
Front-Face Fluorescence
Spectroscopy and Feature Selection
for Fruit Classification Based on
N-CovSel Method
Lorraine Latchoumane1,2,3,4*, Karine Alary2, Jérôme Minier1,2, Fabrice Davrieux1,2,3,
Raphaël Lugan2, Marc Chillet 1,2 and Jean-Michel Roger3,5

1CIRAD, UMR Qualisud, Saint-Pierre, France, 2Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD,
Université de La Réunion, Montpellier, France, 3ChemHouse Research Group, Montpellier, France, 4Exotic Boyer Réunion SARL,
Terminal Export Fruitier ZA de Gillot, Sainte-Marie, France, 5ITAP, Univ. Montpellier, INRAE, Domaine de Lavalette, Montpellier,
France

Internal disorder is a major problem in fruit production and is responsible for considerable
economical losses. Symptoms are not externally visible, making it difficult to assess the
problem. In recent years, 3D fluorescence spectroscopy has been used to reveal features
of interest in agronomical field, such as plant stress and plant infection. Such technique
could provide useful information regarding changes that occur at the tissue level, in order to
distinguish spectral differences between healthy and disordered fruits. This paper
introduces the use of the new three-way feature extraction N-CovSel method,
compared to the commonly used N-PLS-DA method. These approaches were used
upon front-face fluorescence spectra of 27 fruit pulp and skin samples, by analysing
excitation wavelengths ranging from 250 to 650 nm, and emission wavelengths varying
from 290 to 800 nm. N-CovSel method was applied to identify the most relevant features
on: 1) excitation-emission wavelength couples, 2) excitation wavelengths whatever the
emission wavelengths and 3) emission wavelengths whatever the excitation wavelengths.
Discriminant analysis of the selected features were performed across classes. The
constructed models provided key features to differentiate healthy fruits from disordered
ones. These results highlighted the capability of N-CovSel method to extract themost fitted
features for enhanced fruit classification using front-face fluorescence spectroscopy. They
revealed characteristic fluorophores involved in the structural modifications generated by
the physiological disorder studied. This paper provides preliminary results concerning the
suitability of N-CovSel method for the desired application. Further investigations could be
performed on intact fresh fruits in a non-destructive way, allowing an earlier and faster
detection of the internal disorder for in-field or industrial applications.
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INTRODUCTION

Quality control of food products represents an important issue
for industrial application all along the food chain process in order
to furnish high quality products to consumers. In fruit industries,
quality traits can be determined by physical properties such as
color, texture and size, as well as biological properties such as
cultivar, geographical origin, fruit maturity and physiological
disorders (Bai et al., 2019). This last attribute represents a
main challenge since it may affect both external and internal
qualities, thereby decreasing considerably consumers acceptance.
Internal disorders are more difficult to detect, resulting in changes
within the tissue due to physiological decay, mechanical injury,
microorganism infection and pest or insect attack. A rapid
characterization of fruit quality is needed in order to provide
best products on the market and prevent economical losses.

In recent years, multivariate sensors coupled with analytical
chemistry has been involved in quality survey in various domains,
like agricultural, industrial and pharmaceutical applications. In
such purpose, there indeed is a growing need for spectrometers
based on ultraviolet (UV), visible (VIS) and infrared (IR). Those
rapid, cost-efficient and non-destructive techniques represent
potential methods for internal fruit quality determination.
Amongst spectroscopic methods, fluorescence spectroscopy
allows the analysis of numerous compounds identified as
naturally occurring fluorophores. This technique is becoming
increasingly developed, especially with the introduction of front-
face fluorescence spectroscopy, which allows spectra recording on
the surface of turbid or solid intact samples (Airado-Rodríguez
et al., 2011). It is now possible to detect fluorophores sensitive to
their surrounding environment on such matrices, while
circumventing inner-filter effects caused by spectral distortions
(Santos et al., 2022). Even though fluorescence appears as one of
the oldest analytical methods, it has proven to be useful for quality
traits evaluation, classification, authentication or chemical
characterization of food matrices (Christensen et al., 2006).
For example, Cabrera-Bañegil et al. (2019) analyzed grape
front-face fluorescence and classified samples based on their
phenolic composition when submitted to stress or not, while
Tan et al. (2017) used the same technique for the discrimination
of used frying oil from edible vegetable oil. Previous studies
detected natural fluorescent compounds in food, fruits, and
vegetables, such as flour (Xue et al., 2021), cheese (Andersen
et al., 2005), meat (Sahar et al., 2009), wine (Azcarate et al., 2015;
Elcoroaristizabal et al., 2016), beer (Tan et al., 2015), vegetable oil
(Ali et al., 2020; Botosoa and Karoui, 2022), honey (Lenhardt
et al., 2015; Hao et al., 2021), wheat (Bauriegel and Herppich,
2014), coffee (Robert et al., 2022), tea (Bose, 2016), apple (Codrea
et al., 2004), strawberry (Huang et al., 2022), citrus (Momin et al.,
2010), bell pepper (Kasampalis et al., 2021), and potato leaves
(Zhao et al., 2021). Fluorescence spectroscopy provides structural
information on diverse fluorophores, including phenolic
compounds (Sergiel et al., 2014; Bose, 2016; Cabrera-Bañegil
et al., 2017), aromatic amino acids (Prendergast, 1991; Sahar
et al., 2009), vitamins (Zandomeneghi et al., 2005; Sikorska et al.,
2019), and pigments like chlorophylls, pheophitins, and
carotenoids (Sikorska et al., 2008; Lleó et al., 2016). Combined

