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Synchronization of variable trajectories from batch process data is a delicate operation that
can induce artifacts in the definition of multivariate statistical process control (MSPC)
models for real-time monitoring of batch processes. The current paper introduces a new
synchronization-free approach for online batch MSPC. This approach is based on the use
of local MSPC models that cover a normal operating conditions (NOC) trajectory defined
from principal component analysis (PCA) modeling of non-synchronized historical batches.
The rationale behind is that, although non-synchronized NOC batches are used, an overall
NOC trajectory with a consistent evolution pattern can be described, even if batch-to-
batch natural delays and differences between process starting and end points exist.
Afterwards, the local MSPC models are used to monitor the evolution of new batches and
derive the relatedMSPC chart. During the real-timemonitoring of a new batch, this strategy
allows testing whether every new observation is following or not the NOC trajectory. For a
NOC observation, an additional indication of the batch process progress is provided based
on the identification of the local MSPC model that provides the lowest residuals. When an
observation deviates from the NOC behavior, contribution plots based on the projection of
the observation to the best local MSPC model identified in the last NOC observation are
used to diagnose the variables related to the fault. This methodology is illustrated using two
real examples of NIR-monitored batch processes: a fluidized bed drying process and a
batch distillation of gasoline blends with ethanol.

Keywords: batch process, online process monitoring, statistical process control, synchronization-free MSPC, local
MSPC modeling

INTRODUCTION

Industrial sectors often rely on batch processes to produce their intermediate or final products. Batch
processes consist of cyclic repetitions of an established recipe aiming at the production of products
meeting specific quality specifications. They are also characterized by complex, dynamic and
nonstationary behavior. Thus, monitoring a batch evolution in real-time is a challenging, but
essential action to obtain end products with desired quality, reducing costs and increasing process
understanding. (van Sprang et al., 2002; Rendall et al., 2019; Rato and Reis, 2020).
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Nowadays, with the emergence of Industry 4.0, batch
processes are monitored not only with typical process sensors,
e.g., temperature, pressure, flow, etc, but also with advanced
sensors probes based on spectroscopic techniques such as
near-infrared (NIR), mid-infrared, and Raman (Cimander and
Mandenius, 2004; Pöllänen et al., 2006; Ávila et al., 2012;
Besenhard et al., 2018; Grassi et al., 2019; Avila et al., 2021).
The collection and use of process sensor measurements from
historical batches that followed the normal operating conditions
(NOC) and reached the targeted product specifications is the
basis for the development of multivariate statistical process
control (MSPC) models and related charts, ready to be used to
test the evolution of new batches (Kourti, 2005; Ferrer-Riquelme,
2009; Wold et al., 2009; Colucci et al., 2019; Vidal-Puig et al.,
2019; França et al., 2021). Offline MSPC charts can be used to
diagnose the root cause of a disturbance from a finished faulty
batch. However, it is even more important the online use of
MSPC charts for real-time monitoring of batch evolution to
enable taking quick action in case of detection of process
disturbances.

Process data measurements from a single batch consist of the
collection of several variables, J, (process data and/or
spectroscopic measurements) at different process points
throughout the batch, Ki. These measurements are usually
organized in a data matrix, Xi, with dimension (Ki × J) to be
used for process monitoring and/or control purposes. Most
data-driven modeling strategies aiming at building online
MSPC charts to monitor process evolution require that data
from several NOC batches, I, that have the same batch length,
i.e. batch data matrices with the same numbers of rows K, and
follow the same and synchronized process dynamics. When this
happens, the data can be arranged in a three-dimensional data
array, X, with dimensions I × K × J. Most of the MSPC models
are built based on data-driven multivariate analysis methods,
such as principal component analysis (PCA) and partial least
squares (PLS); for this purpose, different unfolding strategies of
the X array can be used according to the modeling approach
used as originally introduced elsewhere (Nomikos and
MacGregor, 1995; Wold et al., 1998). However, because of
the inherent batch process complexity and nonstationary
behavior, the batch duration, Ki, is not always the same and
equally relevant, key process events do not occur at the same
time point when comparing different NOC batch runs of the
same process. This uneven and not synchronized batch data
cannot be represented in this perfect three-dimensional data
array, X, unless adjusted using different batch synchronization
tools to cope with this problem (González-Martínez et al.,
2014b).

Great progress has been made to develop strategies for batch
alignment based on a maturity index or indicator variable coming
directly from a process variable or estimated by PLS models or
using more advanced algorithms, such as correlation optimized
warping or dynamic time warping (Kassidas et al., 1998; Ramaker
et al., 2004; González-Martínez et al., 2014a; Liu et al., 2017;
Spooner and Kulahci, 2018; Zhao et al., 2020). Most of these
methods were designed for the monitoring of finished batches
using offline MSPC models and only an attempt proposed by

(González-Martínez et al., 2011) described a method based on
time warping that allows batch alignment for online MSPC.

