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Most of us have never faced a pandemic before. The World Health Organization declared
the 2019 novel coronavirus infectious disease (COVID-19), caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2 virus), a pandemic by March 11th,
2020. Today, this illness has reportedmore than 5′331,019 fatalities worldwide (December
17th, 2021). The COVID-19 pandemic has posed an unprecedented global challenge and
put the academic community on “the spot.” The following mini-review reports how the MS
community improved the understanding of the SARS-CoV-2 virus pathophysiology while
developing diagnostic procedures to complement the PCR-based approaches. For
example, MS researchers identified the interaction sites between the SARS-CoV-2
virus and their hosts; this new knowledge is critical for developing antiviral drugs. MS
researchers also realized that COVID-19 should be considered a systemic disease and not
just a respiratory illness since its metabolic, lipidomic, and proteomic profile reflects four
different clinical disorders: 1) acute inflammatory response, 2) a cardiovascular disease, 3)
a prediabetic/diabetes and 4) liver dysfunction. Furthermore, MS researchers put forth the
knowledge that the metabolic and lipidomic profile of several patients remained altered
after being discharged, thus hinting at the scientific basis for the long COVID syndrome.
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INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the
Coronaviridae family (Feng et al., 2020; Keni et al., 2020; Machhi et al., 2020; Tse et al., 2020;
Wiersinga et al., 2020). Other coronaviruses are the severe acute respiratory syndrome coronavirus
(SARS-CoV) and the middle-east respiratory syndrome-related coronavirus (MERS-CoV).
Unfortunately, compared with SARS-CoV and MERS-CoV, the SARS-CoV-2 virus is highly
contagious (Keni et al., 2020; Machhi et al., 2020; Tse et al., 2020; Hu et al., 2021). The SARS-
CoV-2 virus is the cause of the coronavirus 2019 (COVID-19) disease (Feng et al., 2020; Keni et al.,
2020; Machhi et al., 2020; Tse et al., 2020; Wiersinga et al., 2020; Hu et al., 2021), which was first
reported in Wuhan (Hubei Province, China) in December 2019 (Feng et al., 2020; Keni et al., 2020;
Machhi et al., 2020; Tse et al., 2020; Wiersinga et al., 2020; Hu et al., 2021).

The COVID-19 human challenge study revealed that only 89% of infected participants showed
symptoms (Killingley et al., 2022). Interestingly, researchers have also discussed the SARS-CoV-2
virus origin and propagation (Medema et al., 2020; Morens et al., 2020; Platto et al., 2020; Tiwari
et al., 2020; La Rosa et al., 2021); some discovered that the SARS-CoV-2 virus had circulated in
several countries before their first local case was reported (Medema et al., 2020; La Rosa et al., 2021).
Thus, making it clear that the SARS-CoV-2 virus is difficult to contain. On March 11th, 2020, the
World Health Organization (WHO) declared COVID-19 a pandemic due to its rapid spread
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worldwide (Machhi et al., 2020). According to the WHO, more
than 271′963,258 million cases have been reported worldwide,
having thus far resulted in 5′331,019 deaths (World Health
Organization, 2021).

In 2020, the mass spectrometry (MS) community formed the
COVID-19 MS coalition (Covid19-MSC) (Struwe et al., 2020).
MS-based technologies are especially suited for uncovering
information for precision medicine, i.e., discovering
biomarkers in a non-targeted and unbiased manner for disease
diagnostic and prognosis. Thus, there has been a surge in the
development of MS-based strategies for diagnosing COVID-19
disease from an exhaled breath, a nasopharyngeal swab, or a
gargle solution (Cardozo et al., 2020; Ihling et al., 2020; Nachtigall
et al., 2020; Ruszkiewicz et al., 2020; Bankar et al., 2021; Chen
et al., 2021; Maus et al., 2021; Renuse et al., 2021; Tran et al.,
2021). Furthermore, an exciting research line has focused on
identifying biomarkers that reflect the severe COVID-19
phenotype (Chen et al., 2020a; Gordon et al., 2020; Kimhofer
et al., 2020; Messner et al., 2020; Shen et al., 2020; Wu et al., 2020;
Chevrier et al., 2021; Holmes et al., 2021; Lee et al., 2021; Messner
et al., 2021; Wierbowski et al., 2021; Zhang et al., 2021).

