
Improved Understanding of Industrial
Process Relationships Through
Conditional Path Modelling With
Process PLS
Tim Offermans1, Lynn Hendriks1, Geert H. van Kollenburg1, Ewa Szymańska2,
Lutgarde M. C. Buydens1 and Jeroen J. Jansen1*

1Institute for Molecules and Materials, Radboud University, Heyendaalseweg, Netherlands, 2FrieslandCampina, Amersfoort,
Netherlands

Understanding how different units of an industrial production plant are operationally related
is key to improving production quality and sustainability. Data science has proven
indispensable in obtaining such understanding from vast amounts of historical process
data. Path modelling is a valuable statistical tool to obtain such information from historical
production data. Investigating how relationships within a process are affected by multiple
production conditions and their interactions can however provide an even deeper
understanding of the plant’s daily operation. We therefore propose conditional path
modelling as an approach to obtain such improved understanding, demonstrated for a
milk protein powder production plant. For this plant we studied how the relationships
between different production units and steps are dependent on factors like production line,
different seasons and product quality range. We show how the interaction of such factors
can be quantified and interpreted in context of daily plant operation. This analysis revealed
an augmented insight into the process that can be readily placed in the context of the
plant’s structure and behavior. Such insights can be vital to identify and improve upon
shortcomings in current plant-wide monitoring and control routines.
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INTRODUCTION

Industrial (bio)chemical processes need to be monitored and controlled well to guarantee sustainable
and high-quality production despite variations in external factors such as raw materials, weather,
plant operators, equipment maintenance and customer wishes. A deep understanding of how the
production plant operates under and responds to these conditions is crucial for the development of
accurate process monitoring and control strategies. To considerable extent, such understanding
follows from first-principle knowledge. In practice, however, influences of external factors on the
production, daily operation of the plant cannot be described completely by these first principles.
Multivariate statistical analysis of historical production data can therefore reveal an augmented
insight into the process, as this data does reflect the daily and real operation rather than the
engineered operation.

Examples of statistical modelling methods that are widely used for this purpose are Principal
Component Analysis (PCA), Partial Least Squares (PLS), Support Vector Machines (SVM) and
Artificial Neural Networks (ANN) (MacGregor & Kourti, 1995; Qin, 1997; Kourti, 2005; Cuentas
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et al., 2017). These methods are often employed for process fault
diagnosis through multivariate control (Shewhart) charts and for
predicting difficult-to-measure production indicators, such as
product quality, from easy-to-measure process variables (soft-
sensoring) (Bersimis et al., 2007; Kadlec et al., 2009). Though
these methods can be used to quantify the relationships between
individual process parameters and variables, they provide limited
higher-level insight into the relationships between different
production units, as limited higher-level structural knowledge
about the plant is employed.

The use of path analysis or structural equation modelling
methods to industrial data analysis is therefore becoming
increasingly popular, as these methods explicitly model the
valuable information about relationships and can be
considered explainable artificial intelligence (Höskuldsson
et al., 2007; Gade et al., 2019). In general, path analysis
methods estimate the directional statistical relationship
between groups of measured variables. For industrial data,
grouping process variables by the production unit in which
they are measured thus allows for the estimation of how much
operations of different production units are mutually related.
This incorporates the physical structure of the production plant
in the analysis of the data, of which the results in turn can be
interpreted in the context of that structure (van Kollenburg G. H.
et al., 2020).

Different methods for path analysis exist, including PLS-path
modeling (Hair et al., 2011), sequential and orthogonalized PLS-
path modeling (Romano et al., 2019), sequential multi-block PLS
(Lauzon-Gauthier et al., 2018), multiblock kernel PLS (Zhang
et al., 2010) and network PCA (Codesido et al., 2020). PLS-PM in
particular is a well-established method in social sciences, but its
high value for modelling industrial production data is also already
demonstrated (van Kollenburg G. H. et al., 2020). Another path
analysis method that has been developed very recently, is Process
PLS (van Kollenburg et al., 2021). This method improves upon
the mathematical limitations of PLS-PM and is better suited to
model the complexity and heterogeneity of industrial production
data as a network.

Process PLS is more appropriate for path modelling industrial
data than alternative methods for three main reasons. Firstly, it
canmodel multiple latent variables per group of process variables,
in contrast to for instance PLS-path modeling. It can thus
describe multiple sub-processes per production step, which are
present for most industrial processes. Secondly, it can cope with
the multicollinearity that the process variables of production
steps often show (Guo et al., 2019). This gives rise to a more
accurate estimation and better interpretability of the relationships
between the production steps. Lastly, Process PLS (like PLS-path
modeling but unlike for instance sequential and orthogonalized
PLS-path modeling) does not require any a priori (importance)
ranking to be imposed on the production steps, which in practice
is difficult to do even for process experts (van Kollenburg et al.,
2021a).

