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Physiological and behavioral
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Evolutionary Ecology, Plant Protection Institute, HUN-REN Center for Agricultural Research,
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The distribution of a species is best understood by examining the organism-

environment interaction. Climate and anthropogenic habitat degradation,

including urbanization, are salient features of the environment that can limit

species distributions, especially for ectotherms. Comparative studies of the

capacity of individuals to cope with rapid environmental change can help us

understand the future success or failure of local populations or even the species.

Studies of the glucocorticoid stress response are commonly used to understand

how species cope with environmental stressors. Glucocorticoids modulate many

aspects of physiological homeostasis including changes in energetic allocation

and behavior. In a time of global amphibian decline the Gulf Coast Toad (Incilius

nebulifer) is increasing its distribution and abundance. To understand how this

species deals with thermal and urban stressors, we studied glucocorticoid

regulation, hop performance, and lipid storage in I. nebulifer juveniles across

nine populations that differed in average annual temperature and level of

imperviousness (as an indication of urbanization). We measured corticosterone

release rates at baseline, during agitation stress, and during recovery; then

measured locomotor performance and whole-body lipids. We tested if

I. nebulifer in hotter temperatures and more urbanized habitats exhibits

elevated baseline corticosterone levels and either a reduced corticosterone

stress response (“stress resistance” hypothesis) or quick post-stress recovery by

negative feedback (“on again, off again” hypothesis). We also tested whether they

exhibit reduced fat stores and decreased locomotor performance as costs of

dealing with thermal and urban stressors. We found that I. nebulifer showed

elevated baseline and agitation (stressed-induced) corticosterone release rates,

and higher lipid storage with increasing urbanization. Climate had quadratic

effects on these traits, such that populations living at the lowest and highest

temperatures had the lowest corticosterone release rates and lipid stores, and

the highest hop performance was observed in the least urbanized site at the

warmest climate. Additionally, the rate of glucocorticoid recovery after agitation

(negative feedback) decreased with increasing temperature and increased with

increasing urbanization. These results indicate that I. nebulifer follows the “on

again, off again” hypothesis in an adaptive pattern, which may help them cope

with environmental change in terms of urbanization and climatic differences.
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1 Introduction

Comparative population studies of physiological processes

within a species with a broad climatic niche can give insight into

the coping capacity of individuals to rapid environmental change

and potentially the future success or failure of local populations, or

even the species (Riddell et al., 2018; Smith et al., 2019).

Understanding the organism-environment relationship is

important for understanding a species’ distribution and how

behavioral and physiological coping mechanisms help shape

that distribution. For ectotherms in particular, climate and

the various environmental degradations associated with

anthropogenic activities, including urbanization, are notorious

environmental factors that can limit species distributions

(Lomolino et al., 2010). Urban areas are novel habitats that are

characterized by increased amounts of impervious surfaces (e.g.

pavement, concrete, and buildings), higher levels of synthetic

chemicals, changes in noise levels and frequencies, increased light

at night, increased ambient temperatures, and availability of

anthropogenic food sources that are often of poor nutritional

quality (Isaksson et al., 2018). While some species can adapt or

tolerate the changes associated with urbanization, the physiological

basis of their ability to cope with urban environments is less well-

known (Bonier, 2023).

Studies of the glucocorticoid response to stress provide insights

into how animals physiologically and behaviorally cope with

environmental perturbations. At baseline levels in vertebrate

animals, glucocorticoids are involved in growth, somatic

maintenance, and homeostasis (Romero et al., 2009; Sapolsky

et al., 2000). However, baseline levels can be elevated in response

to persistent environmental stressors such as chemical

contaminants and metabolic challenges associated with different

temperatures (Goff et al., 2020; Shidemantle et al., 2021; Narayan

et al., 2012; Eikenaar et al., 2012). At elevated, or stress-induced

levels, glucocorticoids alter behavior and modulate the mobilization

of energy, increasing the likelihood of surviving the stressful

situation, but persistent stressors may lead to pathological

outcomes (Dallman et al., 2003; de Kloet et al., 2005; Dhabhar,

2018; Wingfield and Sapolsky, 2003). Animals that adapt to

environments with persistent stressors can employ different

strategies to prevent pathological outcomes. The “stress

resistance” hypothesis predicts a reduced glucocorticoid response

to stressors (Wingfield et al., 2011), allowing the animal to

adapt to the persistent stressor to the point it rarely perceives it

as a stressor. Alternatively, the “on-again, off-again” hypothesis

predicts a non-reduced stress response coupled with fast recovery

by negative feedback (Zimmer et al., 2019). Strong negative

feedback following the activation of the hypothalamus-pituitary-

adrenal/interrenal (HPA/I) axis allows excess glucocorticoids to be

metabolized and removed quicker, allowing a faster return to

baseline levels (Herman et al., 1992; Jacobson and Sapolsky, 1991;

Keller-Wood and Dallman, 1984). For example, Bókony et al.