Still and despite this progress, the full potential of MS
applications against the COVID-19 pandemic remains to be
seen. While previous MS-based reviews have zoomed in
primarily on how MS approaches complement other types of
diagnostics (Mahmud and Garrett, 2020; SoRelle et al., 2020;
Appiasie et al., 2021; Yuan and Hu, 2021; Zhong et al., 2021;
Amiri-Dashatan et al., 2022; Lima et al., 2022; Spick et al., 2022),
in the following paragraphs, we will also showcase examples of
MS-based strategies focused on improving our understanding of
the SARS-CoV-2 virus’ pathophysiology.

MS for COVID-19 Detection
Once the SARS-CoV-2 virus was sequenced and made available,
real-time quantitative reverse transcription-polymerase chain
reaction (RT-qPCR) and digital droplet polymerase chain
reaction (dd-PCR) became the gold-standard methods of
diagnosing COVID-19 (Feng et al., 2020; Walsh et al., 2020;
Wiersinga et al., 2020; Hammerling et al., 2021). Unfortunately,
during the beginning of the pandemic, the supply chain for these
assays was inconsistent (SoRelle et al., 2020; Hammerling et al.,
2021). Thus many researchers had to develop alternative
strategies for SARS-CoV-2 virus detection (Cardozo et al.,
2020; Grant et al., 2020; Ihling et al., 2020; Nachtigall et al.,
2020; Ruszkiewicz et al., 2020; Bankar et al., 2021; Chen et al.,
2021; Maus et al., 2021; Renuse et al., 2021; Tran et al., 2021; Lin
et al., 2022; Mou et al., 2022).

One of Covid19-MSC’s goals is to develop diagnostic
procedures to complement the PCR-based approaches (Struwe
et al., 2020). These MS-based strategies will possess poorer
detection limits—samples must have a higher viral load
(105–106 genome copies per mL)—than PCR-based assays (10
to 102 genome copies per mL) (SoRelle et al., 2020). The reason is
that MS-based approaches lack the amplification step used in
PCR-based assays (i.e., polymerase chain reaction). Nevertheless,
the developed MS-based methods can still appeal to some
laboratories (Cardozo et al., 2020; Ihling et al., 2020;

Nachtigall et al., 2020; Ruszkiewicz et al., 2020; Bankar et al.,
2021; Chen et al., 2021; Maus et al., 2021; Renuse et al., 2021; Tran
et al., 2021). Examples of such approaches are:

(a) Measurement of volatile organic compounds from breath
samples (Ruszkiewicz et al., 2020; Chen et al., 2021). In this
approach, exhaled breath samples are collected in tubes or
bags. The samples are later injected into a gas
chromatographer coupled with an ion mobility
spectrometer (GC-IMS). The MS data is subsequently
processed using machine-learning algorithms and other
statistical tools; and

(b) Identification of a protein/peptide pattern. There are two
variations to this approach:

(i) Nasal secretion samples are analyzed with a matrix-assisted
laser/desorption ionization mass spectrometer (MALDI-MS)
(Nachtigall et al., 2020; Tran et al., 2021). In this case, the
sample is extracted using a nasopharyngeal swab.
Subsequently, the swab is placed in a sterile tube with a
viral transport medium. This solution is then spotted on a
MALDI steel plate mixed with α-CHCA matrix solution and
analyzed. The MS data is later processed using machine-
learning algorithms; and

(ii) Nasal secretion or gargle samples are analyzed using a liquid
chromatographer coupled mass spectrometer (LC-MS)
(Cardozo et al., 2020; Ihling et al., 2020; Bankar et al.,
2021; Maus et al., 2021; Renuse et al., 2021). The protein
sample is collected using a nasopharyngeal swab or taken
from a (gargle) solution. The proteins are then precipitated,
digested, desalted, and measured using an LC-MS
instrument, following a data-dependent acquisition (DDA)
or a targeted multiple reaction monitoring (MRM) strategy.

