by the m/z signals at 155.1040 (impurity C
of the Eur. Ph. monograph).

As with EIC, the ECC dataset (104 variables) was not pre-
treated, and two principal components explained 81.6% of
variability. All samples were grouped together in one cloud
without an evident clustering, although grouping tendency was
observed in samples from manufacturer E (E1–3) (Figure 7C).

3.4 Fusion of the analytical datasets

Fusion was performed by sequentially combining two or three
analytical approaches among NIR, 1H-NMR, 13C-NMR, TIC, EIC,
and ECC. The PCA obtained by low-level fusion did not evidence
new clusters with respect to the PCA carried out with a single
technique (data not shown).

FIGURE 5
(A) Score plot of PCA with two principal components using the 1H-NMR dataset. (B) Score plot of PCA with two principal components using the
13C-NMR dataset.
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The scenario changes using the mid-level fusion. The
combination of two techniques improved the results of the
LC-MS Q-TOF and 13C-NMR techniques. A good separation
was reported by combining the NIR and EIC databases. The
separation of samples M and E is evident in the PCA. Moreover, a
significant combination was reported by 13C-NMR and EIC data
that allow the identification of a group with the samples B, E, and
M and another group containing the three samples
L—confirming the results observed by EIC. Finally, the
combinations with 1H-NMR did not show results different
than the use of a single technique, represented by the
separation of groups N and G. The combination of TIC and
1H-NMR data was performed, but no significant improvement on
clustering was observed (data not shown).

The mid-level fusion combining three analytical techniques
demonstrated that the NIR-13C-NMR-EIC fusion led the best
separation: the samples L were grouped together, and the
samples B, E, and M formed another group. The sample of
manufacturer H (H1) showed characteristic behaviour; this
sample is isolated from the other groups (Figure 8).

4 Discussion

This manuscript investigated the characterisation of the
metformin drug substances of different manufacturers with NIR,
1H-NMR, 13C-NMR, and high-resolution LC-MS combined with
multivariate analysis to determine a possible classification for each
manufacturer in view of prospective authenticity studies.

The PCA presented in this study was able to separate different
batches of metformin from the same manufacturer. Specifically, M
samples are generally close in a cluster, as shown by the PCAs of
NIR, 1H-NMR, 13C-NMR, and LC-MS EIC data, and E samples are
mainly grouped in LC-MS (in targeted EIC and in untargeted ECC
data) and partially in NIR and 13C-NMR.

Among all the investigated analytical techniques, NIR and
1H-NMR data provide the most suitable separation in groups of
the samples. In the NIR data, the largest cluster is represented by the
G and N samples. The 1H-NMR represents the only technique that
distinguished samples N from samples G and associated specific
chemical shift regions at these clusters. Both NIR and 1H-NMR
showed the proximity of samples P (P1 and P2) in the plots. A more
dispersed behaviour was observed for other manufacturers—L1 and
N2 in NIR; 13C-NMR, LC-MS TIC, and partially in LC-MS ECC;
P2 and I1 in NIR; 13C-NMR, LC-MS TIC, and LC-MS EIC. These are
positioned close to one another and show similar behaviour in
the PCAs.

PCA on mid-level data fusion was able to separate in a cluster
the B, E, and M samples and another in the L samples. The single H
sample is well-separated from all other samples.

13C-NMR and NMR data processing with bucket tables in
combination with multivariate analysis was applied. The PCA of
13C-NMR indicated a tendency of some samples to gather, although
a clear separation of clusters could not be defined. The combination
of 13C-NMR and chemometric methods has been mainly used to
obtain a fingerprint in metabolomic studies, whereas the
pharmaceutical studies are limited (Silvestre et al., 2009;
Ohmenhaeuser et al., 2013; Erich et al., 2015; Lia et al., 2020).

The bucket tables allowed the characterization of batches by
assessing the normalised intensity differences in specific chemical
shift regions. The bucketing method could be used to reduce the
minor NMR peak misalignment influence due to different pH, salt,
and even temperature issues (Emwas et al., 2018; Wang et al., 2020).

Overall, the 1H-NMR combined with PCA is confirmed as a
good approach to identify small differences in pharmaceutically
active substances (Krakowska et al., 2016; Raimondo et al., 2020;
Deconinck et al., 2022; Raimondo et al., 2022; Rebiere et al., 2022).