with chemometrics (multivariate statistical analysis), it makes it
possible to analyze complex data sets in a reduced amount of
time (Kassouf et al., 2014; Azcarate et al., 2015; Saad et al., 2016;
Sahar et al., 2016; Hernández-Sánchez et al., 2021). Considering
the massive datasets generated by such spectroscopy, using an
efficient variable selection would make it possible to assess
internal fruit quality more efficiently. Several feature selection
methods have been proposed to optimize model by reducing
dimensionality and processing time, while identifying most
relevant variables (Li et al., 2009; Mehmood et al., 2012;
Favilla et al., 2013; Soares et al., 2013; Pistore et al., 2019; Lei
and Sun, 2020). Filter methods select variables of a fitted model
by fixing a threshold on a specific measure, such as loading
weights, regression coefficients and variable importance in
projection (VIP). Wrapper methods iteratively apply the
variable selection algorithm, such as genetic algorithm (GA),
stepwise selection, simulated annealing (SA), ant colony
optimization (AOC), competitive adaptive reweighted
sampling (CARS), Monte Carlo uninformative variable
elimination (MC-UVE), iteratively retaining informative
variables (IRIV) and interval selection, over the refitted
model obtained after feature extraction. Embedded methods
search for best variables while fitting the model, using, for
example, interactive variable selection (IVS), sparse
algorithm, or successive projection algorithm (SPA). Some
methods provide a parsimonious selection of individual
variables considering a chosen performance measure, whereas
others select variable ranges as subset of the dataset. Each
approach holds strengths and weaknesses, and their use is
dependent from the dataset (Yun et al., 2019). CARS is very
cost-effective for removing irrelevant variables but often selects
too few features and is not stable. IRIV is relatively stable and
has good prediction performance, but possesses high
computation cost and is time-consuming. GA has widely
been used due to its performance, but is subject to overfitting
when too many variables are analyzed. Also, combination of
feature selection methods were studied to further highlight
important variables. Fatemi et al. (2022) evaluated VIP
combined with GA of a PLS to identify the most informative
spectral regions to predict corn constituents using NIR
spectroscopy. Allegrini and Olivieri (2013) simultaneously
applied AOC and GA for variable selection while
implementing sample selection with a Monte Carlo approach
to optimize PLS model based on NIR spectra. Zhu et al. (2007)
assessed stepwise algorithm and GA for wavelengths selection of
a SVR model built from NIR spectra. Amongst the afford-
mentioned variable extraction approaches, N-CovSel is an
embedded method that acts as a particular case of PLS. It
parsimoniously selects original features presenting highest
covariance between descriptors and response variables, and
deflates remaining variables with respect to the selected
variable. Doing that, N-CovSel method allows selecting best
features amongst highly correlated continuous variables using
the covariance criterion, contrarily to SPA that only considers
variance within descriptors. It also has the capability of fixing an
a priori number of variables to select, thus optimizing the
processing time of the constructed model.
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The aim of this study was to investigate the use of front-face
fluorescence spectroscopy on ground fruit samples to identify
specific fluorophores related to an internal disorder. We tested
the potential of the new multi-way feature extraction N-CovSel
method on fluorescence spectroscopy measurements, as
compared to the commonly used N-PLS method. Both
methods were applied to sample classification of healthy and
disordered fruits using discriminant analysis. This approach
appeared to be the best suited considering the dataset
configuration, i.e. the number of samples and the unbalanced
class samples. According to their relevance as discriminant
variables, features could be identified for interpretative
purposes or for feature selection. The first aim improves
understanding of the acquired data, the second one minimizes
irrelevant information such as noise and redundancy. Both of the
above-mentioned aspects will be discussed in the following
sections.

MATERIALS AND METHODS

Fruit Samples
This study was designed using pineapple fruits (Ananas
comosus (L.) Merr.) cultivated according to the same
technical itinerary and collected the same day, from the
same field, at the same maturity stage. Fruit sample
classification relied on visual characterization to determine
the presence or absence of internal disorder. Samples were
categorized in two classes: healthy fruits or disordered fruits.
In each case, sections of approximately 1.5 cm2 of the skin and
the pulp located just beneath it were sampled separately and
immersed in liquid nitrogen. For healthy fruits, six sections of
the fruit were randomly collected. For disordered fruits, six
sections presenting the internal disorder were collected. All
sections of one fruit were pulled together, leading to one pulp
and one skin sample per fruit. Samples were ground using an
IKA A11 grinder (IKA, China) after freeze-drying, and stored
at −20°C before analysis. Pulp and skin of 27 fruits, 7 healthy,
and 20 disordered, were obtained and analyzed.

Spectra Acquisition
Fluorescence spectra were acquired with front-face fluorescence
spectroscopy using a Fluorolog®FL-3-22 spectrometer
(HORIBA Instruments Incorporated, United States) at room
temperature of 21°C to minimize instrumental fluctuations
during spectra acquisitions. Measurements were carried out
using a solid sample-cell holder accessory with variable angle.
The powdery sample was deposited into the sample block rest
and closed using a quartz plate. The optimal incidence angle of
excitation radiation on the sample was determined as 45°. 3D
spectra were obtained in the excitation range from 250 to
650 nm at 5 nm intervals and in the emission range from 290
to 800 nm at 2 nm intervals. The slit width was set to 2 nm for
both excitation and emission. The integration time was
maintained at 0.1 s. The FluorEssence™ version 3.8 software
(HORIBA Instruments Incorporated, United States) was used
for data acquisition.

Data Preprocessing
The excitation-emission matrix (EEM) yielded in a data cube X
(N, I, J) of N = 27 samples by I = 81 excitation wavelengths (λex)
by J = 256 emission wavelengths (λem) for both skin and pulp
samples. The three-way arrangements X (27, 81, 256) for both
parts of the fruit were analyzed independently. The class
membership of the samples was encoded in a dummy Y
matrix (N, Q), with Q = 2, the number of classes in Y. A
median filter was applied on spectra as each i value was
replaced by the calculated median on (i−1, i, i+1). As
described by Airado-Rodríguez et al. (2011), first and
second order Rayleigh scatter were removed by excluding
the excitation peaks on the identity line λex = λem and at
2λex = λem, respectively. The spectral regions below the identity
line (λex > λem and 2λex < λem) was set to zero. No
preprocessing methods were applied on fluorescence
spectra. Matlab version R2015a software (The Mathworks
Inc., MA, United States) was used for data processing and
analyses.

Multivariate Analysis
N-Partial Least Squares Discriminant Analysis
Partial least squares (PLS) is a dimension-reduction algorithm
that focuses on calculating the so-called latent variables by
maximizing the covariance between a matrix X (descriptor
variables) and a matrix Y (response variables). The PLS model
is defined as:

X � TPT + RX andY � UQT + RY,

where T and U are score matrices (factorial coordinates) of the
latent variables, P and Q represent the loadings (factorial
contributions) and R contains the residuals of the models
(Rutledge et al., 2021). Matrices PT and QT are the
transpositions of P and Q, respectively. The exact criterion
used by PLS is to calculate the latent variables (LVs) as linear
combinations of X in such a way that they well approximate X
and Y while maximizing the square covariance between them
(Phatak and Jong, 1997). When Y relates quantitative response
variables, the final PLS model is completed by estimating a linear
regression model (PLSR) between T and Y.

