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Coal has been an important energy source worldwide; however, it is the largest
source of nitrogen oxide (NOx) emissions because the amount of nitrogen in coal is
larger than that of other fossil fuels. Precise control of NOx emissions is required in
operations of coal-fired power plants from the viewpoint of air pollution control.
Although theoretical analyses of NOx generation from a coal-fired power plant have
been conducted, it is difficult to precisely predict NOx generation in an actual plant.
NOx generation is affected by various factors, such as furnace design and operating
conditions, and there are complicated relationships among them. Thus, it is
necessary to identify important operating factors that affect NOx generation in
actual coal-fired power plants. A linear non-Gaussian acyclic model (LiNGAM) is
an exploratory causal analysis method that identifies a causal ordering of variables
and their connection strengths without any prior knowledge of causal relationships
among variables. In this study, we analyzed real operation data collected from a coal-
fired power plant using LiNGAM to identify factors of NOx generation. The causal
relationship between process variables and NOx generation was estimated bymeans
of LiNGAM, and the connectional strengths of the variables on NOx generation were
derived. The analysis results agreed with previous reports on NOx generation
mechanisms, such as combustion air temperature, steam temperature on a
specific side of the furnace, and air flow rate of forced draft fans. In addition, we
found the steam flow rate and the furnace pressure as new candidate factors of NOx
generation through causal analysis using LiNGAM, which heretofore has not been
suggested. Our analysis result should contribute to reducing NOx emissions from
coal-fired power plants in the future.
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1 Introduction

A coal-fired power plant must be monitored and controlled well to maintain sustainable
and clean emissions despite variations in external factors. In particular, nitrogen oxide
(NOx) emission is one of the most critical matters in the operation of coal-fired power plants
because it is the largest source of NOx emission. The amount of nitrogen in coal is larger
than that of other fossil fuels (Gonzalez-Salazar et al. (2018)). To understand deeply the
relationship between plant operation and NOx emissions is critical for process monitoring
and control although some factors affecting NOx emission are known such as coal
properties, operation settings, equipment maintenance, and power demand (Strbac
(2008); Ampimah et al. (2018)).

Process state estimation and factor identification of NOx generation in a coal-fired power
plant based on first principle models have been attempted; however, these model-based
methods remain applicable only to pilot systems (Vo et al. (2019); Ke et al. (2022)). It is
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difficult to comprehensively consider influence from external factors
on daily operations using first principle models (Kadlec et al. (2009)).

The large amount of historical process data from long-running
monitoring may contain rich information about NOx generation.
Thus, data-driven approaches based on process data may be helpful in
identifying factors of NOx generation and assisting optimal process
management.

Deep learning models have been successfully applied to predict
NOx emissions from boilers. Adams et al. applied a combination of a
deep neural network and a least square support vector machine to
predict SOx-NOx emissions in a coal-fired power plant (Adams et al.
(2020)). They demonstrated the effect of coal properties on SOx-NOx
emissions by comparing performances of models on NOx prediction,
with and without coal properties. Liukkonen et al. also applied self-
organizing maps (SOM) and k-means to estimate process states from
combustion process data of a circulating Fluidized Bed (CFB) boiler
(Liukkonen et al. (2011)). They individually selected input variables
and developed NOx emission prediction models for multiple states.
Wang. et al. developed an NOx emission prediction model using a
Gaussian process (GP) (Wang et al. (2018)). The model confirmed that
air-staged combustion, which is a well-known low NOx combustion
technology, has significant impact on NOx generation.

Long short-term memory (LSTM), a kind of neural network, is a
model suitable for processing time series data. Many studies have
applied LSTM and reported good performance in dynamic NOx
prediction (Tan et al. (2019); Yang et al. (2020); Song et al. (2022);
Xie et al. (2020); Wang et al. (2022); Tuttle et al. (2021)). Some studies
have reported that convolutional neural networks (CNN) accurately
predicted emissions of NOx from coal-fired boilers (Li and Hu (2020);
Saif-Ul-Allah et al. (2022,?)). In addition, deep hybrid neural networks
also have been applied to CFB gas emission prediction (Hu et al.
(2020)). The computational complexity thereof was almost the same as
CNN and LSTM, and the prediction performance was approximately
five times better than that of CNN and 7.5 times better than LSTM.

