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The rapid transformation and pollution of ecosystems have severely impacted

biodiversity. Specifically, anthropogenic activities have imposed adverse effects on

amphibians, with evidence suggesting that these activities alter parasite and

pathogen interactions within their hosts. To investigate these interactions in

areas affected by different anthropogenic activities, our study focused on

analyzing a pathogen and a parasite known to interact within the amphibian skin

(spongy epidermis layer) and both compromising amphibian health:

Batrachochytrium dendrobatidis (Bd), a fungus responsible for chytridiomycosis,

a disease associated with massive population declines in amphibians and the

Hannemania sp. mite in Mexico. Four sampling areas along the Sonora River were

selected, representing different human activities: mining, livestock, wastewater

discharge, agriculture, and one in an urban zone. We analyzed 135 amphibians

across 10 anuran species. Among these, the most abundant species (Lithobates

yavapaiensis) exhibited the highest prevalence of both pathogen and parasite

(90.1% and 27.3%, respectively) and was significantly associated with the intensity

of Bd-infection. The prevalence of Hannemania mites varied significantly across

sampling sites as did Bd prevalence and infection load, with the highest Bd load

found at the wastewater discharge site. A significant association between the

intensity of Bd-infection and both mite abundance and amphibian species was

observed when the sampling site was considered. Additionally, sites with Bd-

positive individuals and Hannemania parasitism coincide with refractory elements

characterized by mechanical or corrosion resistance. The persistence of these

elements in the environment, along with the small particle size (<850 nm) found in

sediments, poses a potential risk of internalization, bioaccumulation (e.g., Fe, Co,
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and Ti), and their transfer through the food chain. It is thus essential to consider

monitoring environmental and biotic factors that modulate the relationships

between parasites, pathogens, and amphibians if we are to propose

conservation strategies adapted to disturbed environments.
KEYWORDS

Batrachochytrium dendrobatidis, Hannemania mites, amphibians, anthropogenic
activities, land use change, pollution
1 Introduction

Anthropogenic activities have had detrimental effects on

amphibians (Da Rocha et al., 2020; Yang et al., 2022), and there

is compelling evidence that anthropogenic factors drive disease

dynamics for these taxa (Becker et al., 2016; Bienentreu and

Lesbarrères, 2020; De Andrade Serrano et al., 2022; Haver et al.,

2022). Land use changes due to anthropogenic activities (e.g.,

urbanization, mining, industrialization, and agriculture) have

intensified, leading to the over-exploitation, deterioration, and

pollution of ecosystems (Archer and Stokes, 2000; Rashid and

Romshoo, 2013; Kija et al., 2020). These anthropogenic threats

have affected many species and biological processes (Thushari and

Senevirathna, 2017; Ukaogo et al., 2020). Among vertebrates,

amphibians present the greatest population decline and the

greatest risk of extinction (Green et al., 2020; Button and Borzée,

2021). With permeable skin through which they exchange gases,

pollutants, or substances, amphibians are more susceptible to

changes or diseases than other vertebrate groups (Kaufmann and

Dohmen, 2016) and are considered indicators of ecosystem health.

For instance, the pathogen Batrachochytrium dendrobatidis (Bd),

the main causative agent of the disease chytridiomycosis, has resulted

in mass mortalities among amphibians globally (Fisher and Garner,

2020). Additionally, the incidence of parasites likeHannemaniamites

has been acknowledged for their impact on amphibians, leading to

deformities, loss of chemosensory function, reduced foraging

capacity, diminished survival, and decreased reproduction

(Anthony et al., 1994; Maksimowich and Mathis, 2000; Jacinto-

Maldonado et al., 2016). It is recognized that anthropogenic

activities, land-use changes, habitat loss, synergistic effects with

pollutants (e.g., high concentrations of heavy metals), and other

environmental factors (e.g., climate, altitude) may alter parasite and

Bd infection dynamics, affecting occurrence rates, spread,

transmission, prevalence, infection intensity of Bd, and host

mortality (DeAlto, 2020; Siddons et al., 2020; Deknock et al., 2022).