When Y refers to a qualitative response variable, a dummy
response variable Y is used. A PLS is calculated between X and Y,
and the scores are inputted in linear discriminant analysis (LDA).
Since front-face fluorescence spectroscopy resulted in 3D
datasets, analysis in the form of N-PLS-DA was investigated in
a three-way array, as N-PLS is the extension of PLS method for
multi-way data (Bro, 1996).

N-CovSel
In order to discriminate samples with respect to their
fluorescence spectra and class of belonging, a new three-way
feature selection method was applied (Biancolillo et al.,
Forthcoming 2022). This variable selection approach relies on
CovSel algorithm that aims at identifying the k most relevant
features in X to predict the response Y (Roger et al., 2011).
N-CovSel iterates the following steps:
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(1) define the number k of original variables (OVs) to be selected.
(2) calculate the square covariance between eachX feature andY,

defined by:
For a 1D-feature u: cov2(u,Y) � 1

Nu
TYYTu

For a 2D-feature U: cov2(U,Y) � 1
N norm(UTYYTU)

as defined in (El Ghaziri and Qannari, 2015).

(3) the feature possessing the higher covariance is retained
(4) the remaining variables of both X and Y are deflated by

orthogonalization according to this feature:

For a 1D-feature u (Nx1):

X ← X − (u(uTu)−1uT)X andY ← Y − (u(uTu)−1uT)Y

For a 2D-feature U, e.g., (N, I), U is unfolded into a vector
(NxI, 1),X is reshaped into (NxI, J), the same formulae are applied
and finally, X is reshaped into (N, I, J).

(5) Go to 2, until k iterations.

Considering the multi-way design of the X (N, I, J) matrices,
N-CovSel method was applied on X to determine the best 1D-
features or 2D-features. The first option selected couples of
indexes in the two variable dimension of X. The second
option selected a variable in one dimension while keeping all
variables in the other dimension (Biancolillo et al., Forthcoming
2022). In this study, it led to the selection of the following
features: 1) excitation-emission wavelength (λEx+Em) couples,
2) excitation wavelengths (λEx) whatever the emission
wavelengths and 3) emission wavelengths (λEm) whatever the
excitation wavelengths. Discriminant analysis (DA) were then
performed on the selected X features to classify samples in
accordance with Y. According to the dimension of the selected
features, different discriminant analysis methods were used,
yielding in N-CovSelEx+Em-PLS-DA, N-CovSelEx-N-PLS-DA,
and N-CovSelEm-N-PLS-DA.

Model Performance
Models were evaluated using a double cross-validation, consisting
in randomly splitting dataset into two sets. The first one (training
set) was used to build and calibrate the model, whereas the second
one (test set) served to evaluate the created model. Because of the
small number of samples, random affectation of sample to one or
the other set may have a considerable influence on the model
outcomes. The double cross-validation prevented this adverse
effect by repeating a certain amount of time the random split for
each cross-validation to obtain a better estimation of the
calibration and prediction model accuracies (Filzmoser et al.,
2009; Hernández-Sánchez et al., 2021). Due to outnumbered
disordered samples compared to healthy samples, the number
of disordered and healthy samples collected for the training set
(n = 20) were fixed to 15 and 5, respectively. Remaining samples
were used for the test set (n = 7). Taking this into account,
samples were randomly selected for each 1,000 iterations of the
double cross-validation in two blocks. Models were built from the

training set using the two-fold cross-validation with k variables
(LV or OV) depending on the model. The maximal number of
variables to be selected was fixed at k = 12 (N-PLS-DA,
N-CovSelEx-N-PLS-DA, and N-CovSelEm-N-PLS-DA models)
or k = 9 (N-CovSelEx+Em-PLS-DA model). In the first model,
latent variables (LVs) were constructed in order to highlight a
subspace of interest based on linear combinations of the original
variables. In the other three models, original variables (OVs)
possessing higher covariance between descriptors and response
were selected using N-CovSel approach. According to the
covariance criterion and considering that the first LV or OV
explains most of the variance of the X and Ymatrices, an optimal
k number of LV or OV to keep was determined using the average
classification accuracy obtained in cross-validation (ACACV),
which were calculated as the average of correct classification
rates for each class. The calibrated model obtained with this LVopt

or OVopt value was then applied on the test set, providing the
average classification accuracy of prediction (ACAPred).

The successive double cross-validation approach resulted in
1,000 values of ACACV, ACAPred, LVopt or OVopt, and the list of
OVs used for models when needed. Based on confusion matrices,
sensitivity and specificity of each model were calculated using
formula:

Sensitivity (SENS) � ∑
n

k

True positives
True positives + False negatives

Specificity (SPEC) � ∑
n

k

True negatives
True negatives + False positives

Sensitivity represents the ability of the model to correctly
classify healthy fruits (true positives), whereas specificity give the
rate of disordered fruits correctly classified (true negatives) by the
model. Boxplots of ACACV, ACAPred, LVopt values, as well as
graphics illustrating the occurrence of OVs values employed by
models were used to compare and explain model performances
and complexities. Mood’s median test combined with pairwise
median post-hoc test were used to compare models and highlight
significant difference defined as p-value < 0.01.

RESULTS

Fluorescence Spectra
Mean fluorescence spectra were processed for pulp and skin of
healthy and disordered fruits (Figure 1). Fluorescence landscapes
obtained in Figure 1 correspond to different signals emitted by
natural compounds frequently found in fruit samples
(Christensen et al., 2006). It revealed the fluorescent
characteristics of fluorophores existing in the samples, such as
polyphenols, amino acids, vitamins or pigments.