(2021) examined the glucocorticoid profiles of common toad

(Bufo bufo) tadpoles from agricultural and urban ponds. They

found that B. bufo copes with urbanization by showing a stronger
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stress response and more efficient negative feedback than tadpoles

from natural ponds.

Even an adaptive glucocorticoid response to stressful

environments may come at costs, as these changes should be

accompanied by changes in other traits affected by stress such as

energy allocation and performance, and when studied all together will

give a more complete view of the stress phenotype (Lattin and Kelly,

2020; Vitousek et al., 2019; Telmeco and Gangloff, 2020). Locomotor

performance and lipid storage have the potential to reveal

energetic trade-offs affected by the glucocorticoid profile, with

important fitness consequences (Sheridan, 1994; Vitousek et al.,

2019; Wack et al., 2013). Glucocorticoids, being primary regulators

of behavior and energy, influence locomotor endurance and lipid

storage, thus playing a role in shaping the stress phenotype (Dallman

et al., 2003; Lattin and Kelly, 2020). For example, elevated baseline

glucocorticoid levels can promote fitness in metabolically demanding

situations that decrease lipid storage (Jimeno et al., 2020). However,

both locomotor endurance and lipid storage may also respond to

stress independently of glucocorticoids (Alvarez and Nicieza, 2002;

Crespi and Warne, 2015). Looking at the population variation in

these responses in a species that is doing well in urban environments

will help give an idea of what a stress phenotype looks like for an

urban-tolerant organism (Harris et al., 2013; Winchell et al., 2016;

Amdekar et al., 2018; Winchell et al., 2018).

The Gulf Coast toad (Incilius nebulifer) is native to central and

eastern Texas and northeast Mexico but is undergoing range

extensions to the north and east in the USA (Mendelson et al.,

2015). It is hypothesized that I. nebulifer uses urban corridors to aid

in its dispersal, as the range extension is strongly associated with

disturbed habitats, including urbanized areas, indicating this species

may be urban-tolerant. Studies in Louisiana on the effects of I.

nebulifer range extension on amphibian communities show the

presence of I. nebulifer tadpoles is associated with a decrease in the

fitness of native amphibian tadpoles (Vogel and Pechmann, 2010).

Therefore, the range extension of I. nebulifer is not only interesting

as it relates to the stress-related consequences of urbanization but

also as a conservation concern.

To explore how this urban-tolerant amphibian with a broad

climatic niche copes with environmental change, we investigated

the stress phenotype of I. nebulifer in response to climate and

urbanization. To do so, we measured differences in the

corticosterone (the principal glucocorticoid in amphibians) profile

(baseline, stress response, and recovery), locomotor performance,

and whole-body lipid storages of young juveniles of I. nebulifer,

from nine populations across three latitudes in Texas. We predicted

that I. nebulifer in more urbanized and hotter environments will

show higher baseline corticosterone levels, and either weaker stress

response or stronger negative feedback depending on whether they

employ the strategy predicted by either the “stress resistance”

hypothesis or the “on again, off again” hypothesis, respectively, to

deal with thermal and urban stressors. Furthermore, we predicted

that both lipid storage and locomotor performance would be

decreased in more urbanized and hotter sites because of the

trade-offs involved in dealing with the metabolic demands and

stressors of these environments.
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2 Materials and methods

2.1 Field collection

We sampled nine populations in early summer 2021 from three

latitudes approximately 485 km apart, across Texas, USA under the

assumption that temperature would decrease with increasing latitude.

At each latitude, we sampled three populations that varied in levels of

urbanization, corresponding roughly to the lowest, median, and

highest range of urbanization intensity across the habitats occupied

by the species (Table 1). Notably, although adults can be found in

more urbanized sites than the ones we sampled (iNaturalist),

breeding and young metamorphs are unlikely to be found in highly

impervious areas where very little standing water persists relatively

undisturbed for several weeks, especially during summers in Texas. In

the field at each site, we collected recently metamorphosed I. nebulifer

(20-24 individuals per population). We identified recently

metamorphosed (< 2 months after completing metamorphosis)

juvenile toads by size (< 2 g) and by proximity to water; average

body mass was 0.17 g (range: 0.02 – 1 g).