Despite the methodologies mentioned above, having naturally
non-synchronized batches is the most common situation in
practice and batch alignment is a delicate operation that can
induce artifacts in the definition of MSPC models when scarce
information is available or when is not properly applied. Hence,
the need for MSPC approaches that can circumvent the
synchronization step for online process monitoring and
control. Very few attempts have been carried out in this
direction. (Rato et al., 2017) used the translation-invariant
wavelet decomposition and PCA for the monitoring of the
semiconductor manufacturing process. Another method based
on a search grid capturing the batch trajectory in the PCA score
space was proposed by (Westad et al., 2015) and was used for the
monitoring of two industrial processes.

In this paper, a new synchronization-free approach of
multivariate statistical process control (MSPC) for online
monitoring and diagnostics of batch processes is introduced. It
is based on the modeling of an overall NOC historical batch
trajectory, defined by individual non-synchronized NOC batches,
and the subsequent construction of derived PCA-based local
MSPC models covering the complete process, i.e., the
complete overall NOC batch trajectory. These local models are
used to identify whether new batch observations are inside the
NOC trajectory and, when this is the case, to provide an estimate
of the process progress. The approach is illustrated using two real
examples of NIR-monitored batch processes but is readily
applicable for the online monitoring of batch processes of
different typologies monitored by one or more diverse sensors.

PROCESS CASE STUDIES AND DATA SETS

Two case studies from previous works are used to illustrate and
test the online batch MSPC models for tracking process
trajectories. A brief experimental description of these NIR-
monitored processes with the related spectral preprocessing
implemented is presented below.

Process 1: Fluidized Bed Drying of
Pharmaceutical Granules
Batches of 500-g pharmaceutical wet granules (dry mass
fraction of mannitol > 50% and excipients) were dried in a
4-L fluidized bed (4M8-Trix Formatrix, ProCepT, Belgium).
The fluidized bed air inlet flow was controlled at 0.6 or 0.85 m3/
min and a temperature range from 22 to 30°C. In-line NIR
measurements were collected approximately every second using
a spectrophotometer with a MEMS Fabry-Perot interferometer
(N-Series 2.2, Spectral Engines, Finland) coupled to a diffuse
reflectance immersion probe (OFS-6S- 100HO/080704/1,
Solvias, Switzerland). The spectra covered a wavelength range
from 1750 to 2150 nm at 1-nm intervals. For each batch, off-line
reference moisture content analysis was carried out using a
thermogravimetric moisture analyzer (MB120, Ohaus,
Germany) from samples retrieved at 6-min intervals to detect
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drying endpoint (moisture < 2%). Because of different process
conditions at the beginning and during each batch run, such as
inlet air temperature and flow, different batch durations were
required for each trial to reach the defined <2% moisture level,
therefore, providing data matrices with uneven lengths. Faulty
batches used in the testing of the proposed approach did not
reach this moisture level. Suitable preprocessing was employed
to filter out noise and baseline fluctuations on the NIR raw data
observations before data analysis. The preprocessing steps
included the application of a moving average of consecutive
NIR observations followed by standard normal variate (SNV)
normalization. For a detailed description of the experimental
procedure and the visualization of the spectral data, the reader is
referred to (Avila et al., 2020; de Oliveira et al., 2020). Some
batches were selected from the previous work and additional
faulty batches were used for model validation. Ten NOC
batches, NOC1 to NOC10, were used for MSPC model
building, and three for validation (one NOC, Batch NOC1,
and two faulty batches, Batch Fault1 and Batch Fault2). This is
an example of a batch process where the evolution of drying in
time is not synchronized among batches since the initial and
final material in every batch does not necessarily have the same
moisture level.

Process 2: Automated Benchtop Batch
Gasoline Distillation
Batches of 100-ml gasoline blends (mixture of pure gasoline and
ethanol) were distilled in an automated batch distillation device
designed for the in-line monitoring of distilled product with NIR
spectroscopy. For every batch, vapor temperature readings and in-
line NIR absorption spectra (900–2600 nm with 4 cm−1 resolution;
Rocket, ARCoptix ANIR, Switzerland) were recorded for every unit
of percentage distilled mass fraction of initial sample weight, in the
5–90% range. Therefore, the data matrices obtained had the same
number of NIR observations per batch (86 NIR spectra) and every
observation was related to the same distillation process stage, as
defined by the percentage (w/w) of distilled sample mass. The
gasoline batches were prepared bymixing ethanol AR (99% Sigma-
Aldrich) and pure gasoline (from Petrobras refinery, Brazil) at
different volume ratios from 10 to 40%. Distillation batches of
gasoline blends with 27% ethanol were defined as NOC batches
and all batches with a different ratio as faulty, or out of specification
according to Brazilian legislation. The preprocessing steps used in
this data set were Savitzky-Golay derivative (1st-order derivative,
2nd-order polynomial function and 9-point window) for baseline
correction followed by spectral normalization to mitigate signal
intensity fluctuations of the NIR spectra. More detailed
information related to the experiments and spectra
preprocessing can be found elsewhere (de Oliveira et al., 2017).
In this work, nine NOC distillation batches were used to build the
MSPC control charts for tracking process trajectory (B1 to B3, B5
to B9 and B11), and three for validation, where one was NOC (B4)
and two were faulty batches (B13, B19). In this case, batch process
trajectories were synchronized because the percentage of
distillation weight gives a direct reference for batch progress
evolution.

