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The Acari Hypothesis, VII:
accounting for the comorbidity of
allergy with other contemporary
medical conditions, especially
metabolic syndrome
Andrew C. Retzinger1* and Gregory S. Retzinger2

1Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University,
Parkersburg, WV, United States, 2Department of Pathology, Feinberg School of Medicine, Northwestern
University, Chicago, IL, United States
The Acari Hypothesis proposes that vector-active acarians, i.e., mites and ticks,
are the etiologic agents responsible for most, if not all, allergies. A corollary of
The Hypothesis posits allergies are now more prevalent because
contemporary hygienic practices remove from skin elements of sweat that
otherwise deter acarians. Because the antimicrobial activity of sweat extends
beyond acarians, disruption/removal of sweat on/from skin must enable
aberrant microbial colonization, possibly potentiating comorbid conditions
assignable to the aberrant microbial colonist(s). Allergy is strongly comorbid
with metabolic syndrome. Available evidence links the principal features of
metabolic syndrome to Staphylococcus aureus, an organism influenced
significantly by constituents of sweat. Thus, the removal of sweat predisposes
to both allergy and metabolic syndrome. Indeed, the “immune-compromised”
state brought upon by contemporary hygienic practices likely accounts for the
comorbidity of many contemporary medical conditions, examples of which
are highlighted.
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1 Introduction

Scientists and clinicians alike have long suspected that the contemporary lifestyle

disrupts human physiology in ways not yet fully understood or even imagined (1). This

suspicion has been prompted by the increasing incidence of contemporary medical

conditions, e.g., allergy, metabolic syndrome (MetS), Alzheimer disease, polycystic

ovarian syndrome, etc. (2–5). Despite disparate pathophysiologies, many contemporary

conditions are comorbid with allergy (6–9), hinting that the conditions share an

underlying cause. The Acari Hypothesis and its corollaries presuppose that hygienic

removal of eccrine gland secretions, i.e., sweat, is responsible for the modern-day allergy

epidemic (10). Removal of sweat permits aberrant acarian—human interactions,

enabling generation of IgE that is deleterious.

The Acari Hypothesis was formulated to account for the clinical and epidemiological

features of allergic disease (10–15). Analysis of these features, when interpreted in the

context of alpha-gal hypersensitivity and synanthropic acarians, implicates dust mites,

e.g., Dermatophagoides farinae, as causative agents of allergy (10–15).
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Although The Hypothesis focuses on acarians and their

involvement in allergy, a host of pathogens and their associated

conditions are influenced by immune effectors found in sweat (16,

17). It stands to reason, then, that hygienic practices that disrupt

and/or remove sweat must render humans vulnerable not only to

acarians and allergy, but also to the other pathogens and their

associated conditions. As an example, MetS, which is comorbid

with asthma and atopic dermatitis (18, 19), is a contemporary

disorder prevalent in developed countries (20). The symptoms of

MetS, i.e., obesity, insulin resistance, hypertension (HTN) and

dyslipidemia [reduced high-density lipoproteins (HDL) and

elevated triglycerides and low-density lipoproteins (LDL)], have all

been linked to Staphylococcus aureus (15, 21–24), a pathogenic

gram-positive bacterium that both colonizes human skin and is

sensitive to sweat (25). In keeping with The Hypothesis,

disruption of sweat by hygienic practices likely renders humans

vulnerable to S. aureus and MetS. Although The Hypothesis

focuses on hygiene as the primary determinant of sweat, other

factors, such as physical activity and climate control, e.g., air-

conditioning, no doubt further influence the secretory activity of

eccrine glands and, consequently, sweat. Not unexpectedly, the

manifestations of MetS are ameliorated by regular sauna use

(26–29), a measure that induces sweat. Appreciation of both the

immune function of sweat and the involvement of epidermal

organisms in allergy provides valuable insight into the comorbidity

of allergic disease and MetS.
2 Discussion

2.1 Sweat, dermcidin, clusterin and MetS

Although a role for sweat in thermoregulation is already well-

established, evidence for the involvement of sweat in innate

immunity is only just developing. Five proteins constitute 94% of

the protein of healthy human sweat, Table 1 (30). The two most

abundant, dermcidin and clusterin, interact with the cell

membrane of S. aureus (16, 17). Given a likely role for S. aureus

in MetS, it is not surprising that serum levels of both dermcidin

and clusterin are increased in MetS (31–33).