Both Bd and Hannemania affect amphibians by persisting and

developing within the spongy epidermis layer (Duszynski and

Jones, 1973; Stice and Briggs, 2010). During the larval instar of

Hannemania, mites might transport toxic nanoparticles to the

amphibian body (e.g., cerium oxide nanoparticles), potentially

altering the parasite-host relationship and the pathogen-host
02
dynamic, thereby increasing mortality, inducing behavioral changes,

and inhibiting amphibians’ growth (Jacinto-Maldonado et al., 2022).

Mexico is a hotspot of diversity and endemism of amphibian

species (Ochoa-Ochoa et al., 2014), and the presence of Bd and

Hannemania parasites has been reported throughout the country

including the Sonora state (Hoffmann, 1965; Loomis and

Welbourn, 1969; Goldberg et al., 2002; Basanta et al., 2021;

Jacinto-Maldonado et al., 2022). The Sonora state is situated at

the northern edge of the country, hosting thirty-eight amphibian

species (Lemos-Espinal et al., 2015, 2019). In 2014, a spill of

40,000 m3 of copper sulfate occurred in the Sonora River, and the

consequences for wildlife remain unknown (León-Garcıá et al.,

2018; Molina-Freaner and Mart ı ́nez-Rodrı ́guez, 2022).

Additionally, the Sonora River receives waste such as garbage and

wastewater, alongside ongoing anthropogenic activities like

livestock rearing, agriculture, and urbanization. The impacts of

these activities on the presence and dynamics of pathogens and

parasites in amphibians are still poorly understood. Both the fungus

and the mite can potentially interact in the spongy stratum of the

amphibians; however, the impact of each one may be different and

this can be influenced by the biotic and abiotic variables that

characterize various types of disturbance. We aimed to analyze

parasite and pathogen presence in amphibians (Hannemania mites

and Bd) and their potential interaction with environmental

variables where different anthropogenic activities are being

developed in this region. We hypothesized that the presence and

infection levels of the fungal pathogen Bd and Hannemania mites

will vary depending on host species, the type of disturbance and the

environmental variables associated with each study area.
2 Materials and methods

2.1 Study area

Our sampling was carried out in March, April, and July of 2021.

Five sampling sites were selected for their anthropogenic activity.

Three of them were affected by the copper sulfate spill that occurred

in 2014 in Sonora state, Mexico (Figure 1): Bacanuchi (Mining site,

closest to the spill site), Bacoachi (Extensive Livestock farming site,

the spill did not reach this site), Aconchi (Wastewater discharge
frontiersin.org
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site, site affected by the spill), Ures (Agriculture site affected by the

spill), and Hermosillo (Urban site, the spill did not reach this site).

Sediment and water quality were analyzed at each sampling site.
2.2 Environmental samples

At each site, soil samples were collected in three areas (two in the

flood zone and one in the river). Sediments were analyzed using a

portableX-rayfluorescence (PXRF) Niton FXL analyzer

(ThermoScientificInc, MA, USA) and PXRF analyses were performed

according to the procedures described in US EPA Method 6200. Three

measures were implemented to ensure quality control and precision of

PXRF measurements (Supplementary Material 1).

Water physicochemical characteristics were analyzed with a

multi-parameter (Oakton PCSTestr 35 Impermeable) and the

following variables were registered: pH, conductivity, total

dissolved solids, and salinity (Supplementary Material 1).
2.3 Amphibian species sampling

The sampling effort for each site equaled 18 person-hours. The

amphibians were manually collected wearing new vinyl gloves per

each individual. Each specimen was swabbed, weighed, measured,

and individuals were identified to species (Lemos-Espinal et al., 2015;

Rorabaugh and Lemos-Espinal, 2016). Swabs were taken following

Hyatt et al. (2007) protocol, the drink path, thighs, and toes were

swabbed (5 times), and then the swab was preserved in liquid

nitrogen and stored at −80° in the laboratory. Morphological

variables such as malformations, injuries, or erythema (skin

reddening) were also recorded (Supplementary Material 2).
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All individuals were released after sampling. Amphibians were

collected under a scientific collector permit (SPARN/DGVS/02985/

23) from the Secretarıá de Medio Ambiente y Recursos Naturales.
2.4 Bd detection

DNA extraction was conducted with a Qiagen DNA extraction

kit and real-time PCR was conducted as described in Boyle et al.