DATA TREATMENT

The online batch MSPC model building procedure for tracking
process evolution in synchronized or non-synchronized batch
processes is described below. The complete methodology involves
the following steps:

a) Modeling of NOC batch process trajectories.
b) Construction of local MSPC models based on NOC batch

process trajectories.
c) Use of an MSPC chart based on local MSPC models to track

the evolution of new batches.

The first two steps are involved in the generation of the MSPC
models, whereas the last step involves the use of the local MSPC
models on new batches to test whether they follow the NOC
trajectory or to detect faults. A detailed description of each step is
presented below together with a visual description of the
approach in Figure 1.

Modeling of NOC Batch Process
Trajectories
The evolution of NOC batches, a.k.a “golden batches”, can be
defined using different multivariate analysis modeling strategies,
such as PCA, independent component analysis, multivariate
curve resolution, parallel factor analysis, etc. (Haack et al.,
2004; Mortensen and Bro, 2006; Skibsted et al., 2006;
Bogomolov, 2011; de Oliveira et al., 2017; Gomes et al., 2019).
In this work, we use PCA as the basis to define the general NOC
batch process trajectory.

The NIR spectra obtained in a NOC batch i are structured in a
data matrix Xi(Ki × J), where Ki are the number of spectra
collected (related to time points for Process 1 and to % of
distillation for Process 2) and J are the NIR channels per
spectrum.

When several NOC batches are used to define the general
process trajectory, the data matrices from the different NOC
batches, Xi(Ki × J), are placed one on top of each other to build
an augmented multiset structure X(N × J), where N is the
number of rows related to the total number of observations
from the I NOC batches, that is, N � ∑

I

i
Ki. Note that this

strategy does not require resizing or synchronization of
uneven batch lengths, since the only requirement is that all
batches share a common spectral dimension, J (Wold et al.,
1998). The next step is to column mean-center this multi-batch
structure and analyze it with PCA. This centering operation is not
oriented to remove the mean trajectory of the batches in time, just
to center the data and remove the average spectral shape in order
to see the spectral process variation already from the first PC.

Principal component analysis (PCA) is used to obtain a global
model of batch trajectories explaining the overall NOC process
evolution. PCA is used to reduce the dimensionality of the
preprocessed spectral data into a low-dimensional subspace of
principal components (PC’s), orthogonal among them, that
preserve the relevant information of the original data and
explain the maximum non-random variance (Jolliffe, 2002).
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The PCAmodel for the augmented process data matrixX(N × J)
is expressed as in Eq. 1,

X � TPT + E (1)

where T(N × A) is formed by the scores matrix, related to the
observations of the batch process data, PT(A × J) is the loadings
matrix, related to the importance of the NIR variables in the
description of theA PC’s and E(N × J) is the residual matrix after
modeling. The number of principal components of the model, A,
can be found using a suitable cross-validation method. The
loading matrix, PT, is common to all batches and the
augmented score matrix, T, accommodates Ti blocks, related
to every batch, that can be formed by a different number of
observations, Ki. The multiset structure for three NOC batches
and the related PCA model is illustrated in Figure 1A (top left),
where λ represents the J spectral channels of the NIR spectra.

Construction of Local MSPC Models Based
on NOC Batch Process Trajectories
From the augmented score matrix of all NOC batches, individual
batch score trajectories can be overlapped on a scatter score plot,
as shown in Figure 1A (bottom left). The dots represent the
scores for each observation and are colored according to the NOC
batches used in the PCA model. Note that the overall trajectory
evolution is the same for all NOC batches, but in a general non-
synchronized case, the starting and endpoint of every batch do
not need to coincide. The overlapped individual batch process
trajectories define a global description of the variability of the
NOC process evolution, helpful to observe whether a new batch
process evolves as NOC batches or not, independently from the
batch length and dynamics.