Dermcidin, the most abundant protein in sweat and the

precursor of several antimicrobial peptides (30), is produced in

dark cells of the secretory coils of eccrine glands. It is secreted

constitutively onto epidermis (34). Once secreted, it is

proteolyzed into cationic and anionic species that have broad

antimicrobial activity, including activity against Mycobacteria,

Pseudomonas and Staphylococcus (35). Anionic derivatives
TABLE 1 Major proteins of eccrine gland secretions (30).

Protein % Total protein
Dermcidin 46

Clusterin 17

Apolipoprotein D 15

Prolactin-inducible protein 8

Albumin 6
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interact with negatively charged phospholipids of bacterial

membranes, ultimately depolarizing the membranes and leading

to cell death (36). Because dermcidin is the product of an

orphan gene, DCD, unique to primates (37), there is no animal

model with which to assess its loss-of-function. However, a

recent family study reported the clinical consequences of

dermcidin loss-of-function owing to mutated DCD (38). Affected

family members experienced both staphylococcal overgrowth and

recalcitrant hidradenitis suppurativa (HS) (38). HS is a

dermatopathology linked to demodicosis. It is characterized by

elevated levels of IgE, the antibody claimed central to human

anti-acarian defense (39, 40). Importantly, dermcidin isoforms

are elevated in sera from patients with insulin resistance and

HTN (32, 33, 41), cardinal features of MetS. Such elevation is

also linked to the formation of atheromatous lesions (42). Based

on all of these, a role for S. aureus in MetS is likely.

Clusterin, or apolipoprotein J (apo J), is the second most

abundant protein in the sweat of healthy individuals (30). This

well-conserved mammalian glycoprotein is expressed

ubiquitously in most tissues, and it is secreted abundantly in

many biofluids (43, 44). It selectively binds to, and aggregates,

pathogenic strains of S. aureus (17). This should come as no

surprise because clusterin, like dermcidin, is secreted onto

epidermis, the most obvious site of first contact with

staphylococcal species. Clusterin has also been linked to MetS:

firstly, the serum level of clusterin is elevated in persons who

have insulin resistance (45); secondly, adipocytes of obese

persons overexpress clusterin (46); and thirdly, advanced

atheromatous lesions responsible for MetS-associated vascular

disease have an abundance of platelet-derived clusterin (47).

Inasmuch as clusterin likely serves an anti-staphylococcal

function, it is entirely reasonable to suppose its increased

expression in the serum and atheromatous lesions of persons

with MetS occurs in response to increased staphylococcal burden.

Further, at least some of that burden could relate to hygiene-

enabled colonization of S. aureus on epithelial surfaces.
2.2 S. aureus and the symptoms of MetS

Individuals with MetS are at high risk for cardiovascular

disease (48). The condition has been reviewed extensively by

others and will not be reviewed here except to note that, like

allergy, MetS was only first described in the post-hygiene era

(49). Although others have linked S. aureus to isolated individual

symptoms of MetS (50), none before has either related S. aureus

to the condition directly or implicated a role for hygiene in the

increasing incidence/prevalence of MetS.

2.2.1 Obesity
Obesity has long been considered an immune-compromised

state (51, 52). It confers an increased risk both for carriage of

pathogenic staphylococci (53, 54) and for soft tissue infection

(55, 56). Importantly, because the number of eccrine glands is

fixed in early childhood (57), obesity necessarily decreases the

surface density of eccrine glands, rendering it suboptimal.
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As shown in Table 2, doubling the ideal body weight of an

individual of average height, 175 cm, results in an estimated 60%

increase in body surface area (BSA) (58). All else being equal,

because over a lifetime the number of eccrine glands remains

constant, the increase in BSA dilutes the two-dimensional

concentration of immune effectors on the skin. Given such

dilution, one might expect obese individuals to be especially

vulnerable to any immune-compromising influence of hygiene,

e.g., removal of sweat. There is evidence, however, that adipose

tissue compensates by means of intrinsic immune activity. In

mice, adipocyte proliferation and hypertrophy occur locally in

direct response to epidermal inoculation of S. aureus (23).