When comparing fluorescence spectra of fruit pulp samples
(Figures 1A,B), no significant difference was observed between
the fluorescence patterns of healthy and disordered fruits. Three
areas of interest exhibited fluorescent properties. The region of
highest emission intensity appeared approximately from 380 to
550 nm, resulted from an excitation between 270 and 400 nm.
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Another important area of emission ranged approximately from
380 to 500 nm, corresponding to an excitation between 250 and
260 nm. The third fluorescent area emitted approximately within
wavelength range from 290 to 360 nm when excited between 250
and 300 nm. Two minor fluorescence profiles were noticed for
emission between 490 and 580 nm, corresponding to excitation
from 400 to 480 nm, and excitation at wavelengths above 500 nm
gave an emission signal between 550 and 700 nm.

When focusing on fruit skin samples, similar but more intense
fluorescent schemes were noticeable, with an additional emission
area between 680 and 780 nm when the excitation wavelength
range varied from 350 to 650 nm. Moreover, small differences
appeared between classes regarding fluorescence intensity.
Indeed, disordered skin samples exhibited lower fluorescence
intensity than healthy samples at emission wavelengths from
380 to 600 nm, whereas they displayed more fluorescence
intensity above the 680 nm emission wavelength.

Discriminant Analysis
Comparison of Models
Discriminant analyses were performed in order to differentiate
pulp and skin from healthy or disordered fruits. Results of

optimal variables and prediction models are summarized on
Figures 2, 3 for pulp and skin samples, respectively.
Comparative evaluation of all models assessing the main
trends are illustrated in Figures 2, 3. Mood’s median test
revealed significant difference (p-value < 0.01) between
median models for every parameter studied. Pairwise
comparison of median values was assessed in each case, and
characterized by letters suggesting median difference or
similarity. Medians sharing an identical letter are not
significantly different, whereas dissimilar letters indicate
significant difference between medians.

When comparing the performance of models built with pulp
samples (Figure 2), it appeared that N-PLS-DAmodel performed
better in classification than the other three models using variable
selection. Indeed, medians of ACACV and ACAPred for N-PLS-
DA model outperformed other models, reaching 90 and 75%,
respectively, with a median LV value of three. This result is
relevant because the higher the number of variable, the more
descriptive is the model, since it contains more information and
emphasis correlation between matrices. Conversely, selecting few
variables ensues loss of performance since there is a lack of
relevant information (Rutledge et al., 2021). However, a

FIGURE 1 | Mean front-face fluorescence spectra of pulp (A,B) and skin (C,D) samples measured with the 250–650 nm excitation wavelength (λEx) and
290–800 nm emission wavelength (λEm) ranges. Dark blue regions indicate no fluorescence; yellow regions reflect the presence of fluorophores. (A) healthy pulp (n = 7);
(B) disordered pulp (n = 20); (C) healthy skin (n = 7); (D) disordered skin (n = 20).
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significant variability was found in both ACAPred and optimal
number of variables within each model. The variation of the
number of LVs or OVs required illustrated the instability of
models. This may be due to the relatively low number of samples
available for the double cross-validation, but also the
disproportioned number of healthy samples compared to
disordered ones.

Variability amongst performance parameters was especially
noticed for N-CovSelEx-N-PLS-DA model for which both
ACAPred and OVopt ranged from minimal to maximal values.
Thus, selecting specific excitation wavelengths while keeping the
entire emission range allowed to achieve moderate performance
model with instability. Using N-CovSelEx+Em-PLS-DA model
provided similar performance than N-CovSelEx-N-PLS-DA
model, as median ACACV and ACAPred values were comprised
between 70 and 75% for both models. Therefore, even if the

selection of some excitation-emission wavelength couples
brought less variability than selecting only few excitation
wavelengths, it also led to more complexity since the highest
OVopt median value was attained, i.e. six OVs. N-CovSelEm-N-
PLS-DA model reached best performances of models built with
variable selection, as ACACV and ACAPred median values were 78
and 70%, respectively. Notwithstanding, median value of the
optimal number of variables was only two OVs for
N-CovSelEm-N-PLS-DA model while it was four LVs for
N-PLS-DA.

Skin samples models (Figure 3) exhibited less internal
variations than pulp samples models. Indeed, ACAPred median
values varied from 65 to 75%, and the median number of LVopt
or OVopt was comprised between two and four. Once again,
N-PLS-DA was the best model since good performance and low
complexity was illustrated by median ACACV, ACAPred, and

FIGURE 2 |Model performances for fruit pulp samples. ACACV (A), ACAPred (B), and number of LVopt or OVopt (C) are obtained for eachmodel realized with 1,000
iterations of a 2-fold double cross-validation from pulp samples. Bottom and top edges of the blue box are the 25th and 75th percentiles, respectively; the central mark is
the median; whiskers extend to the most extreme data points not considered outliers; the “+” symbol plots outliers, letters indicate significant difference between models
defined as p-value < 0.01 using Mood’s median test and pairwise median test.

FIGURE 3 |Model performances for fruit skin samples. ACACV (A), ACAPred (B), and number of LVopt or OVopt (C) are obtained for each model realized with 1,000
iterations of a 2-fold double cross-validation from skin samples. Bottom and top edges of the blue box are the 25th and 75th percentiles, respectively; the central mark is
the median; whiskers extend to the most extreme data points not considered outliers; the “+” symbol plots outliers, letters indicate significant difference between models
defined as p-value < 0.01 using Mood’s median test and pairwise median test.
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LVopt values of 90%, 75% and three, respectively. A comparable
performance was obtained for N-CovSelEx+Em-PLS-DA model
but with an increased complexity as the median number of
OVopt was four and the variability was wider. Using four well
selected excitation-emission wavelengths could lead to
discriminate properly sample classes. Likewise, N-CovSelEm-N-
PLS-DA model achieved good performance while reducing even
more the model complexity. As a matter of fact, the median
ACAPred value obtained was close to that of N-PLS-DA and the
median OVopt value was only two. Again, N-CovSelEx-N-PLS-
DA model had the highest variability concerning the OVopt
number to consider. This model also demonstrated the lowest
performance rate of ACAPred, making it the least relevant model
for discriminant analysis of skin samples.

A more detailed comparison is assessed for each model using
the median dimension value as above-mentioned (Figures 2C,
3C). The model iterations built with the median LVopt or OVopt
value were kept, i.e., n out of 1,000. Mean classification
performance for both training and test sets were evaluated
based on mean ACACV and ACAPred for these n models,
resulting in Mean Calibration (%) and Mean Prediction (%),
respectively. Correctly classified samples for each class,
i.e., Sensitivity (SENS) for healthy fruits and Specificity (SPEC)
for disordered fruits were deducted using confusion matrices.
Results for every pulp and skin models are summarized in
Table 1.