While the metabolomics-based (i.e., GC-IMS) strategy detects
the host’s response to the viral infection, the proteomics-based
approach can directly detect the SARS-CoV-2 viral infection in
the host (i.e., viral proteins). Independently of the approach, the
reported sensitivity may not be sufficient to diagnose patients at
an early infection stage (SoRelle et al., 2020; Walsh et al., 2020)
(Figure 1). Nevertheless, MS remains a promising tool to
diagnose the COVID-19 severity by monitoring the host’s
proteome, metabolome, and/or lipidome after infection.

MS for Understanding the COVID-19
Disease
Successful pathogen adaptation to the host’s metabolic landscape
is a prerequisite for a strong viral replication (Sauer and Zamboni,
2008; Ayres, 2020; Harrison et al., 2020; Aggarwal et al., 2021;
Filbin et al., 2021). Understanding the host’s metabolic network
changes induced by the SARS-CoV-2 viral infection is valuable
for the subsequent prognosis and treatment of COVID-19 (Ayres,
2020; Tse et al., 2020; Wiersinga et al., 2020; Aggarwal et al., 2021;
Filbin et al., 2021).

Our state-of-the-art knowledge about the SARS-CoV-2’s
disease is that the SARS-CoV-2 virus is more stable than the
SARS-CoV virus (Van Doremalen et al., 2020) and has a more
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flexible spike-protein that facilitates human cells infection
(Turoňová et al., 2020; Ahn et al., 2021). Bioinformatic
calculations (Cava et al., 2020; Wierbowski et al., 2021) and
affinity purification mass spectrometry (Gordon et al., 2020;
Wierbowski et al., 2021) were two key technologies that
helped scientists identify SARS-CoV-2 proteins (and their
active sites) that interact with their host during its life cycle
and identify therapeutic targets for developing antiviral drugs to
treat COVID-19 patients (Gordon et al., 2020). For example,
antiviral compounds against COVID-19 target the active sites of
enzymes involved in the virus’s replication cycle (Mehta et al.,
2020; Riva et al., 2020; Shannon et al., 2020; Shi and Puyo, 2020;
Wang et al., 2020; Bakowski et al., 2021).

We also know that the clinical outcome of the SARS-CoV-2
viral infection can be highly diverse (Feng et al., 2020; Wiersinga
et al., 2020; Hu et al., 2021). The result can range from the host
being an asymptomatic or not-severe patient (i.e., concludes with
a fast and full recovery) to a severe patient (i.e., suffers from
various complications) (Docherty et al., 2020; Guan et al., 2020;
Munayco et al., 2020). These complications can lead to organ
dysfunction and death due to an abnormal and unbalanced
immune response, known as sepsis. Thus, an additional goal
of Covid19-MSC was to complement the PCR-based diagnostics,
which cannot predict the severity of the strains, by defining
clinical phenotypes of interest and monitoring patient
treatment/recovery (Struwe et al., 2020).

Before reviewing the excellent work done by researchers to
understand the COVID-19 pathogenesis, it is crucial to mention
common limitations that all these scientists expressed in their
publication:

1) One limitation was the size of the patient cohorts in some
studies (i.e., less than 100 patients). Hence, the authors
validated their hypothesis with available published studies
by other research groups.

2) Another challenge was correlating a particular MS signal
profile with a specific clinical phenotype, such as COVID-
19 severity. Especially when circulating proteins, metabolites,
and lipids from blood or plasma samples may have multiple
sources (e.g., comorbidities). Thus, authors use alternative
methods to validate their results (i.e., multi-omics data
analysis).

3) When trying to find markers for COVID-19 disease severity,
the authors considered that severe COVID-19 patients were
usually older or had additional clinical risk factors than mild
COVID-19 patients. Furthermore, they also thought of the
skewing of the data in favor of sicker patients at later time-
points since mild COVID-19 patients are less likely to stay
hospitalized for several days than severe COVID-19 patients.