Adipocytes participate in anti-staphylococcal immunity via

upregulation of the antimicrobial peptide, cathelicidin. They also

upregulate production of clusterin (46). It is entirely plausible,

then, that increased epithelial colonization by S. aureus promotes

in humans local adipogenesis.

MetS is associated with visceral obesity, i.e., the disproportionate

expansion of adipose tissue around the intra-abdominal organs (59).

This expansion predicts risk of cardiovascular disease (60). If

adipocyte proliferation and hypertrophy are consequences of local

immune reactivity to S. aureus, then the relevant site of bacterial

colonization may be intestinal epithelium, not skin. Indeed, much

available evidence indicates the microbiomes of the skin and gut are

interconnected/interdependent such that dysbiosis of one affects the

operation of the other (61). Thus, aberrant colonization of skin by

S. aureus may facilitate aberrant colonization of intestinal epithelium

by the same organism. Relatedly, multiple studies have identified

S. aureus in patient stools, confirming that the intestinal epithelium

of at least some individuals harbors S. aureus routinely (62–64).
2.2.2 Insulin resistance
Insulin resistance is a consequence of a dysregulated insulin

responsiveness. Such dysregulation may occur following

disruption of any of several molecular pathways (65, 66). Insulin

resistance affects primarily liver, muscle and fat, and raises

glucose levels in blood and other body fluids, including ones

secreted onto epithelial surfaces, e.g., sweat, tears, saliva and

airway surface liquid (ASL) (67–70). Elevated surface glucose

markedly influences the sterility of the epithelial interface (71).

For example, elevated ASL glucose promotes S. aureus

colonization of human airways (72). Indeed, S. aureus has an
TABLE 2 BSA estimations by weight (58).

Weight (kg) BSA (m2)
60 1.66

70 1.83

80 1.99

90 2.15

100 2.30

110 2.45

120 2.59

130 2.73

140 2.86

150 2.99
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expansive repertoire of glucose transporter genes that allow the

organism to thrive in glucose-rich environments (73). Those

genes also enable S. aureus to flourish under the respiration-

limiting conditions effected by the human immune system. Not

only is S. aureus specially adapted to exist in a glucose-rich

environment, but the bacterium can also induce a glucose-rich

environment via generation of an insulin-resistant state. In

mammals, this occurs by either of two means. According to one,

the extracellular enzymatic domain of lipoteichoic acid synthase

binds to insulin and blocks insulin-mediated glucose uptake (22).

According to the other, glucose intolerance is prompted by

chronic exposure to the S. aureus superantigen, toxic shock

syndrome toxin-1 (TSST-1) (21). In summary, S. aureus can

manipulate a mammalian host to induce an insulin-resistant

state. That state then promotes an epithelial microenvironment

supportive of S. aureus colonization. Inasmuch as insulin

resistance may prove detrimental to a mammalian host, it is

entirely reasonable to suppose mammals vulnerable to such

resistance would have evolved means, e.g., sweat, to deter

epithelial colonization by S. aureus.

2.2.3 HTN
HTN is defined by persistently elevated arterial blood pressure.

Although the pathogenesis of HTN is still uncertain, much

progress has been made in this regard. The renin—angiotensin

system (RAS) appears paramount (74, 75). Briefly, renin from

the kidney converts circulating liver-derived angiotensinogen to

angiotensin I. Angiotensin-converting enzyme 1 (ACE1) then

converts angiotensin I to angiotensin II. Subsequently, and by

means of various biochemical pathways, angiotensin II increases

arterial blood pressure. As evidenced by the ability of ACE1

inhibitors to abate HTN and prevent associated end-organ

damage, dysregulation of the RAS appears responsible, at least in

part, for MetS-associated HTN (76, 77).