The evolution described by the overlapped NOC trajectories
can be divided into a sufficient number of C local regions using a
cluster analysis methodology, such as k-means and fuzzy c-means
clustering algorithms. In general, any algorithm allowing an even
distribution of observations in the different clusters would be
potentially valid in this step. The number of clusters used to set
the local MSPC models will be closely related to the process
progress resolution desired to study the batch evolution and will
be limited by the number of available NOC observations. Hence,
the higher the number of clusters, the higher process progress
resolution will be obtained; however, care must be taken to avoid
building local MSPC models with an insufficient number of
observations that could lead to a non-representative
description of the process stage to be controlled. Figure 1A
(bottom right) illustrates these local regions for C � 11, as
indicated by the outer circle color of the neighbor
observations inside each cluster. The seeding information for
the local MSPC models is formed by the observations in two
consecutive clusters. Therefore, the first local MSPC model
contains the observations in the first two clusters of the
process trajectory, the second local MSPC model uses the
observations in clusters two and three and so forth until all
the NOC process trajectory is covered. The observations used in
consecutive local MSPCmodels overlap with each other so that all
process trajectory regions are covered. As can be seen in

Figure 1A, for a k-means analysis providing 11 clusters, 10
local MSPC models with overlapping information as defined
by the red ellipses can be built.

The local MSPC models are built based on PCA and control
chart limits are defined using the suitable local model statistics.
The operational procedure to build each local MSPC model can
be described as follows. First, the original observations, i.e. NIR
spectra, for each local model are placed into a data matrix
Xm(Km × J), where m indicates the index of the local model
(from 1 toM) andKm is the number of observations used to build
the model. Then, this matrix is mean-centered and modeled with
PCA, as in Eq. 1, generating the matrices of scores Tm(Km × Am),
loadings PT

m(Am × J), and residuals Em(Km × J). Note that the
mean-center is performed using the mean of the matrix Xm not
the global mean of themulti-bach structure. By doing so, since the
local observations inside the matrix Xm should have similar
spectral shape, the mean trajectory of the batch at that
particular process stage is removed. Enough PC’s, Am, are
included in each local model to provide the best fit using
cross-validation (Wold, 1978). Finally, the control limits of the
local control charts can be derived using the residuals and the

FIGURE 1 | Illustrative description of the different steps involved in the
implementation of the local MSPC models for online monitoring of batch
evolution. (A) PCA modeling of original batch process data for several NOC
batches, visualization of process trajectories in the scatter score plot and
definition of local regions in the NOC trajectory using k-means. (B)Monitoring
of the evolution of a new batch using the projection of each observation onto
the local MSPC models. The related reduced Q-statistics control chart is
obtained plotting the minimum Qr value obtained in all M model projections
per each observation.
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scores from the local PCAmodel (Rännar et al., 1998; Wold et al.,
1998; Aguado et al., 2007). In this work, the controls charts are
based only on the residual matrix, Em, deriving the Q-statistic
control chart limit,Qlim; however, other statistical parameters can
readily be used to track the process evolution. The Qlim is
calculated according to the equation proposed by (Jackson and
Mudholkar, 1979). Thus, once the local MSPC models and their
related multivariate control charts limits are set, the online
process evolution of new batches can be tracked based on the
local models defined.

Use of an MSPC Chart Based on Local
MSPC Models to Track New Batch
Evolution
Calculation of squared residuals statistics (Q)
For online batch monitoring of new batch observations (XNEW in
Figure 1B), every new observation is projected onto all local
MSPC models and a set of the related sum of squared residuals
statistics, , are obtained as shown in Figure 1B. Thus, for every
new online observation, xk (a NIR spectrum in XNEW), its scores
values, tk,m, are obtained for each local MSPC model using its
related PCA loadings, Pm, as follows,

tk,m � xkPm (2)

Then, the residuals for the new observation in each local model
are obtained as,

ek,m � xk − tk,mP
T
m (3)

And the related Qk,m as:

Qk,m � ek,me
T
k,m (4)

For an easier interpretation of the global multivariate control
chart obtained from the outputs of the local MSPC models,
reduced Q-statistics, Qrk,m, are calculated by dividing the
obtained Qk,m values by the related local model Qlim. Thus,
the control limits for all local MSPC models become equal to
one, Qrlim � 1. The reduced Q values for every new observation,
Qrk,m, are checked to see whether they are above or below the
Qrlim. If all Qrk,m values for the observation k are large and above
one, this observation is diagnosed as faulty, and it is an indicator
that the process is deviating from the NOC trajectory. Conversely,
if one or more Qrk,m values are below the control limit, the
observation follows the NOC trajectory. An easy way to visualize
the diagnostic of every new observation by using a single Q chart
is shown in Figure 1B (bottom right), where only the minimum
Qr parameter after the projection in all local models is displayed
for every new observation. Observations that follow the NOC
trajectory are depicted by the green dots below the Qrlim � 1, and
the eventual deviations from it, with min(Qrk,m)> 1, in red. To
assess the spectral variables making the greatest contributions to
the deviation in Q we can display the Q-statistics contribution
plots for the sought observation by plotting the elements of the
residual vector, ek,m. The residuals used for the contribution plots
are calculated using the best local MSPC model related to the last
NOC observation.