(2004). All samples were analyzed in duplicate. Standards of DNA

synthetic fragments (gBlocks, Integrated DNA Technologies) of 1, 10,

100, and 10,000 internal transcribed spacer (ITS) Bd equivalent copies

were estimated to know ITS copies of Bd in each swab. Samples were

considered positive if an exponential amplification curve was

generated in both replicates. When one replicate was negative, a

third replicate was run to determine the infection status of the sample.
2.5 Mite detection and
taxonomic identification

After amphibian sampling (swab, weight, identification),

amphibians with mites were anesthetized using an immersion

bath of isoflurane (100%) (Doss et al., 2021) before mite removal.

Subsequently, the area was disinfected with an hyper-oxidase

solution, and individuals remained in disinfected containers until

release (max. 5 mins). No individual died during this procedure.

Once removed, mites were counted and preserved in 70% and 100%

ethanol. Mites were cleared with lactophenol and then mounted

them with PVA medium in semi-permanent microscope slides.

Using the keys by Brennan and Goff (1977) and Hoffmann (1990),

taxonomic identification was made. The mites were collected
BA

FIGURE 1

(A) Sonora state, Mexico. (B) Sampling sites where different anthropogenic activities are developing.
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under a scientific collector permit (SGPA/DGVS/05384/22)

from the Secretarıá de Medio Ambiente y Recursos Naturales

(SEMARNAT) and were deposited at the Colección Nacional de

Ácaros (CNAC), Instituto de Biologıá, Universidad Nacional

Autónoma de México, Mexico City, Mexico.
2.6 Statistical analysis

The amount of sediment composition variance within and among

sampling sites was determined using boxplots and a linear Discriminant

Analysis (LDA) tomodel the environmental data (sediment composition

and water quality). Five classes based on the environmental variables of

each sampling site were delimitated and 20% of samples in each category

were chosen to conduct a cross-validation test (Balakrishnama and

Ganapathiraju, 1998; Izenman, 2013).

A Canonical Correspondence Analysis (CCA) was used to

investigate the relationships among matrices of amphibian

species, amphibians positive for Bd, and amphibians parasitized

by Hannemaniamites and a set of concomitant sediment and water

variables. The CCA provided a direct gradient analysis of

amphibian species, amphibians parasitized by Hannemania mites,

and amphibians positive for Bd relative to the underlying gradients

within the measured environmental variables. The derived axes are

linear combinations of environmental variables so that amphibian

species, amphibian species parasitized or Bd positive were directly

related to these axes under the assumption of unimodal amphibian

species, amphibian parasitized or Bd positive response to

environmental variables. The significance of the relationships

between the parameters and the canonical axes was tested by

permutational multivariate analysis of variance (PermANOVA).

To estimate and analyze the differences in Bd and Hannemania

prevalences (as the proportion of infected individuals per population

with 95% confidence intervals) among sampling sites, the prop.test

function was used. Additionally, a Kruskal-Wallis test was carried out to

analyze the differences in Bd-infection load (log10 transformation was

made) among sampling sites. Both analyses were done through RStudio

version 4.1.3 and in the R Stats Package (R Core Team, 2021; Basanta et

al., 2022) (www.R-project.org). Additionally, a multiple regression

analysis was used to identify associations between the intensity of Bd-

infection (average of ITS copies of Bd in each swab of each individual

analyzed), and the sampling site, the abundance of mites, and

amphibian species. All analyses were done in the statistical

environment R version 4.1.3 (www.R-project.org) using the vegan

package (Oksanen et al., 2019).
3 Results

3.1 Amphibian species found in the
sampling sites

In total, 135 amphibians across 10 species and 7 families were

sampled: Anaxyrus woodhousii, A. punctatus, Gastrophryne

mazatlanensis, Lithobates magnaocularis, L. yavapaiensis, Incilius
Frontiers in Amphibian and Reptile Science 04
alvarius, I. mazatlanensis, Spea multiplicata, Scaphiopus couchii, and

Smilisca fodiens. Scaphiopus couchiiwas observed in all sampling sites.