For each site, we determined the urbanization level from

measures of imperviousness taken from the USGS (United States

Geological Survey) national landcover database (NLCD2019 at ~

30m resolution) and the average annual temperature of sites from

Worldclim data (version 2.1 at ~ 1km resolution; Table 1). Average

annual temperature allows for a simple, easy-to-interpret proxy of

climatic differences at the landscape scale, which is appropriate for

our study because I. nebulifer is active all year throughout most of

its distribution (Mendelson et al., 2015). Microclimate data would

potentially improve model performance over macroclimate data.

However, we had no information on any geographic variation in the

microhabitat use of I. nebulifer. Additionally, macroclimate data

have been shown to be sufficient for predicting mechanistic

responses to broad-scale environmental variables (Sanabria and

Quiroga, 2019; Pateman et al., 2016). Using ArcGIS (ArcMap

version 10.8.2), a 500-meter radius circle was made around each

site using the buffer tool. The circles were layered over rasters of
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average annual temperature and imperviousness, and the average

value of pixels with their center inside the circle was used as the

value for that location.
2.2 Hormone field collection

Water-borne baseline, agitation, and recovery corticosterone

release rates were taken on-site following an established protocol

between 0700-1600h (Monroe et al., 2023). Briefly, beakers were

filled with 30 ml of spring water for hormone collection. A

perforated plastic insert was added to the beaker for moving

juveniles to new beakers. The juveniles were then placed into the

plastic insert and a mesh lid was added on top to prevent the

juveniles from escaping or climbing out of the water. Juveniles were

collected, placed in the first beaker setup within 30 min of

collection, placed in a cardboard box with dividers, and left alone

in the shade for 1h. Juveniles were then transferred using the plastic

insert to a new beaker of 30 ml fresh spring water for collection of

agitation levels. Juveniles were agitated by placing beakers in a

cardboard box with dividers and gently swirling and rocking the

box for 1 min every 3 min for 1 h. Juveniles were then transferred

using the plastic insert to a third beaker of 30 ml fresh spring water

and left alone in the shade for 1 h for collection of recovery levels.

After hormone collection, we moved each water sample into a

sterile 50 ml falcon tube, temporarily stored them on ice during

transportation, then stored them at -20°C until extraction. All

beakers and inserts were cleaned with 95% ethanol and rinsed

with distilled water before use. Gloves were always worn during

hormone collection to prevent contamination.
2.3 Extraction and quantification
of hormones

Hormones were extracted from the water using C18 solid-phase

extraction columns (SepPak Vac3 cc/500 mg; Waters, Inc., Milford,
TABLE 1 Environmental variables and collection dates for each site where Incilius nebulifer were collected.

Population Collection
date 2021

Latitude Longitude Annual
temperature

Imperviousness

River Legacy Park 15 June 32.790 -97.101 18.5°C 0%

Cliff Neilson Park 6 July 32.667 -97.183 18.5°C 21%

O.S. Gray Natural Area 6 July 32.734 -97.140 18.1°C 48%

Barton Creek Trail 4 June 30.244 -97.809 19.9°C 0%

Slaughter Creek 27 September 30.162 -97.811 19.9°C 22%

Walnut Creek Park 29 June 30.398 -97.685 19.7°C 44%

Sabal Palm Sanctuary 21 June 25.851 -97.419 23.2°C 0%

UTRGV Campus 22 June 25.894 -97.488 23.2°C 37%

La Posada Resaca 18 May 25.887 -97.447 23.2°C 39%
frontiersin.org

https://doi.org/10.3389/famrs.2024.1444580
https://www.frontiersin.org/journals/amphibian-and-reptile-science
https://www.frontiersin.org


Monroe et al. 10.3389/famrs.2024.1444580
MA, USA) under vacuum pressure following Forsburg et al. (2019).We

primed the columns with 4 ml methanol and 4 ml distilled water. After

extraction, we eluted columns with 4 ml methanol into borosilicate

vials. The methanol was evaporated under a gentle stream of nitrogen

gas while in a 37°C water bath. We re-suspended the residue in 500 µL

of 5% ethanol diluted with enzyme-immunoassay (EIA) buffer

(provided by Cayman Chemicals Inc., Ann Arbor, MI, USA). After

resuspension, we shook samples for 2 h to fully resuspend the residue.