For NOC observations, it is also possible to estimate the
process stage of every observation by identifying the local
MSPC model providing the lowest Qrk,m value. This
visualization approach will be provided for the real process
applications studied in this work in the next section.

RESULTS AND DISCUSSION

In this section, the results related to the construction of NOC
trajectories and local MSPC models for each process case study
are shown. Afterwards, the resulting MSPC charts for the
online monitoring of new NOC and faulty batches are
shown for each process. Complementary visualization of
MSPC charts and fault diagnostics based on contribution
plots are also presented.

Construction of NOC Trajectories and Local
MSPC Models
The construction of PCA-based NOC trajectories for each
process was calculated as explained in step a of the Data
Treatment section using the training dataset, i.e. all NIR
observations from selected complete NOC batches. This step
was followed by k-means analysis on the overlapped individual
NOC batch trajectories to define the clusters used to build the
local MSPC models covering the overall NOC process trajectory

FIGURE 2 | PCA score plot for the online NIR observations showing the
NOC batch process trajectories and local clusters found by k-means for (A)
Process 1, fluidized bed drying, and (B) Process 2, gasoline blend distillation.
The inner part of the circles is colored according to the related NOC
batch, whereas the outer part reflects the observations included in every
cluster and, hence, in the related local MSPC model.
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(Data Treatment section step b). Figure 2 shows the PCA score
scatter plot and the k-means clusters used to build the local
MSPC models describing the overall NOC batch process
trajectories for the drying (Process 1) and the distillation
processes (Process 2).

Principal Component Analysis of the NOC batches from
Process 1 (Fluidized bed drying) allowed description of the
process evolution using only two PC’s explaining a total of
97.61% of the data variance, as shown in the score plot of
Figure 2A. The score plot described mostly the variation of
the moisture content with the drying evolution from
beginning to end of every NOC batch. Note that, because
each batch had different initial and final moisture conditions,
they started and finished at different points of the overall
NOC trajectory; however, all individual batch trajectories
followed the same evolution pattern, as shown in the PCA
score plot. Once the overall NOC trajectory was defined, 30
clusters were defined using the k-means analysis along this
trajectory, as displayed by the different outer circle colors
associated with the observations inside each cluster in
Figure 2A. For this example, 30 clusters and, hence, 29
local MSPC models, were considered sufficient to track in
detail the process evolution. After that, a number indicating
the process stage evolution was automatically assigned to each
cluster according to the position in the overall NOC
trajectory.

For Process 2 (Distillation), three components were required
by PCA to explain 98.99% of NOC batches variance because of
the complex gasoline sample and the continuous variation of the
distilled material composition. The complex overall NOC
trajectory associated with the distillation process is shown in
the 3 PC score scatter plot in Figure 2B. Despite the higher
complexity of the overall NOC trajectory linked to the distillation
process, all individual batches trajectories followed the same
evolution pattern with good reproducibility. In contrast to the
drying process, the NIR observations of the distillation process
were acquired at specific percentages of distillation weight;
therefore, the observations were naturally synchronized
according to the process evolution. Note that all batches
started and finished at the same point of the overall NOC
batch trajectory in the score plot. The k-means algorithm
applied on the PCA scores of Figure 2B was used to set 20
clusters along the overall NOC batch trajectory, as displayed in
Figure 2B. The number of clusters is lower than in the previous
example because of the limited number of available observations
per batch run (only 86) and the need to avoid having clusters with
a very low number of observations to build the local MSPC
models.

Once the overall NOC batch process trajectories were defined
for each process case, the original NIR observations inside the
suitable two consecutive k-means clusters were used as seeding
information to build local MSPCmodels for each step of the batch
trajectory, as described in the Data Treatment section (step b).
Thus, a total of 29 and 19 local PCA-based MSPC models were
built for Processes 1 and 2, respectively. Local MSPC control chart
limits based on the Q-statistics with a 99% confidence interval
were calculated for each local MSPC model to be used for the

online tracking of new batches evolution, as shown in the next
subsection.

Online Tracking of New Batch Evolution
with Local MSPC Models
The results of the use of local MSPC models for the online
tracking of new batch evolution are described separately for each
process case, as shown below. The new batches used were
identified in previous studies as NOC or faulty; therefore, they
will be useful to demonstrate and validate the proposed
methodology.

Application to Process 1 (Fluidized Bed Drying)
The tracking of every observation in new fluidized bed drying
batches was performed as described in the Data treatment section
(step c), using the 29 local MSPC models built as explained above
(Supplementary Figure S1 and a related animation
Supplementary Figure S2 of the help to display how the Qr
values issued from everyMSPC local model are obtained for every
observation in a batch).