Messner et al. identified a plasma proteome signature (24
proteins) differently expressed depending on COVID-19 severity

FIGURE 1 | Summary of the MS-based approaches for COVID-19 detection and for understanding the COVID-19 disease.
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in two independent studies with different population sizes using
an ultra-high-performance liquid chromatography/tandem mass
spectrometry (UHPLC-MS/MS) (Messner et al., 2020; Messner
et al., 2021). These proteins were associated with the complement
system and the inflammatory response (i.e., several inflammation
modulators). The protein signature allowed them to reclassify a
suspected COVID-19 patient suffering from an influenza type B
infection, showing the potential of the UHPLC-MS/MS method
to support clinical decision-making (Messner et al., 2020).

Using a stable isotope-labeled nano-liquid chromatography
coupled to mass spectrometry (nLC-MS) proteomic strategy,
Shen et al. identified 93 blood sera proteins correlated with
severe COVID-19 patients (Shen et al., 2020). From these 93
proteins, 50 proteins belong to three major pathways: 1)
complement system, 2) macrophage activation, and 3) platelet
degranulation. They verified their results in an additional cohort
of patients and performed a non-targeted metabolomic study.
The metabolomic study showed 80 metabolites that significantly
changed with COVID-19 severity and were involved in the three
biological processes revealed in the proteomic analysis. Thus, the
authors proposed a classifier for COVID-19 severity based on
monitoring 22 serum proteins and 7metabolites in patient serum.
Although the overall classifier achieved an accuracy of 93.5% in
the training set, it misclassified a few patients, reflecting the
complexity of the clinical cohort. Nevertheless, it was able to
classify five severe patients 1–4 days before they were clinically
diagnosed as severe patients.

Interestingly, the correlation between COVID-19 severity and
the macrophage activation and complement activation was
confirmed by a single-cell mass cytometry clinical study and
MRM-based assay. Chevrier et al. (Chevrier et al., 2021) showed
using single-cell mass cytometry that mild and severe disease
patients showed a similar composition of myeloid cells during the
early symptom stage. Nevertheless, a stronger inflammatory
phenotype is observed in patients experiencing severe
symptoms during the later stages of the disease, i.e., CD169-

monocytes and higher pro-inflammatory cytokines. The work of
Bankar et al. showed using an MRM strategy an increase in
peripheral neutrophil degranulation and the increase of pro-
inflammatory cytokines (Bankar et al., 2021). Neutrophil
degranulation may induce complement activation (Camous
et al., 2011; Bankar et al., 2021) to eliminate the SARS-CoV-2
virus. Nevertheless, an unbalanced release of granule-derived
mediators may lead to septic shock (Lacy, 2006). Thus, Bankar
et al. pointed out that it is unclear whether SARS-CoV-2 directly
targets the neutrophil degranulation pathway or is just a
consequence of the SARS-CoV-2 complications (Bankar et al.,
2021).

The increment of pro-inflammatory cytokines can dysregulate
lipid metabolism and vascular permeability (Calder, 2002; Aslani
et al., 2021). Zhang et al. explored this concept by monitoring the
levels of serum proteins during the progression of the COVID-19
disease using a SWATH-MS (i.e., UHPLC-MS/MS) workflow
combined with machine learning (Zhang et al., 2021). Their study
found that low-density lipoproteins (LDLs) and other
apolipoproteins significantly decrease in COVID-19 patients,
possibly due to pro-inflammatory cytokines. Hence, they

propose that serum protein levels of proteins involved in lipid
metabolism can be used as a potential predictor of the prognosis
in COVID-19 patients.

Additionally to the proteome, the metabolome and lipidome
in COVID-19 patients vary with infection and could be correlated
to the severity of the SARS-CoV-2 viral infection. Wu et al.
observed altered metabolic and lipidomic profiles using an LC-
MS system (Wu et al., 2020). These profiles proved that SARS-
CoV-2 hijacks the host cell’s nucleic acids biosynthetic metabolic
pathways (i.e., biosynthesis of purine and pyrimidine nucleotides)
and its ability to balance its energy metabolism (i.e., TCA cycle)
(Wu et al., 2020).