L. yavapaiensis and Smilisca fodiens were present in three out of five

sites with more individuals found in Aconchi. L. magnaocularis was

present in three out of five sites. Four amphibian species were

observed in only one sampling site: A. woodhousii, A. punctatus,

I. alvarius, and S. multiplicate (Figure 2; Supplementary Material 2).
3.2 Bd prevalence and infection intensity

Three amphibian species were positive for Bd: L. yavapaiensis,

S. couchii, and G. mazatlanensis, the former showing the highest

prevalence of 90.1% among all individuals. Bd was recorded at three

sites with the highest number of Bd-positive individuals observed in

Aconchi where wastewater discharges were constant (Table 1).

Three Bd-positive individuals of L. yavapaiensis Bd-positives had

erythema in Aconchi while two negative individuals of Anaxyrus

woodhousii had erythema in Bacoachi (Supplementary Material 2).

The prevalence of Bd among sampling sites was significantly

different (X2 = 30.937, df = 4, p-value = 3.154e-06) as was Bd-

infection load (Kruskal-Wallis X2 = 9.867, df = 2, p-value = 0.007).

A higher number of individuals with high Bd-infection load were

observed in Aconchi and Bacoachi. At Aconchi 75% of individuals

had a higher Bd-infection load range as compared to Bacoachi

where just a few individuals showed a high Bd-infection load. No

infected individuals were observed at Ures and Hermosillo and only

2 individuals were Bd-positive at Bacanuchi (Figure 3).
3.3 Hannemania mites’ presence
and prevalence

Three amphibian species were positive for Hannemania mites:

L. yavapaiensis, S. couchii, and S. fodiens with the former having the

highest prevalence (Table 2). The prevalence of Hannemania mites
FIGURE 2

Amphibian species and the number of individuals per site.
frontiersin.org

http://www.R-project.org
http://www.R-project.org
https://doi.org/10.3389/famrs.2024.1372993
https://www.frontiersin.org/journals/amphibian-and-reptile-science
https://www.frontiersin.org


Jacinto-Maldonado et al. 10.3389/famrs.2024.1372993
was different among sampling sites (X2 = 16.682, df = 4, p = 0.002)

with the highest prevalence at Bacoachi (Table 2).
3.4 Environmental variation

Bacanuchi and Aconchi showed the lowest water quality levels

(higher conductivity values, salinity, and total dissolved solids).

Additionally, the lowest pH value (<6.5) was recorded in Aconchi

while the highest value was found in Ures (>8; Figure 4). There were

also differences among sampling sites in sediment composition.

Except for a few outliers, Sr, Cu, As, Zn, Mn, Sb, and Ca had the

highest values in Bacanuchi (mining area). The highest

concentrations of Cl, Rb, Fe, K, Nb, Y, Co, and Ti were found in

Bacoachi (livestock area). In Aconchi (wastewater discharge area),

V and Pb had the highest concentrations. By contrast, all elements

showed low values In Ures as compared to other sites (Figure 4).

The LDA indicated a good fit of the data (accuracy, sensitivity,

and specificity); 96% (n= 169) of all our environmental data
Frontiers in Amphibian and Reptile Science 05
analyzed (n= 176) were classified correctly in one of the five

classes based on the environmental variables of each sampling

site. Bacanuchi and Bacoachi were well segregated (sampling sites

with less environmental similarities) while Hermosillo, Ures, and

Aconchi showed some overlap (Figure 5).
3.5 Interaction among the intensity of Bd-
infection versus the abundance of mites,
the amphibian species, and the
sampling site

While sampling site was not a significant predictor of Bd-intensity

(r2 = 0.06, p = 0.99, df = 4), we found a significant interaction between

Bd-infection and the abundance of mites (r2 = 2.63, p = 0.03, df = 4),

and the amphibian species (r2 = 21.64, p = 0.01, df = 3) with our

model explaining 63.71% of the variation in the multiple regression

analysis. In particular, the intensity of Bd-infection was associated

with the presence of L. yavapaiensis (p = 0.01).
TABLE 1 Bd prevalence per amphibian species at each sampling site.