This suspension value ensured that corticosterone values were within

the assay range of the kit. Corticosterone concentrations were measured

in duplicate for all samples with an EIA kit (Cayman Chemicals Inc.)

on a microplate absorbance reader (BioTek ELX800) set to 405 nm.

Inter-plate coefficient of variation (CV) was 12.5% (18 plates; intra-

plate CV range: 1.01–12.03). Four samples were lost while extracting

hormones. We expressed corticosterone release rate for each hourly

sample as corticosterone quantity divided by body mass (pg/g). All

corticosterone values were then natural log transformed for statistical

analyses. We calculated the magnitude of the stress response to

agitation as: 100 × (agitation – baseline)/baseline untransformed,

mass adjusted corticosterone. We measured negative feedback as the

relative change from agitation to recovery levels as: 100 × (agitation –

recovery)/agitation untransformed, mass adjusted corticosterone.
2.4 Locomotor performance

After hormone collection, we placed juveniles in individual

500 ml deli cups with a damp paper towel and a perforated lid for

transporting to and housing at Texas State University, San Marcos,

TX. Locomotor performance trials were modified from Llewelyn

et al. (2010) to accommodate juvenile toads. In summary, we

acclimated and fasted juveniles for 24 h in the animal care

facility, maintained at 24 ± 2°C, before starting locomotor trials.

Trials were performed in the same room where juveniles were

housed, between 0900-1200h which is normal activity time for these

toads. Trials consisted of placing juveniles individually into a 2-

meter-long track made from a plastic rain gutter (13 cm wide ×

10 cm deep) with transparent plastic ends to encourage linear travel.

The bottom of the track was lined with damp paper towels to

maintain moisture levels and provide traction. We facilitated travel

by holding a small paintbrush behind the toads. When movement

stopped, toads were encouraged to continue moving by

gently tapping on the hindlegs and urostyle with the small

paintbrush. No pressure was applied to the toads, just the tactile

sensation of being touched was used to facilitate movement. When

juveniles reached the end of the track, we turned them around by

gently tapping their snout with the paintbrush. Locomotor

performance was determined as the distance traveled in 10 min.

In preliminary trials after one full hour of hopping, toads did not

exhibit typical signs of exhaustion (not moving after 10 taps on the

urostyle) most likely due to their small size allowing for quick

recovery. However, speed greatly reduced after ~10 minutes so we

used distance traveled in 10 minutes as our measure of

locomotor performance.
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2.5 Whole body lipid extraction

After the locomotor performance trials, we euthanized juveniles

in an ice bath and dried them at 60°C until they attained a constant

weight (36-48 h). We then placed each sample in a lipid-free filter

paper (Whatman™ Grade 602H) envelope made by cutting the

filter paper into a 4 × 6 cm rectangle and folding the edges over to

make a 2 × 2 square envelope. Samples were sealed inside by

stapling the open end of the envelope. Preliminary trials showed

that staples did not change weight during the extraction process.

Because of the small volume of the samples, we did not homogenize

them to prevent any loss of material.

We labeled the filter paper envelopes using a graphite

pencil and placed the filter paper envelopes into a Soxhlet

extraction setup. For efficiency, we processed samples in batches

of 12. We used petroleum ether as our extraction solvent and heated

it to 45°C. This resulted in a cycle time of about 15 min. We

extracted the samples for 6 h, allowed the remaining petroleum

ether to evaporate off the samples, and placed the samples in a 60°C

dryer for 1 h.

We weighed the samples after initial drying (S), after placing

them in the filter paper envelope (X), and again after the lipid

extraction and final drying (T). The weight of the filter paper and

staple (FP) was calculated by subtracting initial dry weight from the

total weight before lipid extraction (X – S; note that we used lipid-

free filter paper so there was no weight loss due to the filter paper

during lipid extraction). We determined the total lipid content as

the percent of total body weight lost during the extraction process

using the following formula: 100 × (1-(T-FP))/S.
2.6 Statistical analysis

All statistical analyses were performed using the statistical

software R (version 4.3.2) through the interface R studio (version

19.1.3) using packages “nlme” and “emmeans”. Graphs were made

using the package “ggplot2”. We used linear mixed-effects models

and evaluated each model’s fit to the statistical assumptions by

graphical inspection of data distributions and model residuals.