As earlier reported, N-PLS-DA models gave better mean
calibration and mean prediction percentages for both pulp and
skin samples. More than 87 and 82% of mean calibration were
achieved for pulp and skin, respectively, and mean predictions
were near 75% each. Focusing on the class attribution of pulp and
skin samples, it appeared that disordered fruits were more likely
to be misclassified compared to healthy fruits. There was a 9–18%
difference of good classification depending on the nature of
samples. In fact, healthy fruits class was correctly predicted at
85% for pulp samples, and at 79% for skin samples.

Best discriminant analyses using N-CovSel approach were
obtained with N-CovSelEx-N-PLS-DA and N-CovSelEm-N-PLS-
DA, either for pulp or for skin samples. For example, selecting
three pulp OVs or four skin OVs in excitation range while
measuring the 256 emission wavelengths achieved mean
prediction of 74 and 74.6%, respectively. Complementarily,
selecting only two OVs in emission range after exciting the 81
excitation wavelengths allowed predicting accurately skin and
pulp class samples with respectively 71 and 74.7% success rate.
Although, healthy fruits were better classified than disordered
fruits for pulp samples, with a sensitivity of 87.2% and a specificity
around 65%. Such distinction was less obvious concerning skin
samples since there was at most 2.1% difference between
sensitivity and specificity in both models. For pulp as well as
for skin samples, the least performant model was using four or six
excitation-emission wavelength couples. Indeed, even if the mean
calibration rate was approaching 73%, the maximum value of
mean prediction was 64.6%. N-CovSelEx-Em-DA could be time-
saving because only few wavelengths are needed, but on the other
hand, performance model was clearly diminished. Contrarily to
the other three models, N-CovSelEx-Em-DA was better at
classifying disordered fruits rather than healthy ones.

Variables Selected by N-CovSel
N-CovSelEx-Em-PLS-DA
Applying N-CovSel in order to find best 1D-features, i.e. most
relevant excitation-emission couples, resulted in poor
performance for both pulp and skin samples. Nevertheless, it
was possible to identify features that occurred the most
throughout the 20,736 possibilities (256 λEx × 81 λEm). When
N-CovSel was implemented on pulp data, 328 differents OVs
emerged, whereas 288 OVs were extracted from skin data.
Figures 4A,B illustrate the occurrence of 1D-features selected
by N-CovSel during double cross-validation for pulp and skin
samples, respectively. The six most frequently selected OVs based
on pulp sample analysis were 250–290, 335–418, 290–290,

TABLE 1 | Performance model obtained for each discriminant analysis built from training set and applied on test set of pulp and skin samples, using the median LVopt or
OVopt value.

Training Set Test Set

Model Median
Dim.

n Mean
Calibration

(%)

SENS
(%)

SPEC
(%)

Mean
prediction

(%)

SENS
(%)

SPEC
(%)

Pulp
N-PLS-DA 3 LVs 208 87.3 97.3 77.2 75.9 85.1 66.7
N-CovSelEx-Em-PLS-DA 6 OVs 179 73.6 48.2 89.3 64.6 45.8 80.5
N-CovSelEx-N-PLS-DA 3 OVs* 86 73.4 95.6 78.1 74.0 87.2 66.7
N-CovSelEm-N-PLS-DA 2 OVs** 341 77.8 97.2 87.0 74.7 87.2 64.6

Skin
N-PLS-DA 3 LVs 373 82.8 88.1 77.4 74.9 79.5 70.3
N-CovSelEx-Em-PLS-DA 4 OVs 196 72.2 64.4 93.0 62.2 64.4 84.2
N-CovSelEx-N-PLS-DA 4 OVs* 152 74.7 90.0 85.4 74.6 73.7 75.8
N-CovSelEm-N-PLS-DA 2 OVs** 389 74.7 89.6 83.3 71.0 70.9 70.1

Median Dim., median number of LVs/OVs used to build models; n, number of iterations; Mean Calibration, mean classification performance based on ACACV; Mean Prediction, mean
classification performance based on ACAPred; SENS, sensitivity (true positive value); SPEC, specificity (true negative value).
* 256 emission wavelengths were considered for the mentioned number of original excitation wavelengths.
** 81 excitation wavelengths were considered for the mentioned number of original emission wavelengths.
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650–652, 265–330, and 250–430 nm. For skin sample analysis,
the four OVs that occurred the most were 335–418, 250–290,
645–686, and 250–426 nm. The most frequently selected OVs for
both pulp and skin samples were λEx+Em couples 250–290 nm and
335–418 nm. They originated from two distinct areas of the
fluorescence spectra and their frequencies varied between 857
and 944 times. It demonstrated the relevance of these regions for

discriminant analysis, especially λEx+Em = 335–418 nm which was
one of the main fluorescent peak of the spectra.

Figure 5 represents mean fluorescence spectra of pulp and
skin samples with their respective most selected features by
N-CovSel. Globally, OVs selected by models highlighted
different regions of the fluorescence domain. Most important
features extracted were distributed across three or four major

FIGURE 4 | Frequency of appearance of excitation-emission wavelength couples selected by N-CovSel for pulp samples (A) and skin samples (B) prior to
discriminant analysis.

FIGURE 5 | 3D font-face mean spectrum of pulp (A) and skin (B) samples measured with the 250–650 nm excitation wavelength (λEx) and 290–800 nm emission
wavelength (λEm) ranges. Dark blue regions indicate no fluorescence; yellow regions reflect the presence of fluorophores. Best OVs (λEx+Em couples) selected by
N-CovSel are represented by red dots.
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regions for pulp and skin samples, respectively. Additionally,
other features of importance were extracted by N-CovSel. Indeed,
for both pulp and skin samples, OVs of interest were comprised
within the three ranges: 1) λEx = 250–290 nm and λEm =
290–330 nm, 2) λEx = 250 and λEm = 406–430 nm, 3) λEx =
335 to 380 and λEm = 418–442 nm, and a supplementary area 4)
λEx = 645 and λEm = 684–688 nm only for skin samples.