Amphibian
species

N

Bd
prevalence

(%)
per species

Bacanuchi
(Mining)

Bacoachi
(Extensive
Livestock
Farming)

Aconchi
(Wastewater
discharge)

Ures
(Agriculture)

Hermosillo
(Urban)

A. punctatus 2 0 0 2 (0 +) 0% 0 0 0

A. woodhousii 2 0 0 2 (0 +) 0% 0 0 0

G. mazatlanensis 13 7.69 0 11 (1 +) 9.09% 0 2 (0 +) 0% 0

I. alvarius 2 0 0 0 0 0 2 (0 +) 0%

I. mazatlanensis 17 0 0 0 8 (0 +) 0% 9 (0+) 0% 0

L. magnaocularis 14 0 1 (0 +) 0% 1 (0 +) 0% 0 0 12 (0+) 0%

L. yavapaiensis 22 90.91 1 (0 +) 0% 6 (6 +) 100% 15 (14 +) 93.33% 0 0

S. couchii 47 4.26 23 (2 +) 8.70% 5 (0 +) 0% 2 (0 +) 0% 12 (0 +) 0% 5 (0 +) 0%

S. fodiens 15 0 0 0 6 (0 +) 0% 5 (0 +) 0% 4 (0 +) 0%

S. multiplicata 1 0 1 (0 +) 0% 0 0 0 0
Bd prevalence of each amphibian species is expressed as the number of hosts Bd-positive divided by the number of hosts examined. N = number of individuals analyzed for Bd, (+) the number of
Bd-positive amphibians, %. prevalence in percentage.
FIGURE 3

Bd-infection load (number of ITS copies of Bd) among sampling sites.
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3.6 Association of Bd and Hannemania
mites with environmental variables

Both axes of the CCA explained 65.9% of the variance of

environmental variables recorded in sediments and water (26.4%

and 39.5% for axes 1 and 2 respectively). Environmental variables

had significant effects on amphibian species, amphibians Bd-

positive, and amphibians parasitized by Hannemania mites (all p

< 0.05). In particular, both Bd-positive and Hannemania-

parasitized amphibians were associated with two sampling sites

(Bacoachi and Aconchi), the distribution of four amphibian species

(L. yavapaiensis , G. mazatlanensis , A. woodhousii , and

A. punctatus) and the signature of Ti, V, Y, Nb, Zr, Rb, Fe and

Co (Figure 6).
4 Discussion

To our knowledge, this is the first investigation of the presence

and interaction of the fungal pathogen Bd and the Hannemania

mites in disturbed environments in amphibians. Among sites with

different types of perturbation, our results suggest that the

prevalence of Bd and Hannemania mites were associated with the

presence of four amphibian species and coincided with refractory

elements characterized by mechanical or corrosion resistance.

Moreover, we observed a positive association between the

intensity of Bd-infection and the abundance of Hannemania

mites in L. yavapaiensis. Such co-infection highlights the

importance of monitoring environmental and biotic factors that

modulate the relationship between parasites, pathogens, and

hosts in transformed and polluted environments for future

conservation strategies.

Aconchi exhibited the highest Bd infection load, coinciding with

the presence of wastewater discharge at that site, aligning with

previous studies that highlighted the association between low water
Frontiers in Amphibian and Reptile Science 06
quality or water pollution, particularly wastewater discharges, and

Bd presence, prevalence, and infection load (Battaglin et al., 2016;

Congram et al., 2022; Jacinto-Maldonado et al., 2023). By contrast,

Hale et al. (2005) did not detect Bd in specimens collected in

Aconchi in 2000, suggesting that Bd arrived recently or that changes

in environmental conditions, such as water pollution, might have

influenced the presence and Bd infection load in the region.