Most machine-learning (ML) models are black-boxes, and it is
difficult for us to interpret the relationships between process variables
and NOx generation. Attention mechanisms (AM) may help
interpretation of ML models. In an analysis of gasoline engines,
quantitative impact of each process variable on NOx emission was
investigated using graph neural networks with AM (Chen et al.
(2023)). Several studies have also applied AM to develop NOx
emission models in coal-fired power plants; however, they did not
always obtain good-interpretable models (Wan et al. (2022); Wang
et al. (2022); Li et al. (2023)).

Path analysis or the structural equation modeling (SEM) approach is
useful for process interpretation because it estimates the structural
relationships between process variables. PLS-SEM (Hair et al. (2011))
and process PLS (van Kollenburg et al. (2021)) have been applied to
structural modeling of industrial production processes (van Kollenburg
et al. (2020); Offermans et al. (2021)). However, the relationship of process
variables must be manually determined before constructing a model with
these structural methods. Prior knowledge about causal relationships
between process variables is only sometimes fully known in large and
complex processes, including coal-fired power plants. Thus, we should
adopt a method that does not require prior knowledge about processes.

Causal discovery methods are gaining popularity in industrial process
analysis (Chen et al. (2018); Sun et al. (2022); Menegozzo et al. (2022)).
Linear non-gaussian acyclic model (LiNGAM) is a useful causal discovery
method for estimating a causal structure among variables based only on

data without any prior knowledge of the structure (Shimizu et al. (2006;
Shimizu et al. (2011)). LiNGAMhas beenwidely adopted in various fields,
such as the social sciences (Ferkingstad et al. (2011); Lai and Bessler
(2015)) and neuroscience (Smith et al. (2011); Bielczyk et al. (2019)), and
has been applied to fault diagnosis and causal discovery in industrial
processeses in recent years (Uchida et al. (2022); Cao et al. (2022)). The
analysis results using LiNGAM provide better insight into the process
operation to process operators and engineers.

In this study, we applied LiNGAM to real process data of an actual
coal-fired power plant in order to identify significant factors of NOx
emission based on causality between process variables. By utilizing
LiNGAM, we did not need prior knowledge of the process, which is not
the casewith other structural methods.We discuss the significant factors
of NOx emission identified by LiNGAM based on the physicochemical
knowledge of the coal-fired power plant. It was confirmed that some
identified factors were consistent with previous studies; however, we
found two new factors of NOx emission—-steam flow rate and furnace
pressure—-that have not been mentioned in previous studies.

2 Materials and methods

2.1 Coal-fired power plant

This study focuses on a coal-fired power plant with a 700 MW
supercritical tangential firing boiler built in the Kansai region of Japan
and is operated using mixtures of various types of coal in consideration
of economic efficiency. Figure 1 shows a schematic diagram of the
overall system configuration (Zhang. (2013)).

Combustion air is classified into primary air, secondary air, and
over-fire air (OFA), and is fed from a primary air fan and a forced draft
fan, as indicated by (12) and (13), after being heated by a air preheater
(8) before entering a furnace (3) in Figure 1.

The operation data of the coal-fired power plant consist of
momentary values measured every hour, collected over
approximately 6 years. NOx emission was measured at the inlet of
the denitration equipment and represented as the dry gas basis at 6%
O2. We clipped them only when the boiler load was over 680 MW
because only then can it be regarded as a steady-state operation. The
unsteady-state operation data, such as data obtained during coal brand
changes, were removed. Outliers and noisy data were also eliminated by
means of visual observation. In addition, some manipulated variables
that did not change throughout the entire period were omitted from the
analysis since these variables did not contain any information. Finally,
the total number of analyzed samples was 10,763. Table 1 summarizes
the process variables used for analysis. Each variable was standardized
with zero mean and a standard deviation of one before analysis.

2.2 LiNGAM

LiNGAM is a model expressing the causal structure among
variables from data containing confounders (Shimizu et al. (2006)).
An example of a causal structure is shown in Figure 2. The vertices
represent variables, and the directed edges express causal
dependencies among the variables. For example, there is a directed
edge from vertex x1 to x2, which means x1 has a causal effect on x2.