N-CovSelEx-N-PLS-DA
Discriminant analyses performed using N-CovSelEx-N-PLS-DA
allowed to optimize variable selection focusing on 2D-features
characterized by excitation wavelengths. In this section, an OV is
a 2D-feature corresponding to a slice of the cube constructed with
one excitation wavelength and the entire emission wavelengths
range. Thus, N-CovSelEx-N-PLS-DA approach is a combination
of several slices extracted on the basis of OVs possessing the
highest covariance, leading to a reduced dimension of the original
X matrices. Taking into account the 1,000 iterations of
N-CovSelEx-N-PLS-DA model, a total of 47 and 45 differents
OVs were used for pulp and skin model, respectively. Figure 6
represents the frequency of appearance of these selected features.

Most frequently selected OVs for pulp samples were 275, 335,
535, and 650 nm, which came out for each iteration. Other
important OVs that outcompeted others are 250, 285, 375, 390,
and 645 nm, since they were extracted in 70–90% of cases. Likewise,
for skin samples, OVs 250 and 650 nm were selected 1,000 times,
280 nm appeared 971 times, and 365, 535, 615, and 645 nm exceeded
70% of occurrence. As previously, performant N-CovSelEx-N-PLS-
DA models were obtained using an optimal number of three and
four OVs for pulp and skin samples, respectively. Using three of the
most frequently selected excitation wavelengths for pulp

discriminant analysis would result in even more performant
model. The same applies using four of the best OVs above-
mentioned extracted from skin samples models. Fluorescence
intensity corresponding to the best selected features are shown in
Figure 7A for pulp samples and Figure 7B for skin samples.

N-CovSelEm-N-PLS-DA
N-CovSelEm-N-PLS-DA model allowed to extract the best 2D-
features in emission mode while keeping the whole excitation
range. The selection performed on emission wavelengths
concerned 72 OVs for pulp samples whereas 48 were used for
skin samples. Selected OVs and their respective frequency of
occurrence are illustrated in Figure 8. Concerning pulp samples,
features 502, 518, 576, 682, and 800 nm happened to be selected
between 73 and 97% of iterations. However, three OVs were
systematically selected by N-CovSel, i.e., emission wavelengths 328,
422, and 656 nm. Amongst them, only two OVs implemented in
N-CovSelEm-N-PLS-DA model would be sufficient to correctly
classify samples since this was the optimal number of features
determined through multiple double cross-validation. In the same
way, two OVs would be enough to discriminate healthy fruits from
disordered ones using skin samples. Indeed, features 422 and 682 nm
appeared to be themost appropriate OVs, closely followed by features
384, 502, 558, 324, and 652 nm. Fluorescence signals obtained with
the best OVs are shown in Figure 9.

DISCUSSION

At first sight, fluorescence spectra revealed no significant
difference between healthy or disordered fruits, for both pulp

FIGURE 6 | Frequency of appearance of excitation wavelengths selected by N-CovSel for pulp samples (A) and skin samples (B) prior to discriminant analysis.
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or skin samples, even though fluorescent schemes outlined the
presence of fluorophores. However, discriminant analysis showed
that it was actually possible to distinguish one class from the other
and to predict class membership to some extent. It highlighted

inherent differences regarding fluorescence pattern between the
two classes.

N-PLS-DA achieved best performance using the whole
wavelength ranges of fluorescence spectra. This effective

FIGURE 7 | Mean fluorescence emission spectra of pulp (A) and skin (B) samples at excitation wavelength (λEx) corresponding to the best OVs selected by
N-CovSel. Blue line represents healthy fruits; red line represents disordered fruits. The right upper part of each graph is a close-up view of the spectra defined by the
rectangular shape.

FIGURE 8 | Frequency of appearance of emission wavelengths selected by N-CovSel for pulp samples (A) and skin samples (B) prior to discriminant analysis.

Frontiers in Analytical Science | www.frontiersin.org April 2022 | Volume 2 | Article 86752710

Latchoumane et al. Feature Selection Using N-CovSel Method

https://www.frontiersin.org/journals/analytical-science
www.frontiersin.org
https://www.frontiersin.org/journals/analytical-science#articles


method relies on numerous variables and is therefore time-
consuming and less adaptable to fast-analyzing environments.
N-CovSel method made it possible to circumvent this bias.
Indeed, besides correct prediction of class samples, models
were capable to select the most relevant variables encountered
amongst excitation wavelengths, emission wavelengths, or both
modes simultaneously based on N-CovSel method. The diverse
models built were not complex and exhibited moderate or good
performance. Classification models built from skin samples
achieved slightly less satisfying performance than models built
from pulp samples data. For both datasets, albeit each
discriminant analysis constructed with N-CovSel method
provided accurate prediction rates, the one relying on
emission wavelengths selection outperformed the others.
When confronted, this model attained better performance by
using only two emission wavelengths regardless the excitation
range, for either pulp or skin samples. However, in the case of
skin, best results were achieved using excitation wavelengths
selection, when considering the mean of n iterations for
models built with the median OV values. Employing the same
parameters of this study, it would take 16.2 s just to acquire
fluorescence spectra with 81 λEx and 2 λEm for N-CovSelEm-N-
PLS-DA model. Selecting relevant wavelength couples would
drastically decrease acquisition time since only 0.8 or 1.2 s
would be needed to analyze samples using 4 or 6 λEx-Em
couples for N-CovSelEx-Em-PLS-DA model, respectively. This
last model needs improvements before use in routine controls,

because its performance are still insufficient. Moreover, two of the
most frequently selected OVs by N-CovSelEx+Em-PLS-DA model
built from pulp data, i.e., 290-290 and 650–652 nm, corresponded
to noise. Those λEx-Em couples were located in the first order
Rayleigh spectra region, which exhibited high intensity caused by
light diffraction. Although, no relevant information of X could be
correlated to Y based upon this spectral area. However, if the
primary Rayleigh scatter overlapped with a peak of fluorescence,
the total signal would be more important than if no fluorophore
was measured. This could explain why these wavelength couples
were chosen by the feature selection, since it was capable to bring
out relevant information through noise. As mentioned by
Murphy et al. (2013), one way to handle fluorescence signal
hidden by scatters is to interpolate over the excised area. In the
present study, one pulp sample displayed such noise and
negatively influenced the feature selection. The low number of
samples implemented in model construction emphasized this
result since one sample outcompeted all the others. As described
before, N-CovSelEx+Em-PLS-DA model selected at most six 1D-
features amongst thousands. Such large dimension resulted in
model performance reduction by selecting irrelevant features.
This phenomenon was less important for N-CovSel models
elaborated from 2D-features selection. Indeed, in those cases,
the dimension was reduced to 81 or 256 feature slices for models
built using excitation or emission wavelengths selection,
respectively. For example, all 256 λEm were considered when
extracting one λEx (290 or 650 nm), resulting in minimizing noise