The relationships estimated with path modeling give much
insight into the structure of the plant. Their sizes may even be
related to an external production factor that is not directly
included in the model, such as production cost (van

Kollenburg G. H. et al., 2020). An even more exhaustive
understanding of a plant’s behavior can however be obtained
by quantifying how the process relationships are affected by
multiple, possibly interacting operating conditions, such as
production season, year, parallel lines or product quality
ranges. Such an analysis yields an elaborate insight into how
the plant’s operation is different under different combinations of
production conditions. This allows process operators and
engineers to even better steer the plant to cope with
production variations caused by those multilevel conditions.

This paper presents a systematic approach for performing
such a conditional path analysis on historical production data,
using Process PLS. The work focuses on the use of Process PLS for
suchmodelling, and a comparison to conditional modelling using
alternative path modelling methods is out of scope for the current
work. A large dataset from an industrial-scaled milk protein
powder production plant is separated based on one or more
operating conditions, after which each data subset is modelled
and quantitatively compared. A thorough discussion of how the
results of the analysis can be visualized, interpreted and
communicated with and among process operators and
engineers is provided.

METHODS AND DATA

Process PLS
A Process PLS model comprises two user-defined parts: the inner
(structural) and outer (measurement) model. A production
plant’s structure can be modelled by grouping of the process
variables (X) in the outer model according to the production units
(or production steps). A group of variables is then called a block.
The inner model defines which directional relationships are
estimated between which production steps. For each unit, one
or more latent variables (LV) are constructed to represent the
major sources of covariance between the process variables of
blocks which are connected in the inner model. The contribution
of a process variable to specific latent variables for that unit are
called weights (R, in some literature also referred to asW). Effects
of the latent variable on other latent variable in the inner model
are represented as explained variances (Ρ2, i.e. ‘rho-squared’). The
design of a Process PLS model is similar to that of a PLS-PM
model, and is visualized in Figure 1 for an example process. The
relationships in the inner model may represent for instance a
direct physical connection (piping), indirect connection between
similar variables being measured at different locations), or
feedforward control loops. As only recursive (non-cyclic)
pathways can be modelled, feedbacks of either (intermediate)
product or operation control actions cannot be directly modelled,
but the process set points of a control scheme and/or the level of
(intermediate) product feedback may for instance be used as a
variable in the Process PLS outer model.

Estimation of a Process PLS model is done by iteratively
optimizing a network of PLS-models using the SIMPLS-
algorithm (de Jong, 1993). First, the dimensionality of the
blocks is reduced to obtain estimates for the latent variables
which maximize the covariance between interconnected blocks
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through a set of PLS2 regressions, one for each block of variables.
To estimate the latent variables of a given step with PLS2, the
process variables of that step are used as predictors and the
process variables of all steps that step has a relationship to are
used as responses. Only when a step has only incoming
relationships, the process variables of the steps that have a
relationship to that step are used as predictors and the process
variables of the step itself are used as responses. The number of
latent variables per block can be manually fixed if desired or
optimized by internal cross-validation (which is the default in the
software implementation used for the results in this paper, see
Software). The process variable weights (R) are effectively the
contributions of the variables to the relationships modelled by
these PLS models. After the latent variables are estimated, a
second set of PLS regressions is performed to estimate the

relations in the inner model. The strengths of these
relationships (P2) are calculated from the PLS2 regression
coefficients and represent the fraction of variance that the
latent variables in a predictor block can explain in the
response block. As Process PLS does not take into account
process dynamics like mechanistic modelling approaches,
knowledge about the kinetics of the process are not required
for modelling. More details on the Process PLS method may be
found in (van Kollenburg et al., 2021a).

Demonstrator Process
The industrial production facility investigated is a well-controlled
plant that produces milk protein powder from skim milk. The
skimmilk is heated, after which it is subjected to two precipitation
steps. The resulting curd is washed, dissolved in an alkali solution,
and finally dried to a powder. The critical product quality
indicator for the protein powder is the mineral content, which
should be as low as possible. More details on milk powder
production can be found in the dairy processing handbook
(Bylund, 1995).

Data Collection
The data used in this study corresponds to three parallel
production lines and three consecutive production years, and
was not originally collected for other purposes than the current
study. The data comprises 51 process variables, which are the
same for the different production lines and are distributed
across the processing steps as given in Table 1. All variables
represent physical measurements, and not setpoints or
production status values. Only data from effective production
time was used in the current analysis. The variable representing

FIGURE 1 | The design of a Process PLS model for an example two-step production process. The input and product are also modelled as steps in order to
estimate their relationships to the two production steps.