LiNGAM assumes that each variable is generated as the linear
combination of the causal antecedent variables and an exogenous
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variable. In the LiNGAM assumption, the causal structure is expressed
as a directed acyclic graph (DAG) that is a directed graph without a
cycle. An example of a LiNGAM model in Figure 2 is as shown by 1
and (2); Eq. (3)).

x1 � e1 (1)
x2 � b21x1 + e1 (2)

x3 � b31x1 + b32x2 + e3 (3)
Where xi and ei (i = 1, 2, 3) are observed variables and exogenous
noise, respectively. b21, b31, and b32 are coefficients.

When the data include p variables, the LiNGAM model is
expressed as a linear Equation 4:

x � Bx + e (4)
where x ∈ Rp is the variable vector, e ∈ Rp is the exogenous noise
vector, and B ∈ Rp×p is the coefficient matrix of the LiNGAM model,
which must be a lower triangular matrix whose diagonal components
are zero due to the causal assumption.

The goal of causal discovery with LiNGAM is to estimate the
coefficient matrix B, which describes the causal relationships among
the variables. Although there are some assumptions in the LiNGAM
model, the most important assumption is that all variables in the data
need to be continuous.

The LiNGAM coefficients on a row vector in B that are
associated with NOx emissions express the causal effects of the
factors on NOx emissions. Their absolute values and positive/
negative signs indicate the strength and the direction of the
causal effects. Thus, focus should be placed on a specific row
vector β in B in this analysis. The absolute values and positive/

negative signs of the extracted LiNGAM coefficients were compared
to estimate the causal effects on NOx emissions.

Although several LiNGAM algorithms have been proposed, such
as ICA-based LiNGAM (Shimizu et al. (2006)), Direct LiNGAM
(Shimizu et al. (2011)), and Pairwise LiNGAM (Hyvärinen and
Smith. (2013)), we adopted DirectLiNGAM for its ease of practical use.

3 Results

Figure 3 shows the causal effects of each variable on NOx
emissions estimated by means of LiNGAM. The bars indicate the
strengths and directions of the causal effects. The variables with
positive values may increase NOx emission, and those with
negative values may decrease NOx emission. The absolute values
indicate the strength of the causal effects.

The steam flow rate (SFR) and the furnace pressure (FP) had the
first and the second largest positive effects on NOx emission. The
combustion air temperature (CAT) has a positive effect, which is a factor
of thermal NOx. The steam temperature right wall of the furnace (STR)
has a strong negative effect, and the steam temperature left wall of the
furnace (STL) has a weak positive effect on NOx emissions. The forced
draft fan-air flow rate (FDF-AFR) has a negative effect on NOx, which is
understandable because FDF-AFR is associated with Fuel NOx.

4 Discussion

In this section, we discuss the significant factors of NOx emission
identified with LiNGAM: the combustion air temperature (CAT), the

FIGURE 1
Whole system of coal-fired power plant.
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steam temperature near the walls of the furnace (STR and STL), the
forced draft fan-air flow rate (FDF-AFR), and the steam flow rate
(SFR) and the furnace pressure (FP).

4.1 Combustion air temperature

The positive causal effect of CAT estimated with LiNGAM is
supported by a previous research which showed that thermal NOx
strongly depends on the combustion temperature. The Extended
Zeldovich mechanism, analyzed by Bowman and Seery (Fenimore and
Jones. (1957)), describes the generation process of thermal NOx as
follows:

N2 + O#NO +N (5)
In a conventional combustion of pulverized coal, fuel NOx and
thermal NOx contribute to the majority of the total NOx
emissions, while prompt NOx makes negligible contribution (Choi
and Kim. (2009); Zhao et al. (2017); Ma et al. (2019)). Since cracking of
stable N2-binding shown in the first reaction in Eq. 5 requires high
activation energy (Hill and Douglas Smoot. (2000)), most of the
thermal NOx is generated in the areas around flames from the

TABLE 1 Process variables.

Variable name Abbreviation

Furnace pressure FP

Steam temperature front wall of furnace STF

Steam temperature back wall of furnace STB

Steam temperature right wall of furnace STR

Steam temperature left wall of furnace STL

Pulverized coal flow rate PCFR

Primary Air temperature PAT

Primary Air flow rate PAFR

Secondary air flow rate SAFR

Combustion air temperature CAT

Excess air ratio EAR

Theoretical air flow rate TAFR

Forced draft fan-air flow rate FDF-AFR

Flue gas pressure FGP

NOx emission NOx

Steam flow rate SFR

Steam temperature ST

Steam pressure SP

SH Metal temperature SH-MT

RH Metal temperature RH-MT

ECO Oxygen concentration ECO-OC

Carbon content CC

Hydrogen content HC

Oxygen content OC

Sulfur content SC

Nitrogen content NC

Volatile content VC

Ash content AC

Fixed carbon content FCC

Fuel ratio FR

FIGURE 2
Example of causal structure among variables. Reproduced under
CC-BY-4.0,Uchida et al. (2022).