The Qr-based MSPC control charts for the online tracking of
observations in two drying batches are shown in Figure 3.
Figure 3A; Figure 3C are contour plots related to validation
Batch NOC1 and Batch Fault1, respectively, that show all the Qr
values calculated after the projection of each online NIR
observation of the batch onto all local MSPC models. A log-
scale colormap has been used to highlight the differences at low
Qr values. The horizontal axis of the contour plot represents the
batch time at which every observation was collected and the right
vertical axis the indices related to the local MSPC model used to
describe the Process 1 NOC batch trajectory, i.e. from 1 to 29.
Additionally, in the left vertical axis, each local MSPC model
index is associated with a percentage of the process progress from
0–100%, defined making a linear scaling that links the initial local
model to 0% process progress and the final local model to 100%
process progress. The process progress in this approach plays the
same role as the process maturity concept proposed by other
authors (Wold et al., 1998; Westad et al., 2015).

Thus, to track the behavior of an observation of a new batch,
their relatedQr values (associated with a specific process time) are
examined. In the contour plots in Figure 3A; Figure 3C, the Qr
values below the control limit, i.e.Qr < 1, are depicted as blue dots
and the min (Qr < 1) for every observation in green. If an
observation shows a NOC behavior (as all do in Figure 3A
related to Batch NOC1), there will always be one or more Qr
values below 1; i.e., all observations will show one or more blue
dots and a green dot. Instead, when an observation deviates from
the NOC trajectory, as in Batch Fault1 (Figure 3C), all Qr values
related to that observation are above the control limit of 1 and
neither blue nor green dots are observed.

To facilitate the interpretation and summarize the relevant
information of the results in the contour plots, graphics
displaying the min (Qr) value and the related process progress
for every batch observation are proposed (see Figure 3B and
Figure 3D for batches NOC1 and Fault1, respectively). Figure 3B
shows that all observations for batch NOC1 followed the NOC
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batch trajectory, seen because all min (Qr) values were below the
control limit of 1 (bottom panel) and that the process progress
covered the complete range (0–100%) (top panel). Figure 3D
shows that batch Fault1 deviated from the NOC trajectory after
approximately 40 min of batch time as flagged by the Qr above
the local MSPC control limits (min (Qr) > 1) (bottom plot).
When a fault happens, the related observations are displayed in
red in the process progress plot to indicate that the evolution of
the process is abnormal (top plot).

Detailed results and interpretation of the abnormal behavior
for the online tracking of two faulty batches, Fault1 and Fault2,
are shown in the Supplementary Figure S3; Figure 4 (left plots),
respectively. Supplementary Figure S3A; Figure 4A show the
deviations of the two batches by displaying the score plot
projections of NIR observations of these new batches onto the
global PCAmodel used to describe the NOC batch trajectory. The
score plot shows all training NOC batch trajectories as gray dots
whereas the NOC observations from the new batches are
overlayed as green dots when identified as NOC and as red
dots when faulty. Supplementary Figures S3B, S3C; Figure 4B
show the batch process progress andmin (Qr)MSPC chart for the
tracking of the online observations, where the abnormal
observations are associated with min (Qr) values higher than 1
and flagged in red color in the process progress plot. Moreover, Q

contribution plots from two faulty observations selected from
each batch are shown in Supplementary Figure S3D; Figure 4C.
The contribution plots were used to understand the reasons for
the deviations from the NOC batch trajectory, as described below
for each batch.

The deviation of drying batch Fault1 from the NOC trajectory
was detected after approximately 40 min of batch time, see
Supplementary Figures S3B, S3C. Although in
Supplementary Figure S3A the faulty observations (red dots)
right after 40 min were still close to the NOC trajectory, the
related min (Qr) after projection onto local MSPC models was
above the control limit indicating a deviation, which became even
larger after ca. 65 min of batch time, see Supplementary Figure
S3C. To help to diagnose this deviation, contribution plots are
shown in Supplementary Figure S3D for two faulty observations
selected at 64 and 69 min of batch time. These observations are
marked in blue and orange squares in the score plot and MSPC
charts. The Q contribution plots show that the absorption bands
that gave higher contributions to Q were around 1750 and
1900 nm related to the 1st overtone of CH and OH bonds. No
clear trend was observed when comparing the contribution plots
of the two observations suggesting that this deviation may have
been caused by changes of heterogeneity or particle comminution
of the pharmaceutical granules.