TABLE 1 | Number of samples and variables of the data collected for each of the
three production lines, after synchronization and cleaning as explained in Data
preparation.

Dimensions Line A Line B Line C

Samples 1,569 560 924

Variables 51
Milk 1
Heating 2
Precipitation 1 5
Precipitation 2 4
Washing 21
MeltMaking 7
Drying 10
Product 1
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the product quality is the mineral content mentioned earlier,
which is measured at-line at a relatively low frequency (hourly
basis). The variable on incoming milk is also measured at similar
frequency. All other variables are process variables such as
temperatures, pressures and flow rates, and are measured in-
or on-line at high frequency. The specific identities of these
variables will not be disclosed as they are not relevant for the
conclusions in this paper.

Data Preparation
Because the process variables are measured at separate locations
and at different time intervals, the collected data had to be
synchronized to obtain a multivariate dataset that can readily
be analyzed. The high-frequency process variables were
synchronized to the low-frequency product quality variable
using median-filtering with a 3 h wide window, systematically
selected as optimal synchronization (Offermans et al., 2020). This
method also allows for a small degree of process dynamics to be
included in the modelling procedure, as each synchronized
sample represents the measurements done in the 3 hours
before its sampling time. Time-lags between individual process
variables are not taken into account. For the relative low-
frequency measurements on incoming milk, the most recent
measured value was matched to each mineral content sample.
Missing values can be and were present after the synchronization
procedure, and were imputed by replacing them by the median of
the values that were present (Souza et al., 2016). This was done
per production line and per production variable. Outlying
samples were detected per production line using the
multivariate Hotelling’s T2- and Q-statistics calculated from
PCA models explaining at least 70% variance of the autoscaled
data. Samples for which at least one statistic was over three
standard deviations removed from the median were removed
(Varmuza and Filzmoser, 2016). The number of samples obtained
after the data collection, synchronization and cleaning are given
in Table 1.

Path Modelling Conditional to Single
Operation Conditions
The first part of the study focused on investigating the effects of
the individual production conditions separately on the process
relationships. The three (multilevel) conditions that were
explored are production line, production season and product
quality. All data was for instance only separated according to the
three production lines. For separating the data into seasons,
meteorological seasons were used as these are identical for
each year. The mineral content values were used to separate
the data into three relative product quality ranges. The
boundaries of these ranges were set at the 1st and 2nd tertiles
to ensure comparable sample sizes for all models, as is illustrated
in Figure 2. As mentioned before, a low mineral content value
indicates a high-quality production.

Each data subset was individually modelled with Process PLS,
using the same inner and outer model specification for each
model. The directional relationships between the production
steps that were estimated using Process PLS are illustrated in
Figure 3. The inner model, shown in Figure 3, was specified
according to two criteria introduced by van Kollenburg et al. (van
Kollenburg G. H. et al., 2020). Firstly, relationships of each step
on the subsequent step are included (counter-clockwise, starting
from the top, in Figure 3). These represent the physical
architecture of the plant and the flow of the process (piping).
Secondly, direct relationships of each production step on the
product-variables and thus the product quality are included. The
outer model, which relates the process variables to the different
production steps, was specified based on the physical location of
each process variables. The number of variables per step thus are
reported in Table 1.

The number of latent variables considered for each block/step
was optimized using the default cross-validation procedure in the
Process PLS implementation used (‘pathmodelr’). Before
modelling, all individual process variables were autoscaled to

FIGURE 2 |Ranges for the product mineral content measurements used
to separate the data based on product quality.

FIGURE 3 | Inner model specification used for path modelling of the milk
protein powder production process.
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have zero mean and unit standard deviation, after which the
process variables are collectively but per step rescaled so that each
step has a sum of squares of 1. This is the default procedure by
pathmodelr. All remaining modelling settings were also kept at
their default values. To estimate the precision of the modelled
process relationships, each Process PLS model was subjected to a
non-parametric bootstrap with 200 replicates (Johnson, 2001).

Path Modelling on Multiple Production
Conditions
For the second part of the study, the full data was separated on all
production conditions at once, following a full factorial design.
Each data subset was modelled using Process PLS, to calculate the
process relationships for each possible combination of
production conditions. Three-way ANOVA analyses were used
to estimate the main and interaction effects of the production
conditions on each separate process relationship and process
variable weight (Huitson et al., 1976). This allows for the
investigation of interactions between the production
conditions on the process relationships, for instance between
production season and line. The boundaries for the quality ranges
were, as before, set relatively at the 1st and 2nd tertiles. They were
set per combination of line and season, to ensure sufficient
samples in each experiment for reliable modelling. The design
matrices for the experimental design and the sample sizes for each
experiment (and thus Process PLS model) are shown in
Supplementary Table S1 in the supplemental material.