FIGURE 3
Causal effects on NOx emissions.
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burners. Accordingly, NOx emissions exponentially decrease as the
flame temperature decreases. Hence, CAT affects NOx emissions,
which is consistent with our analysis.

4.2 Steam temperatures near walls of furnace

Our results also showed that steam temperature on a specific side
of the furnace wall (STR and STL) was another factor in the NOx
generation. Previous researchers have indicated that the furnace
design, such as the angles of the OFA nozzles and the burner
nozzles, affect the characteristics of the combustion and NOx
emission, on the basis of computational fluid dynamics (CFD)
simulations (Wang et al. (2018); Choi and Kim. (2009); Li et al.
(2009)). When the burner nozzle angle increases, the temperature
distribution and the turbulent mixing in the furnace change
significantly, which then alters NOx emissions (Tan et al. (2017)).
Thus, the furnace design may cause uneven combustion and
differences in STR and STL, thereby affecting NOx generation.

4.3 Air flow rate of forced draft fan

The combustion air fed from the forced draft fan (FDF) is divided
into secondary air and over fire air (OFA) related to the Fuel NOx. Fuel
NOx is generated from the nitrogen bound in the fuel through either
the homogenous gas phase reaction or the heterogeneous reaction on
the coal char surface as follows (Miller and Bowman. (1989); Molina
et al. (2000)).

NH3 + O2 → NO +/ (6)
HCN + O2 → NO +/ (7)
NO +NH3 → N2 +/ (8)
NO +HCN → N2 +/ (9)

The N2-bounding is cracked during the devolatilization process, and a
portion of the nitrogen is rapidly converted to HCN, while the
remaining fuel nitrogen forms NH3. These two reactions forming
either NO or N2 depend on the local conditions of the fuel. In fuel-rich
regions, HCN and NH3 will typically be reduced to N2 as shown in
Eqs. 8–9, while they are oxidized to form NO in fuel-lean regions as
shown in Eqs. 6–7 (Eaton et al. (1999)).

Air staging with OFA makes a fuel-rich zone near the burners by
supplying the combustion air into the secondary burnout zone. The
increase in FDF air flow rate may form a hypoxic environment near the
burners in the primary combustion zone and allow most of the coal
nitrogen to be released into a fuel-rich region. This mechanism suggests a
rapid formation of N2 fromNOx. Thus, it is concluded that FDF-AFR has
causality with NOx emission. Previous research has shown that the rate of
OFA has a significant impact on NOx emissions (Wang et al. (2018)),
which is consistent with the results of this study.

4.4 Steam flow rate and furnace pressure

The discussion above indicates the feasibility of causal analysis
using LiNGAM inNOx emissions in a coal-fired power plant, since the
identified factors were consistent with previous studies.

However, SFR and FP have not been mentioned in previous
research, although they had the first and second largest effects on

NOx emissions, as shown in Figure 3. FP is the pressure inside the
furnace during coal combustion, and there exists a physical causal
relationship with it and NOx emission. FP is a factor of NOx emissions
newly identified in this study, which should be confirmed through
experiments and additional data, to thereby generate a new hypothesis
that explains how FP affects NOx generation.

4.5 Limitation

Limitations of this work include the operation data; the data did
not contain properties of the coals that were used and their mixtures.
Thus, the effects of the coals that were used on NOx emission was
taken into account in this study. We need to collect data on the utilized
coal for further analysis.

5 Conclusion

This study analyzed real operation data collected from a coal-fired
power plant to identify the factors of NOx emissions with LiNGAM.
As a result, some of the known NOx emission factors were correctly
identified by LiNGAM, while new and spurious factors, the steam flow
rate, and the furnace pressure were also estimated.

In future works, we will confirm whether unknown factors also
affect NOx emissions, and discuss the challenges of applying causal
discovery algorithms to estimate causal relationships in the context of
complex industrial processes.
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