FIGURE 3 | Qr-based MSPC charts for fluidized bed drying (Process 1) batch NOC1 (A and B) and batch Fault1(C and D). (A and C) Contour plots of the Qr
values calculated after the projection of each NIR observation onto the local MSPCmodels. Blue dots show values ofQr < 1 (control limit), green squares the min (Qr < 1).
(B and D) Charts show the min (Qr) value (bottom panel) and the related process progress associated with it (top panel) for every batch observation. In the process
progress plot, NOC observations are displayed in green and faulty observations in red.
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During the tracking of the additional batch, Fault2, three
clusters of faulty observations were detected, see Figure 4B.
The first faulty observations were detected during the first few
minutes of the batch process. This deviation was related to the
initial moisture content higher than the common starting point
for the NOC batches used to build the MSPC models at the
beginning of the process trajectory. However, after a few minutes
of drying, the online observations fell inside the confidence
interval. The second faulty situation occurred after ca. 18 min
of batch time during just four consecutive observations, but it
quickly returned inside the control limit. This probably was

related to a fast change of moisture content sensed by the NIR
probe due to granule heterogeneity. This can be noticed by the
fast change in process progress just before minute 20 in Figure 4B
(top panel). From this point until approximately 60 min of batch
time, the batch followed the NOC trajectory reaching 100% of
batch progress, that is, reaching the minimum moisture level of
the NOC batches used to train the local MSPC models at the end
of the process trajectory, see Figure 4 (top panel). However, this
batch was left to overdry reaching moisture levels lower than the
endpoint of the historical NOC batches used for model training.
The consequence of this action was successfully detected after

FIGURE 4 |Online tracking of new batch evolution using the local MSPCmodels for process 1 (fluidized bed drying) left plots (A to C) and process2 (gasoline blend
distillation) right plots (D to F). (A) Process 1 PCA score plot showing the training NOC batches trajectories (gray dots) and validation batch Fault2 trajectory in green
(NOC observations) and red dots (faulty observations). (B) MSPC chart showing the process progress (top panel) and min (Qr)-based MSPC chart. (C) Q contribution
(Qcont.) plots for two faulty observations at 95 and 105 min of batch Fault2 drying time represented by the blue and orange squares in the MSPC control chart. (D)
Process 2 PCA score plot showing the training NOC batches trajectories (gray dots) and three validation batches (B4 circles, B13 triangles and B19 squares) trajectories
in green (NOC observations) and red dots (faulty observations). (E)MSPC chart showing faulty batch B13 process progress (top panel) and min (Qr)-based MSPC chart.
(F) Q contribution (Qcont.) plots for two faulty observations at 42 and 46% of distillation represented by the blue and orange squares in the MSPC control chart. Green
and red marker face color in process progress chart indicate that the observation is inside or outside the trajectory confidence limits, respectively.
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approximately 70 min of the batch time by the MSPC chart,
Figure 4 (bottom panel), where almost all consecutive
observations were above the control limit. Looking at the
bottom left of Figure 4A it can be observed how the PCA
projections of these faulty observations were outside the NOC
trajectory, but still following the drying process trend. Finally, two
faulty observations at the end of this validation batch (at 100 and
105 min) were selected to check the contribution plots. These
observations are marked in blue and orange squares in the score
plot and MSPC charts. The Q contribution plots in Figure 4C
show that the absorption bands that contributed more to Q were
around 1750 and 1950 nm related to the 1st overtone of CH and
OH bonds, respectively, being the band at 1950 nm identified
generally as the most dominant water band. The Q contribution
positive and negative sign for the bands at 1750 and 1950 nm,
respectively, indicates that the moisture level for these two
observations was lower than the endpoint of the historical
batches used in the model building. Also, when comparing the
two faulty contribution plots, the systematic growth of the Q
contributions at 1750 and 1950 nm bands, indicates the
continuing moisture content decrease. It is important to note
that this overdrying batch was used in this work to demonstrate
the ability of the local MSPC models to detect such situations. In
real-time monitoring, this batch would have been terminated
once reached 100% of process progress, thus, avoiding energy
waste and possible detrimental effects due to the excessive
granules processing time.

Application to Process 2 (Gasoline Distillation)
The local MSPC models built to track the batch gasoline
distillation were tested. Three validation batches were used:
one batch of on-specification gasoline blend with 27% of
ethanol (batch B4) and two off-specification gasoline
distillation batches, B13 and B19, with 15 and 30% ethanol
blends, respectively. The results for all testing batches are
shown in Figure 4 (right plots) and Supplementary Figure S4.

The scatter score plot projections of the NIR observations for
all three validation batches in the global PCAmodel used to build
the Process 2 NOC batch trajectory are represented in Figure 4D
(same as Supplementary Figure S4A). In the score plot, gray dots
identify the observations from the training batches describing the
NOC batch trajectory, while the circles, triangles and squares are
the projected observations from testing batches B4, B13 and B19,
respectively. For the testing batches, the symbol face color
indicates whether the observation was detected by the MSPC
charts as faulty (red) or not (green). Process progress and min
(Qr) MSPC charts for the testing batches are shown in Figure 4E
for batch B13 and Supplementary Figures S4B, S4C for batches
B4 and B19, respectively. Additionally, Q contribution plots for
two selected faulty observations are shown in Figure 4F;
Supplementary Figure S4D for batches B13 and B19,
respectively.