These diagnostics showed that 1) there was no multi-collinearity

between temperature and urbanization, 2) outlying data points were

not influential, 3) homoscedasticity was not met, so we allowed for

heterogeneous variances across sites in all models using the

“varIdent” function.

First, we tested whether log-transformed corticosterone release

rates responded to agitation and then recovered, including all three

hormone samples of each individual as repeated measures. We ran this

model first to test the overall effect of sample type (i.e., baseline,

agitation, recovery) across all populations, adding site and animal ID as

nested random factors. Then to evaluate the hormonal changes within

each site, we included the interaction between sample type and site as

fixed factors, and animal ID as a random factor. From the latter model,

significance levels were adjusted to reduce the probability of type I error

for multiple pairwise comparisons between sample types by applying
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the false discovery rate (FDR; Pike, 2011)method to all 18 P-values (i.e.,

9 sites × 2 comparisons: one for stress response and one for recovery).

Second, we evaluated the effects of average temperature and

urbanization (using both as numeric variables) on all measured

response variables with site as the random intercept. Based on

model-fit plots, we added the quadratic effect of temperature into all

models. Locomotor performance (hop distance; mm) was divided

by snout-to-urostyle length (cm) to control for differences in body

size. The locomotor performance model had poor model fit without

the interaction between temperature and urbanization, so we added

the interaction into this model only. To evaluate our prediction for

the corticosterone response to stress, we analyzed both the absolute

level of stress-induced corticosterone release rate and the

magnitude of the stress response (i.e. change from baseline to

agitation), as both can be informative when comparing different

populations (Bókony et al., 2021; Vitousek et al., 2018). By the same

logic, we evaluated our prediction for the negative feedback by

analyzing both the absolute level of post-agitation recovery

corticosterone release rate and the rate of the negative feedback

(i.e. change from agitation to recovery).
3 Results

Incilius nebulifer showed a significant stress response and

recovery both within and across populations (Table 2). This

indicates we were able to effectively sample the corticosterone

stress profile. Climate had a significant quadradic effect on

corticosterone release rates in all three sample types, meaning

release rates were highest at the mid-latitude populations with an

average annual temperature of ~20°C. Baseline and agitation (but

not recovery) corticosterone release rates increased with increasing

urbanization as well (Table 3; Figures 1A, B). The magnitude of

stress response was not significantly related to temperature or

urbanization (Table 3), but the rate of negative feedback

decreased with increasing temperature and increased with

increasing urbanization (Table 3).

Climate had a quadratic effect on whole-body lipids (although

this effect was just above the significance threshold of p=0.05), with

highest lipid content being at the mid-latitude populations with an

average annual temperature of ~20°C (Table 4; Figure 2).

Urbanization had a linear relationship with whole-body lipids

with lipid content increasing with increasing urbanization

(Table 4; Figure 2). Locomotor performance was related to a

significant interaction between climate and urbanization (Table 4;

Figure 3): urbanization had a negative relationship with locomotor

performance but only in the populations at the highest (~23°C)

average annual temperature (Figure 3).
4 Discussion

Using physiological stress markers is central to understanding

the organism-environment interaction and for understanding
Frontiers in Amphibian and Reptile Science 05
TABLE 2 Pairwise comparisons of log transformed corticosterone
release rates (pg/g/h) between sample types for Incilius nebulifer.