Moreover, L. yavapaiensis showed the highest intensity of

infection of Bd among amphibian species, with 23.08% of positive

individuals showing erythema. The lowland leopard frog is listed as

special protection with a declining population (NOM-059-

SEMARNAT, 2010; IUCN, 2023) and further investigation should

test the hypothesis that L. yavapaiensis acts as a reservoir or carrier

of Bd in these sites and a potential threat to other susceptible

amphibians (Miaud et al., 2016).

Among all species, Bd was also observed in G. mazatlanensis

and S. couchii for the first time. In Sonora state, Bd has been

previously reported in seven amphibian species (L. yavapaiensis,

L. magnaocularis; Leptodactylus melanonotus; Agalychnis

dacnicolor; Lithobates tarahumarae; Smilisca fodiens; Lithobates

pustulosa) based on museum (Hale et al., 2005; Basanta et al.,

2021) and live specimens from the Northern Jaguar Reserve and the

locality of Tesopaco (Zamora-Bárcenas et al., 2012). Previous

reports also indicated the presence of Bd in L. yavapaiensis in

nearby Arizona, United States. While we observed a prevalence of

90.1% in this species, other studies reported higher (93%) and lower

(43% and 1.6%) prevalences in Sonora (Schlaepfer et al., 2007;

Savage et al., 2011). In addition, there are studies of L. yavapaiensis

in Sonora with no information on prevalence (Bradley et al., 2002;

Hale et al., 2005). Variations in prevalence, susceptibility, and

vulnerability of amphibians to Bd infection could be linked to

skin microbiome richness and composition, host life-history traits,

phylogeny, morphology, physiology, gene expression, immune

response, and resistance (Ortiz-Santaliestra et al., 2013; Eskew

et al., 2018; Varela et al., 2018; Zamudio et al., 2020).
TABLE 2 Hannemania mites’ prevalence per amphibian species at each sampling site.

Amphibian
species

N
Hannemania
prevalence

% per species
Bacanuchi
(Mining)

Bacoachi
(Extensive Livestock

Farming)

Aconchi
(Wastewater
discharge)

Ures
(Agriculture)

Hermosillo
(Urban)

A. punctatus 2 0 0 2 (0 +) 0% 0 0 0

A. woodhousii 2 0 0 2 (0 +) 0% 0 0 0

G. mazatlanensis 13 0 0 11 (0 +) 0% 0 2 (0 +) 0% 0

I. alvarius 2 0 0 0 0 0 2 (0 +) 0%

I. mazatlanensis 17 0 0 0 8 (0 +) 0% 9 (0+) 0% 0

L. magnaocularis 14 0 1 (0 +) 0% 1 (0 +) 0% 0 0 12 (0+) 0%

L. yavapaiensis 22 27.27 1 (1 +) 100% 6 (5 +) 83.33% 15 (0 +) 0% 0 0

S. couchii 47 2.13 23 (0 +) 0% 5 (1 +) 20% 2 (0 +) 0% 12 (0 +) 0% 5 (0 +) 0%

S. fodiens 15 6.67 0 0 6 (1 +) 16.67% 5 (0 +) 0% 4 (0 +) 0%

S. multiplicata 1 0 1 (0 +) 0% 0 0 0 0
Hannemania prevalence of each amphibian species is expressed as the number of hosts infected with one or more individuals of Hannemania mites divided by the number of hosts examined. N =
number of individuals analyzed for mites, (+) the number of positive individuals.
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Yet chytridiomycosis-related symptoms were only observed in three

Bd-positive lowland leopard frogs (erythema in the ventral region)

so more fieldwork, and experimental studies are imperative to better

understand infection in this species.

The lowland leopard frog also showed the highest prevalence of

Hannemania mites (27.27%), followed by S. fodiens (6.67%) and S.