FIGURE 9 | Mean fluorescence excitation spectra of pulp (A) and skin (B) samples at emission wavelength (λEm) corresponding to the best OVs selected by
N-CovSel. Blue line represents healthy fruits; red line represents disordered fruits. The right upper part of each graph is a close-up view of the spectra defined by the
rectangular shape.
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importance. The findings highlighted the limitations of N-CovSel
method when extracting 1D-features when a limited number of
samples are available, whereas its suitability was demonstrated
when extracting 2D-features.

These promising results may be enhanced with further
investigation to develop more robust and reliable models,
starting with enlarging the number of samples and ensuring
the balanced number of samples between classes. Also, data
pretreatment could bring forward the most important
information while minimizing noise and artefacts. Application
of independent components analysis (ICA) or parallel factor
analysis (PARAFAC) could be intended to detect underlying
discriminant features (Ammari et al., 2015; Botelho et al.,
2017). Other chemometric analyses, such as support vector
machine (SVM), artificial neural network (ANN), extreme
gradient boosting (XGBoost), or random forest (RF) could be
good options for building even more efficient discriminant
models. The use of such artificial intelligence approaches have
proven to outperform traditional statistical techniques (Bae et al.,
2021). Evenly, combining front-face fluorescence spectroscopy
technique with another approach and using multivariate analysis
methods could strengthen model performance. Absorption
spectra coupled with fluorescence measurements allowed
efficient classification of wines depending on their variety
(Carbonaro et al., 2019). Multiblock chemometric approaches
are also appropriate for such purpose. A study was conducted by
Hernández-Sánchez et al. (2021) to characterize polyphenol
content in virgin olive oil, upon analysis of front-face
fluorescence spectroscopy and absorbance spectroscopy with
the multiblock sequential and orthogonalized partial least

squares (SO-PLS) method. This latter chemometric method
also provided sensory poles classification of chocolate and
cocoa beans by combining proton transfer reaction-time of
flight-mass spectrometry (PTR-ToF-MS), near infrared
spectroscopy (NIRS) and front-face fluorescence spectroscopy
(Biancolillo et al., 2021). Feature selection in multi-way datasets
was investigated to reduce the high amount of variables involved
when combining different analytical techniques. Indeed,
Biancolillo et al. (2020) developed sequential and
orthogonalized covariance selection (SO-CovSel) method and
proved its suitability for prediction models.

Amongst selected features that came out, hypotheses can be
stated concerning the fluorescent compounds related to them.
Figure 10 and Table 2 summarize fluorescent properties of
product possibly corresponding to fluorescent patterns of our
fruit samples. It is based on the previous work realized by
Christensen et al. (2006) and completed with other studies, as
mentioned below.

As described by Airado-Rodríguez et al. (2011), phenolic
compounds have typical excitation and emission wavelengths.
Many phenolic compounds, such as chlorogenic, caffeic, ferulic
and coumaric acids, are known to accumulate in plants as a
defense against pathogens (Lattanzio et al., 2006; Quideau et al.,
2011; Barral et al., 2017). We can thus assume that some
fluorescent regions may result from an increasing biosynthesis
of phenolic compounds. Monago-Maraña et al. (2021)
investigated fluorescence spectra obtained from pulp and skin
extract of plum samples. They found maximum fluorescence
intensity at 321 nm for skin samples and 315 nm for pulp samples
upon 280 nm excitation. This area is typical of catechin,

FIGURE 10 |Mapping of potential fluorophores found in fruit samples. As an example, the current map is designed from a front-face fluorescence spectrum of fruit
skin samples measured with the 250–650 nm excitation wavelength (λEx) and 290–800 nm emission wavelength (λEm) ranges. Dark blue regions indicate no
fluorescence; yellow regions reflect the presence of fluorophores.
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epicatechin and procyanidin, which are main plum polyphenols.
When excitation wavelength was 330 nm, maximum fluorescence
emission corresponding to chlorogenic and neochlorogenic acids
were observed at 424 and 435 nm for skin and pulp samples,
respectively. This is in accordance with studies that described
polyphenols of olive oil measured within excitation range
270–310 nm and emission range 300–390 nm (Cheikhousman
et al., 2005; Zandomeneghi et al., 2005). However, Ammari et al.
(2012) associated olive oil polyphenols to excitation range
290–315 nm and emission ranges 320–360 nm. Similar
fluorescent regions were observed in fruit pulp and skin
samples in the present study, suggesting an increased in
polyphenol content induced by fruit internal disorder, e.g.,
catechin, epicatechin, procyanidin, chlorogenic, and
neochlorogenic acids.

Amino acids fluorescence has been broadly investigated in
food samples. Excitation wavelengths varying from 250 to 290 nm
resulted in emission between 290 and 365 nm. For example,
Zandomeneghi (1999) described excitation and emission
maxima for cereal flour at 280 and 335 nm, respectively. More
specifically, pure solutions of aromatic amino acids tyrosine,

tryptophan and phenylalanine had excitation-emission maxima
at 276–302 nm, 280–357 nm and 258–284 nm, respectively,
(Christensen et al., 2006). This is in accordance with results
found by Ammari et al. (2014). Phenylalanine acts as a precursor
for the synthesis of many phenolic compounds. In the present
study, emission range started from 290 nm, but the residual
fluorescence band measured around 250–290 nm could be due
to phenylalanine presence.