Wu et al. also observed that guanosine monophosphate
(GMP) and carbamoyl phosphate were depleted in COVID-19
positive patients. Since GMP production depends on enzymes
that have a role in the immune system (Wu et al., 2020), and
carbamoyl phosphate is synthesized by enzymes in the urea
metabolism (Strick-Marchand et al., 2004; Wu et al., 2020),
the authors proposed that COVID-19 patients might suffer
from immune and liver dysfunction (Wu et al., 2020),
respectively; in addition to the possibility of cardiovascular
complications due to the abnormally high levels of lipids in
their blood (Kris-Etherton, 1999; Wu et al., 2020).

Lee et al. used a combination of gas chromatography-mass
spectrometry (GC-MS) and UHPLC-MS/MS to analyze plasma
samples (Lee et al., 2021). They also used a cell sorter for better
classifying disease severity and predicting clinical outcomes by
performing their metabolomic analysis on a homogenous cellular
population. The authors observed two independent modes of
metabolic reprogramming due to the SARS-CoV-2 viral
infection. The first corresponds to changes in the quantity of
the metabolically active immune cell subpopulations, while the
second involves shifts in the metabolism within individual cells
within a subpopulation. By doing so, the authors observed that
metabolites (e.g., phenylalanine) that are correlated with pro-
inflammatory cytokines are also positively correlated with
COVID-19 severity. In contrast, other metabolites and lipids
(particularly those associated with cytokine synthesis) were
negatively correlated with the disease severity (Lee et al.,
2021). The observed profiles by Lee et al. are similar to those
identified by Meoni et al. (Meoni et al., 2021) using an NMR-
based approach. Lee et al. (Lee et al., 2021) and Meoni et al.
(Meoni et al., 2021) correlate these changes to an inflammation
and immune activation response against COVID-19.

Lee et al. also detected high plasma levels of mannose and
glucose that correlated with the severity of the COVID-19 disease.
They suggested two hypotheses 1) that mannose levels in plasma
can be derived from residues of SARS-CoV-2 spike protein,
potentially reflecting high viral loads; and 2) that the high
mannose levels in plasma may indicate the complement
pathway activation. Although the latter explanation has been
proposed by other authors (Camous et al., 2011; Zhang et al.,
2021), Lee et al. expressed that this profile is also consistent with
patients suffering from coronary heart disease (Jones et al., 1999;
Murr et al., 2014; Chen et al., 2020b; Lee et al., 2021).

Chen et al. demonstrated that significant changes in the levels
of lipoprotein subclasses and their compositional components are
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correlated with COVID-19 severity using a combination of nLC-
MS and nuclear magnetic resonance (NMR) techniques (Chen
et al., 2020a). For example, levels of triglycerides (TG) in low-
density lipoprotein subclass 1 (LDL 1) and free cholesterol (FC) in
all very-low-density lipoprotein subclass 5 were significantly
elevated in both mild and severe patients when compared with
healthy controls. Moreover, key proteins involved in lipoprotein
and related metabolic pathways were elevated considerably or
reduced beyond typical healthy values (as shown by Zhang et al.
(Zhang et al., 2021) andWei et al. (Wei et al., 2020)). Fortunately,
most enzymes and lipoprotein levels recovered when the patients
were discharged, thus showing a transient behavior. Therefore,
Chen et al. propose that during SARS-CoV-2 infection, there is a
significant dysregulation in lipoprotein metabolism (e.g.,
hypolipidemia), glycolysis, and TCA cycle (Chen et al., 2020a).

Kimhofer et al. also performed a deep UHPLC-MS/MS and
NMR-based metabolomic and lipidomic study on plasma
samples (Kimhofer et al., 2020). They observed metabolomic
and lipidomic profiles that other authors correlated with four
different clinical disorders: 1) acute inflammatory response
(Kimhofer et al., 2020; Meoni et al., 2021), 2) a cardiovascular
risk signature (Kris-Etherton, 1999; Kimhofer et al., 2020), 3) a
prediabetic/diabetes-like signature (Krauss, 2004; Kimhofer et al.,
2020), and 4) liver dysfunction (Kopple, 2007; Kimhofer et al.,
2020). The authors described that these metabolic disturbances
appeared independently of the severity of the respiratory
symptoms or the exact sampling time-point with respect to
the onset of the COVID-19 symptoms (Kimhofer et al., 2020).