To date, investigation of ACE1 expression has focused

primarily on pulmonary and renal systems. ACE1, however, is

also expressed abundantly both on cells lining blood vessels and

on cells lining small intestine (78), the organ about which

adipose tissue accumulates in persons with MetS. If the visceral

obesity of MetS is a consequence of small intestinal colonization

by S. aureus, then overexpression of ACE1 in the small intestine

is also likely responsible for MetS-associated HTN.

Recent studies support a role for the RAS in innate immunity

(24, 79, 80). In mice, expression of ACE1 on neutrophil

membranes is upregulated following exposure of the cells to S.

aureus (24). Overexpression of ACE1 enhances production of

reactive oxygen species (ROS), thereby increasing both neutrophil

bactericidal capability and survivability following bacterial

phagocytosis (24). In comparison, neutrophils of either ACE1

knockout mice or mice treated with an ACE inhibitor have

increased susceptibility to lysis by S. aureus (80). Not only

neutrophils, but also ACE1-expressing enterocytes phagocytize

pathogens (81–83). Although S. aureus has traditionally been

considered an extracellular pathogen, accumulating evidence

indicates the bacterium is a facultative intracellular one (84, 85).

As examples, S. aureus exists intracellularly, both in individuals
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with recurrent rhinosinusitis and in individuals who are asymptomatic

(86, 87). S. aureus can escape the phagosome of both professional and

non-professional phagocytes, and it replicates intracellularly,

remaining viable for up to 120 h (83). If hygiene increases exposure

to, and phagocytosis of, S. aureus by ACE1-expressing enterocytes,

then it seems likely upregulation of ACE1 by enterocytes in

response to S. aureus contributes to systemic HTN.

Colonization of the intestine by S. aureus may be responsible

for the association of dietary red meat with HTN, insulin

resistance and heart disease (88–90). Although S. aureus

generates fatty acids de novo, the bacterium routinely utilizes

exogenous fatty acids, incorporating them into its membrane

(91). Those fatty acids include scavenged ones from the host

environment, especially during times of host infection (92, 93).

Fatty acid content is a determinant of membrane fluidity (94),

which, in turn, influences bacterial virulence. Evidence indicates

that the SaeRS system, which controls the genes responsible for

bacterial virulence, including TSST-1, is regulated by long

branched-chain fatty acids (95, 96). In the modern diet, the

primary sources of those fatty acids are red meat and dairy (97).

From the foregoing, it stands to reason that a diet rich in red

meat should predispose persons with intestinal S. aureus

colonization to the symptoms of MetS.

2.2.4 Dyslipidemia
Dyslipidemia is characterized by abnormal serum lipids,

including diminished HDL and elevated triglycerides and LDL

(48). Interestingly, individuals with seborrheic dermatitis (SD), a

dermatopathology comorbid with MetS (98, 99), have the same

lipid profile (100). Not only is SD comorbid with the

dyslipidemia of MetS, but also its severity correlates positively

with the degree of dyslipidemia (100). Clinical data also links SD

to the events of acute coronary syndrome (101).

Although the pathophysiology of SD is still only poorly

understood, epidermal Malassezia is believed essential to the

condition. This is evidenced both by the presence of the fungus on

affected skin and by the therapeutic response of SD to anti-fungal

therapy (102, 103). Malassezia are lipid-dependent fungi that reside

on the epidermis of most sebum-producing mammals (104).

According to The Hypothesis and its corollaries, mutualism exists

between Malassezia and mammals, with mammals having evolved

sebaceous glands that enable malassezial colonization (15). In short,

mammals provide Malassezia with lipid-rich secretions whilst the

fungus protects mammals from parasitic acarians.

If colonization of epidermis by Malassezia is essential to

mammalian health, then mammals likely evolved means to

support the fungus during times of environmental stress. An

obvious means of such support would be to increase sebum

output. This could involve trafficking lipids—the raw materials of

sebum—to epidermal surfaces. Consistent with this idea,

sebaceous gland output is increased in persons with SD (105). As

to the environmental stress eliciting such response, the epidermis

of persons with SD is characterized by bacterial dysbiosis, with

S. aureus predominating (106). Access to sebum benefits that

bacterium, as evidenced by clustering of S. aureus around

pilosebaceous units preferentially, and by colonization of
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S. aureus within the units themselves (107, 108). Like Malassezia,