Fluorescent properties of pigments have also been discussed,
notably chlorophylls which possess emission fluorescence above
570 nm (Kyriakidis and Skarkalis, 2000). Carotenoids have been
measured between 450 and 550 nm as excitation range, and
emitted fluorescence around 560 nm (Kleinegris et al., 2010;
Soulat et al., 2020). When excited between 300 and 450 nm,
olive oil exhibited fluorescence in the 600–700 nm range
corresponding to chlorophylls and pheophitins (Galeano Díaz
et al., 2003; Guimet et al., 2004; Sikorska et al., 2008). In the same
excitation wavelengths, olive oil oxidation products fluoresce
between 400 and 500 nm (Ammari et al., 2012), whereas
emission peaks at 445, 475, and 525 nm are attributed to
vitamin E (Kyriakidis and Skarkalis, 2000; Guimet et al.,

TABLE 2 | Fluorescent properties of compounds possibly detected in fruit sample.

Compounds λEx (nm) λEm (nm) Products References

Polyphenols 270–310 300–390 Olive oil Zandomeneghi et al. (2005)
290–315 320–360 Olive oil Ammari et al. (2012)

284 330 Olive oil Cheikhousman et al. (2005)
Cat/Epicat/Pro 280 315 Plum pulp Monago-Maraña et al. (2021)

280 321 Plum skin Monago-Maraña et al. (2021)
CA/NCA 330 424 Plum pulp Monago-Maraña et al. (2021)

330 435 Plum skin Monago-Maraña et al. (2021)

Aromatic amino acids 250–290 290–365 Pure solution Christensen et al. (2006)
280 335 Cereal flour Zandomeneghi, (1999)

Phenylalanine 230–300 260–340 Com. Powder Ammari et al. (2014)
258 284 Pure solution Christensen et al. (2006)

Tyrosine 230–250 250–300 Com. Powder Ammari et al. (2014)
276 302 Pure solution Christensen et al. (2006)

Tryptophan 280 357 Pure solution Christensen et al. (2006)

Pigments Chlorophyll 365 680 Olive oil Kyriakidis and Skarkalis, (2000)
405 681 Olive oil Sikorska et al. (2008)

Chlorophyll/Pheo 300–400 650–695 Olive oil Guimet et al. (2004)
300–400 600–700 Olive oil Galeano Díaz et al. (2003)

Carotenoid 450–550 560 Algae Kleinegris et al. (2010)
450 470–750 Milk Soulat et al. (2020)

Oxidation products 320–420 400–500 Olive oil Ammari et al. (2012)

Vitamins Retinol 346 480 Pure solution Christensen et al. (2006)
Riboflavin 270 518 Pure solution Christensen et al. (2006)
Pyridoxin 328 393 Pure solution Christensen et al. (2006)
Tocopherol 365 445, 475, 525 Olive oil Kyriakidis and Skarkalis, (2000)

300–400 400–600 Olive oil Guimet et al. (2004)
330 430 Cereal flour Zandomeneghi, (1999)
298 326 Pure solution Christensen et al. (2006)

Organic polymers Cellulose 230–400 330–500 Com. Powder Ammari et al. (2014)
Lignin 240–320 360 Spruce Albinsson et al. (1999)

360–465 450, 530 Com. Powder Radotić et al. (2006)

λEx, excitation wavelength; λEm, emission wavelength; Cat, catechin; Epicat, epicatechin; Pro, procyanidin; CA, chlorogenic acid; NCA, neochlorogenic acid; Pheo, pheophitin; Com.
Powder, commercial powder.
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2004). Similar observations were made by Zandomeneghi (1999)
concerning excitation and emission maxima of vitamin E
(tocopherols) in cereal flour at 330 and 430 nm, respectively.
However, Christensen et al. (2006) cited 298 nm as maximum
excitation and 326 nm as maximum emission values of pure
solution of vitamin E. Likewise, vitamin A (retinol), vitamin B2
(riboflavin) and vitamin B6 (pyridoxin) had excitation-emission
maxima of 346–480, 270–518, and 328–393 nm, respectively.
Therefore, in the present study, it can be hypothesized that
the fluorescent area observed between the 350–650 nm
excitation and 680–780 nm emission ranges correspond to
pigments, whereas fluorophores characterized in the
270–400 nm excitation and 380–550 nm emission wavelengths
could be associated to vitamins.

Finally, cellulose, the main constituent of plant cell wall, is an
organic polymer with fluorescent properties. Commercial powder of
cellulose gave fluorescence emission divided in three signals from
330 to 500 nm, resulting from an excitation between 230 and 400 nm
(Ammari et al., 2014). In the same study, no fluorescence was
determined for lignin, another organic compound. Although,
previous studies showed that lignin fluoresces. Albinsson et al.
(1999) described a maximum fluorescence emission at 360 nm
corresponding to excitation range from 240 to 320 nm. Radotić
et al. (2006) indicated maxima of peak emission at 450 and 530 nm
when excitation wavelengths varied from 360 to 465 nm, explained
by the presence of two different fluorophores originating from lignin
fluorescence. In the present work, the main emitting fluorescence
could originate from organic polymers, i.e., excitation and emission
ranges comprised between 270–400 and 380–550 nm, respectively.
This is in accordance with fruit composition since cellulose and
lignin are major fruit skin components (Campos et al., 2020; Mamat
et al., 2021).

For accurate identification of compounds corresponding to
the diverse variables selected by N-CovSel models, analytical
methods must be conducted. Metabolomic analysis, such as
mass spectrometry coupled with gas chromatography (GC-
MS) or liquid chromatography (LC-MS), would help to
characterize and quantify compounds that may play a role in
class sample separation due to fruit disorder (Ibáñez et al., 2014;
Oak et al., 2019; Wang et al., 2021).

CONCLUSION

Fluorescence spectroscopy offers promising results in fruit
internal disorder detection since this rapid, non-destructive,

cost-effective and highly sensitive technique demonstrated its
efficiency in classification coupled to multivariate analysis. The
present study opens possibilities regarding sample
classification using only few specific and well-selected
features from front-face fluorescence spectra. It appeared
that the most relevant features extracted with N-CovSel
method were those in the 250–450 and 600–700 nm parts of
both excitation-emission spectra. The formers are probably
correlated to amino acids, phenolic compounds and oxidation
products, whereas the latters are more likely related to
pigments. These encouraging results obtained on ground
freeze-dried fruit samples should be assessed on fresh fruit
samples to test the reliability of models in a real agricultural or
industrial context, where reliable results are expected instantly.
Research capabilities are propelling us into a daily life fulfilled
of advancements, such as portable smartphone based
spectrometer (Mai and Le, 2020), which enable applications
of spectroscopy in even more numerous fields.
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