couchii (2.13%). The susceptibility of amphibians to Hannemania

mites and their infestation rates have been associated with host size,

behavior, microhabitat use, sex, the exposure time to the chiggers as

well as environmental variables such as high humidity, high air

temperature, proximity to water bodies, neutral and alkaline-pH

water and areas with low canopy cover (Rankin, 1937; Jung et al.,
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2001; Wohltmann et al., 2006; Hatano et al., 2007; Alvarado-Rybak

et al., 2018; Jacinto-Maldonado et al., 2020). Previous studies

reported a higher prevalence of mites in L. yavapaiensis in the

area (71.42%; Jacinto-Maldonado et al., 2022) suggesting

interannual variation associated with environmental factors such

as precipitation or temperature. This species was also the only

amphibian species coinfected with Bd and Hannemania mites, and

the only species with a significant relationship with the intensity of

Bd-infection, suggesting a possible association between parasite-

pathogen in this amphibian species. For instance, Hannemania

mites might more readily infiltrate the stratum corneum and

granulosum of the skin of Bd-positive amphibians due to skin
FIGURE 4

Water quality and sediment samples at each sampling site.
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damage, shedding, or ulcerations (Pessier, 2002; Berger et al., 2005).

We also present the first report of Hannemania mites in S. fodiens.

S. couchii has been recorded as the host of Hannemania hylae in

Alamos, Sonora in 1943, but no information about its prevalence is

available (Hoffmann, 1990). Among sites, Bacoachi presented the

highest Hannemania prevalence, a cause for concern due to prior

studies reporting toxic particles in sediments in this area.

Hannemania mites have been identified as vectors of CeO2 and

TiO2 particles (Jacinto-Maldonado et al., 2022). In amphibians,

CeO2 particles can result in high mortality, growth inhibition, and

genotoxic effects, while TiO2 particles may induce hormone

disruption (thyroxine and triiodothyronine), cellular stress,

decreased survival, altered growth, and cellular metabolism, as

well as tissue damage (Zhang, 2011; Zhang et al., 2012;

Hammond et al., 2013; Bour et al., 2015; Galdiero et al., 2017;

Vijayaraj et al., 2018).
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Our results also highlight that sites with a high prevalence of Bd

or Hannemania mites, exhibit elevated levels of Fe, Ti, Co, Zr, V,

Rb, Y, and Nb in sediments, particularly if L. yavapaiensis,

G. mazatlanensis, A. woodhousii, and A. punctatus are present at

these sites. These aforementioned elements, characterized as

refractory elements renowned for their mechanical or corrosion

resistance, find application in various sectors like alloys, ceramics,

paints, and coatings (Balazic et al., 2007; Lodhi et al., 2008;

Karimzadeh et al., 2019; Meza-Figueroa et al., 2020). Their

extended persistence in the environment and the observed

particle size (e.g. <850 nm) increase the risk of internalization,

bioaccumulation (e.g. Fe, Co, and Ti), and potential transfer

through the food chain, thus impacting aquatic and terrestrial

ecosystems, thereby necessitating a more detailed analysis of

particles (e.g. chemical composition, charge, surface structure,

aerodynamic size, morphology) as well as periodic studies in
FIGURE 5

Linear Discriminant Analysis (LDA) of environmental variables at sampling sites. LDA1 = 39.5% and LDA2 = 26.4%.
FIGURE 6

Canonical correspondence analysis of the variance of biotic variables (amphibian species, amphibians Bd-positive, and amphibians parasitized by
Hannemania mites) due to environmental variables recorded in sediments and water. Sediments and water quality variables are in black, sampling
site names are in color, and amphibian species are in blue. Amphibians positive for Bd and parasitized by Hannemania mites are in bold letters.
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these areas (Gál et al., 2008; Fabrega et al., 2011; Hammond et al.,

2013; Jacinto-Maldonado et al., 2022; Esteves-Aguilar et al., 2023).

With 38 amphibian species reported in Sonora and 21 amphibian

species, including six endemics and three under special protection

in Aconchi and Bacoachi, the impact of pollution and its association

with the disease should be considered (NOM-059-SEMARNAT,

2010; Lemos-Espinal et al., 2019; IUCN, 2023; Naturalista, 2023).

Anthropogenic activities negatively impact and put at risk

ecosystems and the species that live in them. Given the richness of

amphibian diversity and the impact of anthropogenic activities in

Sonora state and specifically in our study sites, continuous monitoring

of environmental conditions, particularly water and sediment pollution

should be pursued to understand better parasite-pathogen coinfections

as well as better protect amphibian diversity.
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