The modelling and bootstrapping procedure for each data
subset (full factorial design experiment) was identical to that used

before while investigating the separate production conditions.
The three-way ANOVA analyses were performed on the mean
results found after bootstrapping. A False Discovery Rate (FDR)
correction was applied to the p-values obtained with ANOVA
using the method proposed by Benjamini and Hochberg to adjust
for multiple testing errors (Benjamini and Hochberg, 1995). This
because the relationships and dependencies identified with the
proposed analysis may require further investigation by plant
personnel, which is time and cost intensive. As such, false
positives (type I) errors are more harmful and less desirable
than false negatives (type II) errors.

A schematic overview of the different data preparation,
separation, modelling and interpretation steps performed as
part of the presented study on conditional path modelling is
shown in Figure 4.

Software
Data preparation was done using MATLAB R2017a (MATLAB,
2017). Modelling data with Process PLS was done in R, using the
pathmodelr package version 0.1.2 (Team R Development Core,
2018; van Kollenburg G. H. et al., 2020).

RESULTS AND DISCUSSION

Path Modelling Conditional to Single
Operation Conditions
Figures 5A–C show the primary modelling results found after
partitioning the complete data only on either production line,
production season or product quality range (respectively). Shown

FIGURE 4 | Schematic overview of the conditional path modelling analyses presented.
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are the proportions of variance explained (P2) for each
relationship in the inner model (as shown in Figure 3). These
values quantify the directional relationship between the
production steps. Shown per relationship are the mean values
over the 200 bootstrapping replicates. The 99% confidence
intervals are plotted as error whiskers but are for many results
too small to discern. This indicates that the results have high
precision and attests that Process PLS is a robust method for
statistical modelling of industrial data.

The results in Figures 5A,B give insights into the relationships
within the process, and how they differ under various production
conditions. Firstly, they show which relationships are overall
strongest. For this process, the relationship from Prec1 to Prec2 is
in general the strongest, irrespective of production line, season, or
product quality range. These steps are likely strongly related because
they have a similar function in the process. From all the production
steps, Washing relates strongest to Product under most conditions.
This indicates thatWashingmay be the most influential step for the
product quality, and future optimization efforts should be directed to
this step. Importantly, Milk in general only relates to Product.
Though this may sound counter-intuitive, it indicates that
variations in Milk do not influence the production quality. In
turn, this supports the notion that the process is well-controlled
and that stable production quality is achieved despite raw material
variations.

Results from the conditionalmodelling show that the relationship
between Prec1 and Prec2 is weaker for production line B than for the
other production lines (Figure 5A). This indicates that the operation
of Prec2 is less related to that of Prec1 in line B than in the other lines.
Additionally, the relationship between Prec2 and Product is stronger
for line B than for the other lines, indicating that variations in Prec2

are related to variations in Product. In a production process with a
focus on constant quality, this results may be an important focus for
follow-up investigations.

Separating the data only on production season (Figure 5B)
reveals that the Prec1 relates stronger to Product in the winter,
while Prec2 relates stronger to Product in the summer. This
indicates that the focus of process control is different for the
seasons, for instance because seasonal variation manifested in the
raw material or weather influences the Prec1 and Prec2 steps
differently. This is supported by Prec1 → Prec2 being lower in
summer and higher in winter.

When looking at the different product quality ranges
(Figure 5C), it is interesting that Washing → MeltMaking
increases and MeltMaking → Drying decreases with decreasing
product quality. This suggests that higher quality product is
obtained when the operation of MeltMaking is more aligned with
that of Drying (the step after it) than with that ofWashing (the step
before it). This should be further investigated, as it could indicate that
aligning the MeltMaking settings with that of Drying instead of
Washing leads to structurally higher production quality.

The results in Figures 5A–C give already much insight into
the process but understanding of the process can be augmented
by evaluating the weights (R) of the process variables in the
Process PLS models. As an example, Figure 6 shows the weights
for the variables corresponding to Prec1 and Prec2 in the models
obtained after separating the data on production line alone. These
weights represent the contributions of the process variables on the
latent variables of their respective block. As previously discussed,
the relationship between Prec1 to Prec2 is weaker for line B than
for lines A and C (Figure 5A). Because Prec2 V2 has a particular
high weight in the model of line B, plant operators and engineers

FIGURE 5 | (A–C): Size of process relationships in terms of fractions of explained variance (P2), as found when using Process PLS modelling on either separate
production lines (A), or production season (B), or product quality range (C). The bars represent the means and the whiskers represent the 99% confidence intervals over
200 bootstrap replicates.
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could be advised to investigate the operation of this variable
further. It likely has a characteristic behavior unique in line B that
causes the operation of Prec2 to be less related to Prec1 which, as
discussed earlier, may influence the product quality.