S. aureus produces lipases that digest sebum (109, 110). Given

the nutritive requirement of Malassezia and the epidermal

localization of S. aureus, the two organisms undoubtedly

compete for sebum lipids. Should colonization of skin by

S. aureus take hold by, for instance, the hygienic removal of

sweat, the epidermal balance between the bacterium and fungus

would favor the bacterium. Put simply, SD ensues from a specific

derangement of the epidermal microbiome. Pathophysiological

aspects of SD substantiate this derangement. For example, whilst

the skin of SD patients reacts strongly to oleic acid, a fatty acid

liberated from sebum triglycerides by malassezial lipases (111,

112), the skin of healthy persons does not. Importantly, oleic

acid is deleterious to S. aureus: it disrupts the bacterial

membrane, inhibits generation of biofilms and down-regulates

virulence factors (113–115). This raises the possibility that the

reactivity of the skin of persons with SD is not directed against

oleic acid, but is instead directed against S. aureus-derived

molecules expressed in response to an oleic acid challenge.
2.3 Atherosclerosis and myocardial
infarction

Clinical recognition of MetS is important because it enables

early identification of persons at increased risk of atherosclerosis,

the leading cause of death in developed countries (116–118).

Much about atherosclerosis has already been elaborated.

Lipoproteins, including chylomicrons, chylomicron remnants,

LDL and very low-density lipoprotein (VLDL) are central to the

disease process (119). Briefly, relevant lipoproteins generated in

cells of the intestine and/or liver traffic within the arterial

circulation where they nucleate and, subsequently, model plaques

beneath the intima of larger arteries. Plaque lipids activate

endothelial cells, which then recruit platelets and monocytes

(120–123). Activated platelets release granules containing a

variety of chemical mediators, many of which are pro-

inflammatory (124). Plaque-associated monocytes differentiate

into lipid-laden macrophages, i.e., foam cells (125, 126).

Overaccumulation of lipids within foam cells leads to apoptosis

and inflammation, and to plaque necrosis, instability and,

ultimately, rupture (127). Ruptured plaques, which are

exceedingly thrombogenic, impede blood flow and render tissues

distal to them ischemic (128).

Plaque formation warrants further consideration. Oxidized

lipoproteins are consumed by macrophages (129, 130). The site

at which oxidation occurs is still open to debate (131).

Chylomicrons originate within enterocytes, the epithelial cells

lining the small intestine. Enterocytes are phagocytic. One

strategy by which phagocytic cells manage intracellular

pathogens, including S. aureus, is generation of ROS (132, 133).

Given both the phagocytic activity of enterocytes and their

membranous expression of ACE1, it seems likely those cells,

when infected by S. aureus, generate ROS and upregulate ACE1.

Lipoproteins within such enterocytes would then, by virtue of

proximity, become oxidized before their release into circulation.
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Thus, just as the existence of S. aureus on intestinal epithelium

accounts for the HTN and visceral adiposity of MetS, the

existence of S. aureus within enterocytes accounts for oxidation

of the lipids of MetS-associated atheromatous lesions.

Because S. aureus associates with host lipoproteins during

infection (134), those lipoproteins may retain evidence of that

association. In this regard, auto-inducing peptides (AIPs) unique

to S. aureus and secreted in response to fluctuations in bacterial

population density, i.e., quorum sensing, are ideally suited (135).

AIPs accumulate outside the bacterium, eventually reaching a

concentration at which the bacterial accessory gene regulator

(agr) becomes activated. Once activated, the agr stimulates

production of staphylococcal virulence factors, including TSST-1

(136). Recent studies indicate the B apolipoproteins, constituents

of chylomicrons, chylomicron remnants, LDLs and VLDLs (137),

participate not only in lipoprotein formation and trafficking, but

also in defense against S. aureus (138). In the presence of

oxidized lipoprotein lipids, the B apolipoproteins bind to, and

sequester, AIPs (139). Thus, at least some of the building blocks

of lipoproteins oxidized in response to intracellular S. aureus will

have AIPs bound to them. Those AIPs could then amplify

inflammation triggered by oxidized plaque lipids. The presence

of such a staphylococcal “marker” on the oxidized lipids would

also explain the deposition of clusterin, an anti-staphylococcal

agent, by platelets infiltrating the plaque (47).
2.4 Thiamine and peripheral neuropathy