Interestingly, Kimhofer et al. (Kimhofer et al., 2020) reminded
us that patients who had recovered from SARS-CoV-1 infection
had further complications such as hyperlipidemia, cardiovascular
abnormalities, and glucose metabolism disorders. Concerning
this point, Wu et al. (Wu et al., 2020) and Kimhofer et al.
(Kimhofer et al., 2020) argue that COVID-19 should be
considered a systemic disease and not just a respiratory illness.
This sentiment is echoed by other COVID-19 independent
studies (Gupta et al., 2020; Nalbandian et al., 2020; Wang
et al., 2021a; Duan et al., 2021; Frontera et al., 2021; Lopez-
Leon et al., 2021; Sanchez-Vazquez et al., 2021). Furthermore,
many authors (Kimhofer et al., 2020; Zhu et al., 2020; Logette
et al., 2021) make a case that comorbidities will complicate the
patients’ treatment and should be addressed and managed as
early as possible to avoid long-term complications that have
recently been described as “long COVID syndrome.”
Therefore, MS techniques may be required to monitor post-
covid patients, since although mild and severe patients
diagnosed with COVID-19 had met the official hospital
discharge criteria (i.e., COVID-19 nucleic acid tests were
negative, and many clinical signs had disappeared), many
levels of proteins, metabolites, and lipids had not returned to
normal by the time they were discharged (Balachandar et al.,
2020; Wu et al., 2020; Holmes et al., 2021).

Holmes et al. used an NMR and UHPLC-MS/MS-based
approach to monitor the blood plasma samples to understand
the long COVID syndrome (Holmes et al., 2021). For this study,
the authors defined three different cohorts: 1) a healthy control
group, 2) a hospitalized patient group sampled during the acute

infection phase), and 3) a recovery cohort consisting of a non-
hospitalized group. The latter group was sampled 3 months post
the acute phase (hospitalization stage) and 6 months post their
tentative date of COVID-19 infection. Thus, the authors assessed
the phenoconversion, i.e., the change from a standard
(i.e., healthy) phenotype to an altered (i.e., sick) phenotype.
Furthermore, they were able to identify the metabolic profiles
of patients suffering from long COVID-19, i.e., with incomplete
functional recovery. Interestingly, 57% of the participants
recorded one or more persistent symptoms within the
recovery cohort. The majority had more than one symptom
not associated with the respiratory system.

As in the works of Wu et al. (Wu et al., 2020) and Kimhofer
et al. (Kimhofer et al., 2020), Holmes et al. identified that while
metabolic and lipoprotein parameters which were altered during
SARS-CoV-2 infection returned to a healthy range, other
parameters such as the glutamine/glutamate ratio, which is
essential for immune cell homeostasis, remained altered
(Holmes et al., 2021). Unfortunately, they could not provide a
mechanistic significance to the glutamine/glutamate ratio during
the acute and post-acute infection stages with SARS-CoV-2.
Nevertheless, they propose that this low glutamine/glutamate
ratio implies a continuing post-COVID immune dysregulation.

Other alteredmetabolic patterns observed by the authors were:
1) elevated taurine and low citrulline (associated with liver
dysfunction) (Yu et al., 2017; Holmes et al., 2021), 2) high
quinolinic acid, kynurenine, 3-hydroxykynurenine (associated
with inflammation and liver dysfunction) (Heyes et al., 1997;
Holmes et al., 2021), and 3) increased levels of 3-indole-acetic
acid, which may imply a microbiome functionality shift in
recovered COVID-19 patients (Blasco et al., 2020; Holmes
et al., 2021). Nevertheless, due to the high degree of
interindividual variability (age and comorbidities) in the
follow-up patients, the authors expressed that the long-term
clinical significance of these observations will require further
investigation (Holmes et al., 2021).