This example illustrates how variable weights should be
interpreted, and how investigating these may aid process
operators and engineers in optimizing monitoring and control
of a production plant. The variable weights can provide much
more information, but discussing all of them for the process in
this paper is of limited value, as their identities are disclosed. The
weights of all variables for all models are given in the
supplementary materials in Supplementary Figures S1A–C
for the interested reader but are not discussed further here.

Path Modelling Conditional to Multiple
Operation Conditions
Figure 7 displays the results of analyzing each combination of the
three production conditions according to a full-factorial

experimental design with the same Process PLS model and
analyzing variations in the model parameters using an
ANOVA. Note that this experimental design is applied to data
that is already measured, and that is no further measurements are
collected according to that design. As many PLS regressions are
calculated during this experiment, 936.000 to be exact (36
production condition combinations, 13 inner relationships,
10 cross-validation repeats and 200 bootstrap repeats), it
should be noted that the computation time for obtaining the
results as presented in this manuscript is around 18 min when
using a desktop computer with an Intel Core i7-7900 K processor.
Although significant, this computation time should not be
limiting for the use of the proposed methodology as a tool for
off-line exploration of historical data. The number of cross-
validation repeats and/or bootstrap repeats could be reduced
to save computation time on slower systems, but the robustness of
the models should be checked with additional care.

Shown in Figure 7 are the FDR-corrected p-values of each
three-way ANOVA that was performed per modelled process
relationship size (in terms of mean explained variance, P2, over
bootstrap replicates). These results thus represent the inner path
model. The p-values quantify the probability of the relationships
sizes being identical regardless of a certain condition (e.g. ‘Line’)
or interaction of conditions (e.g. ‘Line*Season’). Thus, a very low
p-value indicates that relationship is significantly different for at
least one (combination of) production conditions. This
visualization offers a comprehensive view of the conditional
path modelling results, while also quantifying statistical
significance as it is not subjective to visual interpretation.

The results of the first part of the study (discussed above)
showed that the individual production conditions do effect the
process relationships. The results in Figure 7 confirm such
primary effects. All but three process relationships are, for
instance, different for at least one production line. The
ANOVA results however also show that there are many
interactions of these production conditions. The relationship
size of MeltMaking to Drying is for instance dependent on
both the production season and line individually (p-values <
0.01), but there is also a significant interaction of these two
operation conditions for that relationship. This indicates that the
relationship size betweenMeltMaking andDrying not only differs

FIGURE 6 |Weights (R) of the process variables of Prec1 and Prec2 in the different Process PLSmodels trained per production line. The bars represent the means
and the whiskers represent the 99% confidence intervals over 200 bootstrap replicates.

FIGURE 7 | FDR-corrected p-values obtained by performing three-way
ANOVA on the fractions of explained variance (P2) found with Process PLS
according to the full factorial conditional path modelling approach. A low
p-value signifies a low probability that the process relationship size is
comparable under different (combinations of) production conditions.
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for the seasons, but that the way in which they differ for the
seasons in turn also differs for the production lines.

The results found for Prec1→ Prec2 when separating the data
on single conditions, which were elaborately discussed in Path
modelling conditional to single operation conditions, seem to
contradict the main effects for the single conditions found
with ANOVA when separating the data on all conditions.
Prec1 → Prec2 was concluded to be different for the
production lines and seasons (Figures 5A,B), but these

conditions show relative high p-values for Prec1 → Prec2 in
Figure 7 (0.13 and 0.7, respectively). The results in Figure 7 thus
suggest that Prec1 → Prec2 is not likely different for at least
production line or for at least one production season. Such
apparent contradictions are caused by the interactions of the
production conditions: the ANOVA results do suggest a large
interaction between production line and season, signified by a
relative low p-value (<0.01). This means that the production line
and season are affecting this relationship, but that they are not
doing so independently. Such information is highly valuable, as
future efforts to make this step more robust against seasonal
variations should thus be done per production line. Being able to
quantify such interactions underlines the value of conditional
path modelling while separating the data on all combinations of
production conditions.

Figure 8 gives the results of the three-way ANOVAs performed
on the individual process variable weights (R, averaged over
bootstrap replicates), when modelling the data while separated
on all production conditions simultaneously (full-factorial). These
p-values are also FDR-corrected. The results represent the outer
path model and can be similarly interpreted as the results in
Figure 7, and supplement those results to extract more process-
specific information. For instance, the relationship size ofWashing
to Product was found to be relatively strong in general (Figures
5A–C), and was found to be highly dependent on the production
line (Figure 7). This makes Washing an interesting step to
investigate further, or even experiment with. That analysis could
then be advised to focus on variable Washing V1, of which the
operation is dependent on the production line alone, but also on
the interactions of both the production season and quality range
with the production line. This variable is thus likely largely
responsible for the dependencies of Washing → Product on the
production conditions. This observation and the ones discussed
above exemplify the insight that conditional path modelling gives
into the relationships within a production process. Much more
process-specific information can however still be extracted from
these results, especially by or while consulting with process
operators and engineers that are experienced in controlling the
process on a daily basis.