Persons with MetS are at increased risk of peripheral

neuropathy (140, 141). If S. aureus is an etiological agent of

MetS, then the bacterium may, in fact, drive the development of

neuropathy. Importantly, intestinal colonization by S. aureus has

already been linked to peripheral neuropathy: S. aureus in the

duodenum of a patient sequestered dietary thiamine, thereby

deranging systemic thiamine metabolism which yielded, in turn,

debilitating polyneuritis (142).

In mammals, thiamine serves as a critical co-factor for enzymes

involved in the metabolism of lipids, carbohydrates and branched-

chain amino acids. Thiamine deprivation causes neuropathy in

diet-dependent fashion, i.e., beriberi (143, 144). Furthermore, in

humans, mutation in the thiamine transporter, solute carrier

family 19 member 2 (SLC19A2), is characterized by

hyperglycemia (145). Given these, S. aureus may disrupt

thiamine metabolism, driving hyperglycemia and ultimately

producing a glucose-rich epithelial surface that benefits the

bacterium. Consistent with this proposal, there are substantial

bodies of evidence that thiamine supplementation protects

against the development of MetS and that persons with MetS

have lower serum levels of thiamine analytes (146–149).
2.5 Other comorbidities, including cancer

Just as allergic disease and MetS are comorbid, so, too, are

other conditions comorbid with MetS, including, but not limited
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to, Alzheimer disease, Parkinson disease, polycystic ovary

syndrome and thyroid disease (150–153). Although beyond the

scope of this report, mechanistic understandings of these diseases

would likely be accelerated if subject matter experts interpreted

relevant data in the context of the human epithelial microbiome.

In short, contemporary diseases comorbid with allergy and/or

MetS undoubtedly involve acarians, S. aureus and/or other

microbes influenced by eccrine gland secretions.

Many cancers, particularly ones derived from epithelium, e.g.,

adenocarcinoma of the colon, are comorbid with MetS (154).

Interestingly, many of these cancers have been shown to

dysregulate expression of clusterin and/or dermcidin (155–161).

Such dysregulation not only renders tumor cells refractory to

conventional chemo- and radiation therapies, but it also confers

upon them metastatic potential (162, 163). Inasmuch as MetS is

attributable to hygienic disruption of sweat and consequent

epithelial colonization by S. aureus, it seems possible dysregulated

clusterin and dermcidin in malignant epithelial cells is due to

what the cells perceive as an unremitting staphylococcal challenge.

At the cellular level, clusterin plays an important role in stress

responses and survival (164, 165). It has two isoforms, an

intranuclear one and a secreted one, the latter of which operates

both within the cytoplasm and extracellularly (166). Intranuclear

clusterin is pro-apoptotic whilst the secreted isoform is anti-

apoptotic (167). Secretory clusterin is an ATP-independent

chaperone with very broad substrate specificity (165). As a

chaperone, it is unusual in that it operates extracellularly (168).

Because secretory clusterin regulates apoptosis, it seems intuitive

that its dysregulation would yield a pro-oncotic state. That being

the case, it is tempting to speculate that elimination of epithelial

pathogens that dysregulate clusterin might not only prevent

malignant transformation but might also provide therapy for

some cancers.
3 Closing

Per The Hypothesis and its corollaries, many diseases of

modern man are attributable to disruption of the human

microbiome by direct and/or indirect means. As suggested above,

this new understanding provides rationale for novel approaches

to disease treatment. As examples, some diseases might be

ameliorated either by limiting certain hygienic practices, e.g.,

showering daily, or by applying topical agents that mimic

endogenous immune effectors, e.g., dermcidin. To better

appreciate the full disease-related impact of hygiene, comparison

should be made of the microbes colonizing epithelial surfaces of

persons from industrialized societies with those colonizing

epithelial surfaces of persons from primitive societies. Microbes

colonizing the former but not the latter should be considered

potential agents of modern disease(s).