Comparison Difference ± SE t FDR-adjusted P

Across all populations

Baseline—agitation -0.64 ± 0.04 -15.07 <0.001

Agitation
—recovery

-1.02 ± 0.04 -23.80 <0.001

Within populations

Cliff Nelson Park

Baseline—agitation -0.48 ± 0.13 -3.70 <0.001

Agitation
—recovery

-1.25 ± 0.13 -9.65 <0.001

O.S. Gray Natural Area

Baseline— agitation -0.80 ± 0.15 -5.32 <0.001

Agitation
—recovery

-1.41 ± 0.15 -9.60 <0.001

River Legacy Park

Baseline—agitation -0.61 ± 0.09 -6.49 <0.001

Agitation
—recovery

-0.93 ± 0.09 -9.89 <0.001

Walnut Creek Park

Baseline—agitation -0.70 ± 0.14 -5.13 <0.001

Agitation
—recovery

-1.25 ± 0.14 -9.10 <0.001

Barton Creek Trail

Baseline—agitation -0.80 ± 0.14 -5.83 <0.001

Agitation
—recovery

-0.80 ± 0.14 -5.95 <0.001

Slaughter Creek

Baseline—agitation -0.69 ± 0.18 -3.89 <0.001

Agitation
—recovery

-1.12 ± 0.18 -6.34 <0.001

La Posada Resaca

Baseline—agitation -0.89 ± 0.11 -7.91 <0.001

Agitation
—recovery

-0.71 ± 0.12 -6.33 <0.001

UTRGV Campus

Baseline—agitation -0.50 ± 0.11 -4.51 <0.001

Agitation
—recovery

-1.10 ± 0.11 -9.88 <0.001

Sabal Palm Sanctuary

Baseline—agitation -0.54 ± 0.11 -4.89 <0.001

Agitation
—recovery

-0.85 ± 0.11 -7.67 <0.001
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species distributions. Corticosterone mediates metabolic processes,

and its levels often increase in metabolically challenging times or

areas (McCall, 2019). However, in chronically stressful

environments vertebrates may downregulate their stress response

or increase the rate of negative feedback as this may reduce the

detrimental effects associated with chronic stress (Bókony et al.,

2021; Kolonin et al., 2022; Shidemantle et al., 2021). Furthermore,

energetic trade-offs of dealing with metabolic challenges and other

stressors may limit lipid stores and locomotor performance. We

examined the stress phenotype of Incilius nebulifer across two

environmental gradients (climate and urbanization) to test these

predictions. To summarize our results, we found that populations of

I. nebulifer had the highest baseline, stress-induced, and recovery

corticosterone release rates and highest amounts of lipid stores at

mid-latitude populations with ca. 20°C average annual temperature,

while the rate of negative feedback decreased with increasing

temperature. Baseline, agitation, and recovery corticosterone

release rates, as well as the rate of negative feedback and lipid

stores increased with increasing urbanization (imperviousness).

Locomotor performance decreased with increasing urbanization

but only across the low-latitude populations with ca. 23°C average

annual temperature.

For urbanization, our results support our predictions for

glucocorticoid regulation. Specifically, toad populations in more

urbanized sites had higher baseline and agitation corticosterone
Frontiers in Amphibian and Reptile Science 06
release rates and faster recovery rates. These findings are strikingly

similar to what we found earlier in another toad species (Bókony et al.,

2021). The higher baseline levels may represent an adaptation to deal

with the metabolic challenges associated with urban habitats,

including the urban heat island effect (Gartland, 2008; Brans et al.,

2018) and combating the effects of environmental contaminants and

other urban stressors (Bókony et al., 2021; Gabor et al., 2018). The

higher stress-induced levels of corticosterone indicate that toads do

not display “stress resistance” in urban habitats. Instead, their non-

diminished stress response allows them to adequately deal with

stressful stimuli. Furthermore, higher stress-induced corticosterone

levels may also have a preparative effect that allows for a more efficient

response to subsequent stressors when the likelihood of unpredictable

stressors is high (Romero, 2002; Sapolsky et al., 2000) and may

increase the threshold of severity necessary for the subsequent

stimuli to become stressors (Vera et al., 2017). Finally, the higher

rate of recovery by negative feedback in more urbanized sites suggests

that toads conform to the “on again off again” hypothesis”, which is

likely adaptive, because the ability to downregulate the stress response

quickly post-stress may protect the animals from chronic elevation of

corticosterone levels and their detrimental consequences for early-life

growth and development (Crespi and Warne, 2013; Romero et al.,

2009; Wingfield and Sapolsky, 2013).

In contrast, our results did not support our predictions for the

effects of urbanization on lipid stores and locomotor performance.
TABLE 3 Mixed-effects model results for measures of the corticosterone stress profile for Incilius nebulifer.

Dependent variable Model coefficients Estimate SE t P

Baseline Corticosterone (pg/g/h) Intercept 6.00 0.15 40.86 <0.001

Temperature—Linear effect -0.5 1.29 -0.38 0.701

Temperature—Quadratic effect -3.04 1.37 -2.22 0.027

Imperviousness 0.01 0.01 2.63 0.034

Agitation Corticosterone (pg/g/h) Intercept 6.62 0.14 47.04 <0.001

Temperature—Linear effect -0.43 1.26 -0.34 0.732

Temperature—Quadratic effect -3.59 1.29 -2.78 0.006

Imperviousness 0.02 0.01 3.07 0.018

Recovery Corticosterone (pg/g/h) Intercept 5.73 0.22 26.26 <0.001

Temperature—Linear effect 1.6 1.88 0.86 0.397

Temperature—Quadratic effect -3.95 1.98 -1.99 0.048

Imperviousness 0.008 0.007 1.12 0.301

Locomotor Magnitude of Stress
Response 9%)