To the best of our knowledge, this is the first time a triplex
approach to elaborate LC-MS data for chemometric analysis has
been followed. The chromatographic signals TIC and ECC were
considered untargeted approaches, while EIC, calculated on known
impurities, was considered a targeted approach. The results obtained

FIGURE 6
Example of the extracted compound chromatograms (ECCs)
obtained by MassHunter Profinder

®
for six samples for an unknown

compound found by the software application at R.T. = 7.3 min with
average mass = 326.0007 Da.
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are evidence that raw data processing is not trivial and can disclose
different grouping tendencies. It should be noted that, in the present
case, the targeted approach performed a separation into groups
more clearly than those of the untargeted approaches. Moreover, for
untargeted ECC data processing, the results could be influenced by
the filtering levels (cut-off on peak height, peak spacing tolerance,
MFE score, R.T. alignment, and mass alignment), so a more in-
depth study is needed to clarify the contribution of each filter
parameter to the results.

In conclusion, most of the metformin manufactures selected for
this study were characterised. The results specifically showed that M
samples are clusterized by NIR, 1H-NMR, LC-MS Q-TOF (EIC),
and in data fusion with NIR-13C-NMR-EIC; P samples are
clusterized in NIR and 1H-NMR; E samples are clusterized in
LC-MS Q-TOF (EIC and ECC) and in data fusion NIR-
13C-NMR-EIC; L samples are clusterized in EIC and in data
fusion NIR-13C-NMR-EIC; B samples are clusterized in EIC and
in data fusion NIR-13C-NMR-EIC. N samples are mainly clusterized
in 1H-NMR except for N5. The most abundant G group is

clusterized in NIR, with the exception of G3 and in 1H-NMR.
The two samples A are not clusterized in all techniques.

The results obtained in this study highlight the capability of an
integrated analytical platform combined with chemometric analysis to
make a positive contribution to authenticity studies on drug substances.

Different manufacturing processes have been linked to different
groups obtained by PCA and correlated with the origin of drugs
(Deconinck et al., 2008). Structurally complex drugs manufactured
by multiple possible synthetic pathways, multi-step synthetic
processes, and with many known and unknown impurities are
more prone to exhibiting differences in spectroscopic and
spectrometric data and in chemometrics models (Remaud et al.,
2013). Metformin is a relatively simple molecule manufactured by a
facile synthetic route encompassing only a single-step reaction of
dicyandiamide and dimethylamine with a relatively well-established
impurity pattern (Shalmashi, 2008; Yendapally et al., 2020). In
addition, the limited number of samples per manufacturer may
also explain the observed trend since the influence and impact of
batch-to-batch variability cannot be completely excluded, especially
if it results in small differences such as low-intensity signals that
potentially characterize chemometric separation.

These results underline the need to address the potential effects
of the limited variability of the manufacturing process and the
consequent low probability of the presence of multiple unknown
impurities. Nonetheless, different techniques or their fusion allow
the clusterization of some metformin API samples.

The authors’ previous results obtained for ibuprofen and carvedilol
drug substances (Raimondo et al., 2020; Raimondo et al., 2022)
evidenced a chemometric separation in PCA and cluster analyses
based on API origin (EU and non-EU) related to specific signals in
1H-NMR and in LC or LC-MS Q-TOF. This paper reports the results
obtained with more techniques and different data analysis approaches.
For metformin API, a separation based on EU or non-EU origin was
not found; however, a clusterization for some manufacturers was
observed. The comparison of results between these APIs highlights
that the separation seems to strictly depend on the manufacturing
process, which is in line with previous studies (Deconinck et al., 2008).
In absence of complex multi-step processes and of many known
impurities, a separation based on manufacturers or on origin
(geographical area) was not clearly obtained. Nevertheless, as

FIGURE 7
(A) Score plot of PCA with two principal components using the untargeted LC-MS TIC dataset. (B) Score plot of PCA with two principal components
using the targeted LC-MS EIC dataset. (C) Score plot of PCA with two principal components using the untargeted LC-MS ECC dataset.

FIGURE 8
Score plot of PCA with two principal components using the NIR-
13C-NMR-EIC fusion dataset.
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observed for metformin, most of the samples form clusters in one or
more techniques or in their fusion. On the other hand, as reported in Li
et al. (2020), no single technique can provide complete profiling. As a
general strategy, we believe that a multi-technique approach and the
knowledge of themanufacturing process are important pre-requisites to
analysis.

This study is part of the efforts of the European Official Medicines
Control Laboratories to develop methods to identify possible
falsifications of the origin/manufacturer of active drug substances.
The application of chemometrics to the study of the fingerprinting
of active drug substances is being increasingly developed, and the
detection of more discriminant and predictive analytical techniques
could depend on the specific drug substance and its manufacturing
processes (Deconinck et al., 2022; Rebiere et al., 2022).

Current challenges are aimed at discriminating among different
manufacturers of active substances to detect changes in
manufacturing processes and cases of pharmaceutical falsification.
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