The projections of the validation batch B4 in the global PCA
model (Supplementary Figure S4A) followed the NOC batch
trajectory described by the cloud of gray dots. Indeed, when
looking at the MSPC charts in Supplementary Figure S4B, all
observations are below the Qr control limit and the batch process

progressed accordingly to the on-specification gasoline batches.
On the other hand, when looking at the projections of batch B13
observations to the global PCAmodel, an obvious deviation of the
NOC batch trajectory was observed, see the red triangles in
Figure 4D. This deviation was detected by the min (Qr) local
MSPC charts (Figure 4E bottom panel) after 40% of the initial
batch weight was distilled. Note the interruption of the process
progress after this point and all consecutive observations. The off-
specification batch B19 deviation from the NOC batch trajectory
was lightly noticed by the PCA score plot projections in
Supplementary Figure S4A (red squares). However, this batch
deviation was still detected by the local MSPC charts in
Supplementary Figure S4C (bottom panel). Note that this
sensitivity is important since batch B19 contains 30% alcohol
(v/v), only a 3% more than the NOC batches. Similarly, the fault
was first detected after ca. 40% of the distillation batch and all
consecutive observations since then were detected outside the
confidence interval for all local MSPC models.

The contribution plots (Figure 4F) for the selected fault
observations at 42% (in blue) and 46% (in orange) fraction of
distilled material of the B13 batch show that the two bands
covering the 1650–1700 nm and 2100–2200 nm NIR contributed
the most to the Q. The absolute increase of Q contributions at
1665, 2130 and 2180 nm indicated a possible increment of mid
and high-density hydrocarbon fractions at these distillation
points. Additionally, the negative contribution at 1685 nm
indicated a lower content of ethanol and light hydrocarbon
compounds. This agrees with the expected distillation behavior
for off-specification gasoline blends with low ethanol content.
This is confirmed when looking at the distillation profiles
obtained by Multivariate Curve Resolution-Alternating Least
Squares (MCR-ALS) for these compounds presented in our
previous work for this specific batch (de Oliveira et al., 2017).
For batch B19, Supplementary Figure S4D shows the
contribution plots for the faulty observation at 44% (in blue)
and 50% (in orange) of the batch distillation. The high negative
contribution between 1680 and 1700 nm suggested the presence
of a lower content of mid and heavy hydrocarbons fraction than
expected for NOC batches at this point of distillation. These
ethanol-rich fractions were related to the fact that this off-
specification gasoline batch had a slightly higher ethanol
content (30%) than NOC gasolines (27%).

CONCLUSION

The present work introduces a new approach for online
monitoring of spectroscopic-monitored batch process
evolution through the design of local MSPC models covering
an overall NOC batch process trajectory, defined from the PCA
modeling of non-synchronized NOC batches. The key element in
this approach is that the different NOC batches follow a similar
NOC trajectory in the PCA score map and this fact is clearly
visible and can be used to build derivedMSPCmodels without the
need of batch synchronization. The tracking of the evolution of
new batches does not require synchronization either. The
methodology has been demonstrated with the building and
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validation of online MSPC charts for the monitoring of two real
batch process data of different nature using in-situ NIR
measurements. In both process examples, the implementation
of local MSPC charts has been successfully validated for the
tracking of well-known new batches that followed or deviated
from the overall NOC batch trajectory. The use of Q contribution
plots was helpful to identify the sources of process abnormalities
based on the chemical information provided by the NIR signal.

The fact that the proposed methodology does not require
batch synchronization makes the data analysis pipeline simpler
and flexible and offers many advantages for real-time process
monitoring, from the building of the reference MSPC models to
the test of new batches. Thus, the designed methodology allows
the model building with historical NOC process data acquired
with different online sampling rates and spanning evolution in
different time (or process variable) ranges. The monitoring of
new batches is also independent of the sampling rate used in the
model building, which allows for changes in the sampling interval
if required. Furthermore, the fact that the exam of the quality of
new batch observations provides additionally a good indication of
the process progress enables the potential use of this online
tracking methodology for end-point detection, providing a
single tool to control both the evolution and the end of the
process. The presented methodology has been applied to NIR
monitored processes but could be readily adapted to deal
simultaneously with the output from several sensor outputs in
a sensor fusion scenario, since a common trajectory for NOC
batches would be seen. That would allow an integral control of the
process evolution by combining the output from advanced
sensors with other process data (temperature, flow, pressure, etc.).
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