Intercept 107.79 20.78 5.19 <0.001

Temperature—Linear effect -49.96 199.99 -0.25 0.803

Temperature—Quadratic effect -296.30 250.52 -1.18 0.238

Imperviousness 0.91 0.80 1.14 0.293

Rate of Negative Feedback (%) Intercept 50.96 3.13 16.26 <0.001

Temperature—Linear effect -61.40 29.69 -2.07 0.040

Temperature—Quadratic effect 11.48 23.05 0.50 0.619

Imperviousness 0.31 0.09 3.38 0.012
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We expected negative effects on these traits due to energetic trade-

offs, but instead, we found a positive effect of urbanization on the

percentage of body fat. This finding is in parallel with higher

corticosterone release rates and faster negative feedback at more

urbanized sites. Furthermore, locomotor performance did not vary

with urbanization, except for a negative relationship at the warmest

climate. A limitation of our measure of locomotor performance is

that we were not able to measure endurance to exhaustion.

However, our measure likely provided an indication of locomotor

performance under a simulated predator attack, which is an

ecologically important trait that relates to glucocorticoid

regulation. Put together, these findings suggest that the stress

phenotype of I. nebulifer in response to urbanization is adaptive,

such that hormonally dealing with the stressors of more urbanized

habitats does not come at the cost of lower lipid reserves or reduced

locomotion performance, except to some extent at the lowest

latitudes of its range. While there is no clear consensus across

species on what a coping endocrine response to urbanization looks

like (Bonier, 2023), the parallel trends between increased lipid

storage, increased baseline and agitation corticosterone release

rates, and more efficient negative feedback indicate that the

altered glucocorticoid regulation of I. nebulifer in urbanized

habitats might help to maintain body condition, which increases

survival (Scott et al., 2007). However, further studies and

experimental manipulations are needed to test whether the lipid

response is causally related to the glucocorticoid response.

Climatic differences across our study sites had quadratic effects

on all three corticosterone release rates as well as on lipid stores and

locomotor performance. Specifically, corticosterone levels and lipid

stores were highest in mid-latitude populations within the range

that we studied. One potential explanation for this may be a down-

regulation of the corticosterone stress response along the northern

invasion front (Kosmala et al., 2020) essentially representing a

switch to a stress resistance strategy to meet the metabolic

demands of a different climate (Eikenaar et al., 2012). The

reduced lipid levels might be due to an increased growth rate to
FIGURE 1

Log transformed corticosterone release rates (pg/g/h) of Incilius
nebulifer across levels of urbanization (% imperviousness) at (A)
baseline, and (B) agitation. Colors indicate latitude and average
annual temperature (blue squares= high latitude, ~18.5°C; purple
circles= mid latitude, ~20°C; red triangles= low latitude, ~23°C). The
trend line is the linear relationship between corticosterone release
rates and urbanization with the gray shading representing 95%
confidence bands.
TABLE 4 Mixed-effects model results for whole body lipids (%) and locomotor performance (hop distance expressed as multiple of snout-to-urostyle
length) for Incilius nebulifer.

Dependent variable Model coefficients Estimate se t-value P

Whole Body Lipids Intercept 22.55 4.25 5.31 <0.001

Temperature—Linear effect 37.8 37.79 1.00 0.318

Temperature—Quadratic effect -78.12 40.00 -1.95 0.052

Imperviousness 0.41 0.15 2.78 0.027

Locomotor Performance Intercept 1343.08 42.38 31.69 <0.001

Temperature—Linear effect (TLE) 1402.13 617.17 2.27 0.024

Temperature— Quadratic effect (TQE) 1748.39 636.75 2.75 0.007

Imperviousness -3.96 1.50 -2.64 0.046

TLE × Imperviousness -58.29 20.23 -2.88 0.035

TQE × Imperviousness -5.46 20.28 -0.27 0.799
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compensate for the reduced growing season of the higher latitude.