The symptomatology and pathology of allergy are attributable

to specious IgE-mediated adaptive responses. In persons not

yet allergic, eliminating some hygienic practices should help

prevent the development of allergy. Because synanthropic mites

likely elicit most allergies, an evaluation of the environment of
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allergic persons should be undertaken to identify the causative

acarian. In this regard, nucleic acid-based testing might prove

useful, as mite infestation is ofttimes not apparent clinically.

Treatment of MetS is more subtle and involved. Certainly,

increasing sweat would be important because sweat renders

human epidermis inhospitable to S. aureus. Unfortunately, because

MetS is associated with autonomic neuropathy (169, 170), the

ability of colonized individuals to sweat may be compromised.

Furthermore, bacterial colonization can extend beyond epidermis,

to involve the mucosae of the airway and/or the gastrointestinal

tract. More research is needed to identify immune effectors

operating to deter S. aureus from all these surfaces.

Evidence in support of The Hypothesis might be obtained from

autopsies of decedents who died from myocardial infarction and

who had both clinical evidence of visceral adiposity and

methicillin-resistant Staphylococcus aureus (MRSA) infection.

Segments of the small bowel that display significant visceral

adiposity could be analyzed for: (1) degree of epithelial ACE

expression, and (2) presence of intracellular staphylococci. For

comparative purpose, these same analyses could be performed

using either less fatty segments of small intestine or segments of

small intestine from healthy individuals. Although such analyses

would not confirm causality, they would represent a preliminary

step toward validating Koch’s postulates.

Although oral and/or parenteral antibiotics could play a role in

the treatment of MetS, their use might be problematic because the

drugs do not discriminate between native organisms and invasive

pathogens. Evidence indicates native flora protect mammals from

microbial pathogens, including S. aureus. Commensal coagulase-

negative staphylococci, e.g., S. epidermidis, produce bacteriocins

and antimicrobial peptides (AMPs) that work synergistically with

cathelicidin to inhibit epithelial colonization by S. aureus (171,

172). Indeed, reintroduction of coagulase-negative staphylococci

onto skin of patients with atopic dermatitis limits S. aureus

colonization (172).

Just as reintroducing coagulase-negative staphylococci onto the

skin of patients with atopic dermatitis limits epidermal

colonization by S. aureus, replenishing and/or supplementing gut

microbiota with Bacillus subtilis limits S. aureus colonization of

gut epithelium (173). B. subtilis, a gram-positive bacterium found

routinely in the gastrointestinal tract of mammals, produces two

lipopeptides bactericidal for S. aureus, surfactin and plipastatin

(174). Once daily ingestion of a probiotic containing B. subtilis

eliminates 97% of S. aureus from the gut and 65% of S. aureus

from the nares (173). For these reasons, supplementation with

relevant microbiota might benefit individuals with MetS.

Unfortunately, because most antibiotics do not discriminate

between beneficial and pathogenic bacteria, pairing an antibiotic

with hygienic disruption/removal of sweat could yield a dysbiosis

that favors a pathogen. Indeed, studies have shown that antibiotic

usage predisposes persons to MetS (175, 176). Because the native

microbiota plays a role in human defense, its application to

relevant epithelial surfaces may represent the most effective

therapy for MetS, perhaps even a curative one.

Mammals other than humans are also subject to epithelial

insult by S. aureus (177). That being the case, they, too, are likely
Frontiers in Allergy 06
to produce AMPs that selectively deter the bacterium. Indeed,

epithelial secretions from mammalian sources may represent

pharmaceutically useful agents. In this regard, breast milk seems

especially promising: not only does it contain and support the

growth of multiple microorganisms, but it also contains

compounds that selectively inhibit the growth of S. aureus (178,

179). Furthermore, because mammalian mothers provide breast

milk to their offspring, the microorganisms in that medium

undoubtedly align with the intended health and fitness of

the offspring.

The Acari Hypothesis provides rationale not only for allergy,

but also for diseases of modernity comorbid with allergy. The

authors hope this new understanding prompts serious

consideration of both the epithelial microbiome and

aerobiological elements in health and disease.
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