For this demonstration, data was available for each
combination of production conditions, but this may not be the
necessarily hold for other production facilities. One parallel line
may for instance never be used during winter, leading to amissing
experiment in the design. In such cases, ANOVAmay still be used
to analyze the path modelling results, but Type I sums of squares
should be used rather than Type III sums of squares.
Alternatively, if including one operation condition causes too
many missing experiments, it may be better to remove it
altogether from the analysis. A parallel line that is only used
during winter is for instance less insightful to include, and could
be excluded from the analysis. Another solution could be to adapt
the Process PLS model specification and include the operation
condition as a process variable. It should furthermore be ensured
that enough samples are present for each of the experiments to
enable a reliable estimation of the process relationships with
Process PLS for the corresponding combination of production
conditions. A minimum of 30 samples is used for the

FIGURE 8 | FDR-corrected p-values obtained by performing three-way
ANOVA on the process variable weights (R) found with Process PLS
according to the full factorial conditional path modelling approach. A low
p-value signifies a low probability that the process variable weight is
comparable under different (combinations of) production conditions.
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demonstration given and is advisable, but the robustness of the
fitted process relationships should in any case be assessed by
analyzing the bootstrapping results as the minimum number of
samples required will be process-specific.

CONCLUSION

This study presented a systematic approach for conditional path
modelling of industrial production data using Process PLS, and
demonstrated its value for a milk powder production facility. The
approach consists of separating historical data based on one or more
operation conditions, and modelling and comparing each of those
datasets. This can be used to investigate how the statistical
relationships between the production steps of a plant vary for, for
instance, different production lines, seasons and quality ranges, and
which of the measured process variables in those steps are most
correlated to this behavior. An unprecedented high level of process
expert knowledge on the structure and operation of the plant can
thus be incorporated in the analysis of large historical datasets.
Results for conditionalmodelling on a single production condition at
a time and on all production conditions simultaneously were
presented. The latter requires more data for stable modelling, was
shown to be preferred as it allows for the quantification of interaction
effects of the production conditions on the process relationships.
Such interactions were present for the demonstrator process, and
interpreting them gave a very detailed insight into the plant
operation. These insights can both confirm and expand the
current understanding of the process. This is of high value to
process operators and engineers, who can use this improved
understanding to pinpoint shortcomings in the current process
monitoring and control strategy. Although only demonstrated on
a continuous process in the current work, conditional path
modelling may also be of great value for (batch-like) process with
multiple production stages by considering those stages as a
production condition. Ultimately, conditional path modelling can
help in making production plants less prone to variations in external
operating conditions, and in increasing product quality even for
production plants that are already considered well-controlled.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

TO: Conceptualization, Methodology, Software, Validation,
Formal analysis, Investigation, Data curation,
Writing—original draft, Writing—review and editing,
Visualization; LH: Conceptualization, Methodology, Formal
analysis, Investigation, Writing—review and editing; GK:
Conceptualization, Methodology, Writing—review and editing,
Supervision; ES: Conceptualization, Methodology, Resources,
Writing—review and editing, Visualization, Supervision,
Project administration; LB: Supervision, Project
administration, Funding acquisition; JJ: Conceptualization,
Methodology, Writing—review and editing, Visualization,
Supervision, Project administration, Funding acquisition.

FUNDING

This project is co-funded by TKI-E and I with the supplementary
grant ‘TKI- Toeslag’ for Topconsortia for Knowledge and
Innovation (TKI’s) of the Ministry of Economic Affairs and
Climate Policy. The authors thank all partners within the
project ‘Integrating Sensor Based Process Monitoring and
Advanced Process Control (INSPEC)’, managed by the
Institute for Sustainable Process Technology (ISPT) in
Amersfoort, Netherlands.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frans.2021.721657/
full#supplementary-material

REFERENCES

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B
(Methodological) 57 (1), 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x

Bersimis, S., Psarakis, S., and Panaretos, J. (2007). Multivariate Statistical Process
Control Charts: An Overview. Qual. Reliab. Engng. Int. 23 (5), 517–543.
doi:10.1002/qre.829

Bylund, G. (1995). “Dairy Processing Handbook,” in Tetra Pak Processing Systems,
Vol. G3. Tetra Pak Processing Systems AB. Available at: http://www.ales2.
ualberta.ca/afns/courses/nufs403/PDFs/chapter15.pdf.