For example, Dahl et al. (2012) found some support for the

hypothesis that in colder environments tadpoles down-regulate

their stress response as this reduces the negative effects on growth

in areas with a shorter growing season. On the other hand, the

decrease in corticosterone and lipid levels from the mid-latitude to

the low-latitude populations is most likely due to a decrease in

growth demands and energy storage needs in warmer

environments. The distribution of I. nebulifer extends to southern
Frontiers in Amphibian and Reptile Science 08
Mexico, and their developmental thermal tolerances are between

18°C and 38°C (Ballinger and McKinney, 1966), suggesting they

prefer or at least can well tolerate high temperatures (Mendelson

et al., 2015). This might also explain the higher locomotor

performance of the southern populations in our study. In

contrast, the increase in locomotor performance from the mid-

latitude to the northern climates might be related to selection for

higher activity at the invasion front, as has been found in other

species (Llewelyn et al., 2010).

How species cope with urbanization has been a major topic of

consideration (Alberti et al., 2020; Cordier et al., 2021;

Injaian et al., 2020). Similarly, ongoing climate change is of great

concern, and already existing climatic adaptations across

geographic gradients have been increasingly studied to predict

future outcomes (Urban et al., 2013). However, organisms are

simultaneously affected by urbanization and climate change,

which can interact, resulting in complex outcomes (Urban et al.,

2024). In our study, such an interaction explained the variation in

locomotor performance, as urbanization had a negative effect on

hop distance only in the warmest climate we investigated. This

suggests that the physiological strategies employed by this urban-

tolerant species, specifically the higher corticosterone and lipid

levels of urban populations, might come at the expense of

locomotor performance under certain climatic conditions, such as

the hot Texas summers. This finding highlights the need for more

studies, not only in I. nebulifer, specifically designed for testing the

interactions between the effects of climatic changes and

anthropogenic habitat alterations. Understanding the nature,

causes, and consequences of climate-dependent effects of

urbanization across the diversity of life is one of the most

important challenges for the protection of biodiversity and

ecosystems (Urban et al., 2024).

There are several limitations to our study that should be borne

in mind when interpreting the results. For feasibility, we sampled

only three populations from each of three latitudes, and we assumed

that the effects of urbanization would be linear across the sampled

gradient of imperviousness (i.e. from zero to 48%). While this is

clearly a step forward compared to earlier studies that investigated

inter-population variation in glucocorticoid regulation either across

latitudinal (e.g. Breuner et al., 2003; Dahl et al., 2012; Pravosudov

et al., 2004) or urbanization gradient (e.g. Bókony et al., 2012;

Bókony et al., 2021; Gabor et al., 2018; Kolonin et al., 2022) or both

gradients but with a smaller number of sites (e.g. Bonier et al.,

2006), several questions have remained unanswered. First, we

cannot unambiguously separate the effects of climate from the

effects of selection acting during range extension, because our

coolest-climate populations were also the ones at the northern

invasion front. Further studies should try to disentangle the

effects of climatic effects of distribution shifts and other selection

pressures of invasion on “coping styles”. Second, we assumed that

gross climatic differences between latitudes reflect the temperatures

the toadlets are exposed to, and we did not measure local

microhabitat temperatures. Future studies should investigate

whether juvenile toads adjust their microhabitat choice along

gradients of temperature and urbanization to mitigate the trade-

offs posed by suboptimal climates. Third, we assumed that the
FIGURE 2

Whole body lipid stores of Incilius nebulifer across levels of
urbanization (% imperviousness). Colors indicate latitude and
average annual temperature (blue squares=high latitude, ~18.5°C;
purple circles=mid latitude, ~20°C; red triangles=low latitude,
~23°C). The trend line is the linear relationship between whole-body
lipid stores and urbanization with the gray shading representing 95%
confidence bands.
FIGURE 3

Locomotor performance (hop distance expressed as multiple of
snout-to-urostyle length) of Incilius nebulifer across levels of
urbanization (% imperviousness). Colors indicate latitude and
average annual temperature (blue squares=high latitude, ~18.5°C;
purple circles=mid latitude, ~20°C; red triangles=low latitude,
~23°C). The trend lines are the linear relationships between
locomotor performance and urbanization with the gray shading
representing 95% confidence bands. Temperatures are separated
into three categories to visualize the interaction between average
annual temperature and urbanization.
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effects of urbanization would be linear; however, this is not always

the case (Miltner et al., 2004). Although our analyses did not suggest

non-linear effects of urbanization, to validate this it will be necessary

to sample the gradient of urbanization at a higher resolution at each

climate. Altogether, we call for more detailed studies for

understanding the role played by endocrine flexibility in

physiological and behavioral adaptations to urbanization and

climatic changes.
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