Although the exact patterns of altered biomarkers (proteins,
lipids and metabolites) were not identical in all reviewed
publications, the data shows that COVID-19 disease is a
mixture of four different clinical disorders (Figure 1): 1)
inflammation and cell death triggered by the innate immune
response (Chen et al., 2020a; Kimhofer et al., 2020; Messner et al.,
2020; Shen et al., 2020; Wu et al., 2020; Bankar et al., 2021;
Chevrier et al., 2021; Holmes et al., 2021; Lee et al., 2021; Messner
et al., 2021; Zhang et al., 2021); 2) a cardiovascular disease
(Kimhofer et al., 2020; Wu et al., 2020; Lee et al., 2021), 3) a
prediabetic/diabetes-like disease (Kimhofer et al., 2020; Wu et al.,
2020), and 4) liver dysfunction (Kimhofer et al., 2020; Wu et al.,
2020; Holmes et al., 2021; Lee et al., 2021). Furthermore, severe
COVID-19 cases show a temporally delayed activation of
monocyte pathways and an increased expression over time of
pro-inflammatory cytokines, which may lead to a septic shock
(Bankar et al., 2021; Chevrier et al., 2021). These profiles can be
the basis for developing clinical testing for COVID-19 severity
prognosis, which relies on targeted strategies using reliable and
low-cost effective (accessible) instrumentation. Examples of such
diagnostic methods that can be used to determine the severity of
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COVID-19 patients are image-based diagnostics looking for lung
inflammation (Docherty et al., 2020; Guan et al., 2020; Liu et al.,
2020; Okolo et al., 2021) and blood/urine-based approaches
looking for inflammation, cardiovascular, diabetes-type, and
liver dysfunction biomarkers (Gross et al., 2020; Gross et al.,
2021; Siemens Healthineers. Lev, 2021).

The reviewed data also shows that discharged patients still
present an incomplete functional recovery, i.e., long COVID
(Kimhofer et al., 2020; Liu et al., 2020; Nalbandian et al.,
2020; Wu et al., 2020; Holmes et al., 2021; Lopez-Leon et al.,
2021; Taquet et al., 2021; Xie et al., 2022). Mobile apps could help
monitor better long COVID symptoms (Menni et al., 2020; Wise,
2020; Chang et al., 2021; Louca et al., 2021). For example, a
Peruvian mobile app (ARIM) is used by medical personnel to
register clinical data from patients (Characterizing COVID-19,
2020; ARIM 2.0, 2021). If used uniformly at a regional/national
level, ARIM and similar apps can provide anonymized data for
early warnings of an epidemic infection outbreak (wave) and
improve our understanding of the long COVID disease
symptomology (SoRelle et al., 2020).

CONCLUSION

It is uncertain how the COVID-19 pandemic will develop (Clark
et al., 2020; Gandhi et al., 2020; Korber et al., 2020; Long et al., 2020;
Almufarrij and Munro, 2021; Wang et al., 2021b; Gao et al., 2021;
Hodcroft et al., 2021; Karim andKarim, 2021;McCallum et al., 2021;
Peacock et al., 2021; Subramanya et al., 2021; Thomson et al., 2021;

Ward et al., 2021; Garcia-Beltran et al., 2022; Katzourakis, 2022;
Konrath et al., 2022). In retrospect, the scientific community
managed to rise to the challenge (Rijs and Fenter, 2020).
Compared to PCR-based COVID-19, MS-based strategies are less
sensitive. Nevertheless, mass spectrometry can identify the
metabolomic, lipidomic, and proteomic profiles associated with
COVID-19 disease severity. These profiles provide valuable
information on the underlying biological processes responsible for
the severe disease phenotype and can be the basis for designing cost-
effective diagnostics of COVID-19 severity. Interestingly, image-
based and blood/urine-based approaches have already been
validated in multicenter studies. We hope that the Covid19-MSC
initiative will catalyze in the near future multicenter initiatives to
validate targeted MS-based quantification of biomarkers to
determine COVID-19 disease severity.
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