Codesido, S., Hanafi, M., Gagnebin, Y., González-Ruiz, V., Rudaz, S., and Boccard,
J. (2020). Network Principal Component Analysis: a Versatile Tool for the
Investigation of Multigroup and Multiblock Datasets. Bioinformatics 37,
1297–1303. doi:10.1093/bioinformatics/btaa954

Cuentas, S., Peñabaena-Niebles, R., and Garcia, E. (2017). Support Vector Machine
in Statistical Process Monitoring: a Methodological and Analytical Review. Int.
J. Adv. Manuf Technol. 91 (1–4), 485–500. doi:10.1007/s00170-016-9693-y

de Jong, S. (1993). SIMPLS: An Alternative Approach to Partial Least Squares
Regression. Chemometrics Intell. Lab. Syst. 18 (3), 251–263. doi:10.1016/0169-
7439(93)85002-X

Gade, K., Geyik, S. C., Kenthapadi, K.,Mithal, V., andTaly, A. (2019). “ExplainableAI in
Industry,” in Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 3203–3204. doi:10.1145/3292500.3332281

Guo, S., Pang, K., and Qin, S. (2019). Least Angle Regression and Partial Least Squares
Regression on Process Data and High Collinearity. Foundations Process Analytics
Machine Learn. 57, 201682944. https://api.semanticscholar.org/CorpusID:201682944.

Hair, J. F., Ringle, C. M., and Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet.
J. Marketing Theor. Pract. 19 (2), 139–152. doi:10.2753/MTP1069-6679190202

Höskuldsson, A., Rodionova, O., and Pomerantsev, A. (2007). Path Modeling and
Process Control. Chemometrics Intell. Lab. Syst. 88 (1), 84–99. doi:10.1016/
j.chemolab.2006.09.010

Huitson, A., Dunn, O. J., and Clark, V. A. (1976). Applied Statistics: Analysis of
Variance and Regression. The Statistician 25 (Issue 3), 236, 1976 . Wiley.
doi:10.2307/2987845

Johnson, R. W. (2001). An Introduction to the Bootstrap. Teach. Stat. 23 (Issue 2),
49–54. CRC press. doi:10.1111/1467-9639.00050

Frontiers in Analytical Science | www.frontiersin.org August 2021 | Volume 1 | Article 7216579

Offermans et al. Conditional Path Modelling in Industry

https://www.frontiersin.org/articles/10.3389/frans.2021.721657/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frans.2021.721657/full#supplementary-material
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1002/qre.829
http://www.ales2.ualberta.ca/afns/courses/nufs403/PDFs/chapter15.pdf
http://www.ales2.ualberta.ca/afns/courses/nufs403/PDFs/chapter15.pdf
https://doi.org/10.1093/bioinformatics/btaa954
https://doi.org/10.1007/s00170-016-9693-y
https://doi.org/10.1016/0169-7439(93)85002-X
https://doi.org/10.1016/0169-7439(93)85002-X
https://doi.org/10.1145/3292500.3332281
https://api.semanticscholar.org/CorpusID:201682944
https://doi.org/10.2753/MTP1069-6679190202
https://doi.org/10.1016/j.chemolab.2006.09.010
https://doi.org/10.1016/j.chemolab.2006.09.010
https://doi.org/10.2307/2987845
https://doi.org/10.1111/1467-9639.00050
https://www.frontiersin.org/journals/analytical-science
www.frontiersin.org
https://www.frontiersin.org/journals/analytical-science#articles


Kadlec, P., Gabrys, B., and Strandt, S. (2009). Data-driven Soft Sensors in the
Process Industry. Comput. Chem. Eng. 33 (4), 795–814. doi:10.1016/
j.compchemeng.2008.12.012

Kourti, T. (2005). Application of Latent Variable Methods to Process Control and
Multivariate Statistical Process Control in Industry. Int. J. Adapt. Control.
Signal. Process. 19 (4), 213–246. doi:10.1002/acs.859

Lauzon-Gauthier, J., Manolescu, P., and Duchesne, C. (2018). The Sequential
Multi-Block PLS Algorithm (SMB-PLS): Comparison of Performance and
Interpretability. Chemometrics Intell. Lab. Syst. 180, 72–83. doi:10.1016/
J.CHEMOLAB.2018.07.005

MacGregor, J. F., and Kourti, T. (1995). Statistical Process Control of Multivariate
Processes. Control. Eng. Pract. 3 (3), 403–414. doi:10.1016/0967-0661(95)
00014-L

MATLAB (2017). The Math Works (Natick, Massachusetts: Inc). R2017a ed.
Offermans, T., Szymańska, E., Buydens, L. M. C., and Jansen, J. J. (2020).

Synchronizing Process Variables in Time for Industrial Process Monitoring
and Control. Comput. Chem. Eng. 140, 106938. doi:10.1016/
j.compchemeng.2020.106938

Qin, S. J. (1997). “Neural Networks for Intelligent Sensors and Control - Practical
Issues and Some Solutions,” in Neural Systems for Control. Editors O. Omidvar
and D. L. Elliott (Academic Press), 213–234. doi:10.1016/b978-012526430-3/
50009-x

Romano, R., Tomic, O., Liland, K. H., Smilde, A., and Næs, T. (2019). A
Comparison of twoPLS-based Approaches to Structural Equation Modeling.
J. Chemometrics 33 (3), e3105. doi:10.1002/cem.3105

Souza, F. A. A., Araújo, R., and Mendes, J. (2016). Review of Soft Sensor Methods
for Regression Applications. Chemometrics Intell. Lab. Syst. 152, 69–79.
doi:10.1016/j.chemolab.2015.12.011

Team R Development Core (2018). “A Language and Environment for Statistical
Computing,” in R Foundation for Statistical Computing, Vol. 2. 3.6.3. Available
at: https://www.R-project.org..

van Kollenburg, G., Bouman, R., Offermans, T., Gerretzen, J., Buydens, L., van
Manen, H.-J., et al. (2021). Process PLS: Incorporating Substantive
Knowledge into the Predictive Modelling of Multiblock, Multistep,
Multidimensional and Multicollinear Process Data Manuscript Revision

Printed in Blueblue. Comput. Chem. Eng. 154, 107466. doi:10.1016/
J.COMPCHEMENG.2021.107466

van Kollenburg, G. H., Bouman, R., Offermans, T., and Jansen, J. (2020b). Data,
Software and Scripts Related to the Process PLS Methodology Manuscript.
Mendeley Data. doi:10.17632/9x9h7fr4kn.1

van Kollenburg, G. H., van Es, J., Gerretzen, J., Lanters, H., Bouman, R., Koelewijn,
W., et al. (2020a). Understanding Chemical Production Processes by Using PLS
Path Model Parameters as Soft Sensors. Comput. Chem. Eng. 139, 106841.
doi:10.1016/j.compchemeng.2020.106841

Varmuza, K., and Filzmoser, P. (2016). Introduction to Multivariate Statistical
Analysis in Chemometrics. Taylor & Francis Group, LLC. doi:10.1201/
9781420059496

Zhang, Y., Zhou, H., Qin, S. J., and Chai, T. (2010). Decentralized Fault Diagnosis
of Large-Scale Processes Using Multiblock Kernel Partial Least Squares. IEEE
Trans. Ind. Inf. 6 (1), 3–10. doi:10.1109/TII.2009.2033181

Conflict of Interest: ES was employed by FrieslandCampina.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Offermans, Hendriks, van Kollenburg, Szymańska, Buydens and
Jansen. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Analytical Science | www.frontiersin.org August 2021 | Volume 1 | Article 72165710

Offermans et al. Conditional Path Modelling in Industry

https://doi.org/10.1016/j.compchemeng.2008.12.012
https://doi.org/10.1016/j.compchemeng.2008.12.012
https://doi.org/10.1002/acs.859
https://doi.org/10.1016/J.CHEMOLAB.2018.07.005
https://doi.org/10.1016/J.CHEMOLAB.2018.07.005
https://doi.org/10.1016/0967-0661(95)00014-L
https://doi.org/10.1016/0967-0661(95)00014-L
https://doi.org/10.1016/j.compchemeng.2020.106938
https://doi.org/10.1016/j.compchemeng.2020.106938
https://doi.org/10.1016/b978-012526430-3/50009-x
https://doi.org/10.1016/b978-012526430-3/50009-x
https://doi.org/10.1002/cem.3105
https://doi.org/10.1016/j.chemolab.2015.12.011
https://www.R-project.org)
https://doi.org/10.1016/J.COMPCHEMENG.2021.107466
https://doi.org/10.1016/J.COMPCHEMENG.2021.107466
https://doi.org/10.17632/9x9h7fr4kn.1
https://doi.org/10.1016/j.compchemeng.2020.106841
https://doi.org/10.1201/9781420059496
https://doi.org/10.1201/9781420059496
https://doi.org/10.1109/TII.2009.2033181
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/analytical-science
www.frontiersin.org
https://www.frontiersin.org/journals/analytical-science#articles

	Improved Understanding of Industrial Process Relationships Through Conditional Path Modelling With Process PLS
	Introduction
	Methods and Data
	Process PLS
	Demonstrator Process
	Data Collection
	Data Preparation
	Path Modelling Conditional to Single Operation Conditions
	Path Modelling on Multiple Production Conditions
	Software

	Results and Discussion
	Path Modelling Conditional to Single Operation Conditions
	Path Modelling Conditional to Multiple Operation Conditions

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


