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The gut barrier encompasses several interactive, physical, and functional
components, such as the gut microbiota, the mucus layer, the epithelial layer
and the gut mucosal immunity. All these contribute to homeostasis in a
well-regulated manner. Nevertheless, this frail balance might be disrupted for
instance by westernized dietary habits, infections, pollution or exposure to
antibiotics, thus diminishing protective immunity and leading to the onset of
chronic diseases. Several gaps of knowledge still exist as regards this multi-level
interaction. In this review we aim to summarize current evidence linking food
antigens, microbiota and gut permeability interference in diverse disease
conditions such as celiac disease (CeD), non-celiac wheat sensitivity (NCWS),
food allergies (FA), eosinophilic gastrointestinal disorder (EOGID) and irritable
bowel syndrome (IBS). Specific food elimination diets are recommended for
CeD, NCWS, FA and in some cases for EOGID. Undoubtfully, each of these
conditions is very different and quite unique, albeit food antigens/compounds,
intestinal permeability and specific microbiota signatures orchestrate immune
response and decide clinical outcomes for all of them.
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Introduction

The gut barrier is a selective filter for the gastrointestinal (GI) tract, which is exposed

to a wide range of external antigens, including food, microbes, and toxins (1). This barrier

encompasses several interactive, physical, and functional components: (1) the gut

microbiota; (2) the mucus layer; (3) the epithelial layer; (4) the mucosal immunity.

Each unit is key in shielding the host from harmful ingested antigens. The microbial

barrier, or gut microbiota, consists of trillions of microorganisms and acts as a

significant protective shield against pathogens. It contributes to host health, facilitating

nutrient absorption, metabolism, and immune regulation. This multitude of

microorganisms can induce immune cell maturation and appropriate response for host

defense (2). The trajectories of microbiota composition vary during life. Neonatal gut

microbiota is composed predominantly by anaerobic bacteria, with a greater abundance

of Bifidobacteria in those who are breastfed (3).

After the first few years of life, the microbiota becomes more stable and “adult-like” in its

composition (4), but it could be still perturbated by dietary choices, hormones, antibiotics
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and pollution (5–8). The resistance and resilience of the gut

microbiota depends on various reasons: - diversity; - functional

redundancy;—adaptive capacity;—intermicrobial interactions;—host

immunity;—diet;—environmental consistency, which means the

stability of nutrients, pH and oxygen level;—gut habitat

complexity, i.e., having different anatomical and functional units

such as folds and crypts allowing more stable bacterial reservoirs (9).

The mucus layer consists of an extracellular coat located

outside the intestinal epithelial cells (IECs). Mucus is composed

of mucins, principally Muc17 in the small intestine and Muc2 in

the colon, which are glycoproteins overlapping each other in a

net-like fashion (10).

Epithelial cells lining the intestine are vital for maintaining a tight

interplay between the luminal environment and the host. This

epithelium comprises several cell types derived from stem cells that

constantly replenish differentiated intestinal epithelial cells (IECs),

eventually shedding into the lumen (11). IEC subsets are broadly

categorized into absorptive and secretory epithelial lineages. Most

epithelial cells are absorptive enterocytes, albeit their active

involvement in mucosal immunology needs to be further elucidated.

Secretory IECs include: -enteroendocrine cells; -Paneth cells, which

sustain stem cells and secrete antimicrobial peptides; -goblet cells,

which deploy mucus production; -tuft cells, which detect luminal

signals and promote type 2 immunity (12, 13). Differently from

absorptive and secretory cells, Microfold (M) cells constitute a

unique IEC subset that allow the trans-cytoplasmatic transportation

of luminal antigens to immune cells into the lamina propria (14).

Altogether, epithelial cells throughout the intestinal tract

orchestrate nutrient absorption, pathogen defense, and immune
FIGURE 1

Complex interplay among environmental factors, epithelium and food allerg
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regulation. Antigens that reach the intestinal epithelium can be

transported by different routes depending on their size and

solubility. Soluble antigens are absorbed by enterocytes and

transported mainly via the transcellular route. Under homeostatic

conditions tight junctions between enterocytes prevent the

paracellular passing of antigens, preserving the cell polarity

necessary for directional functions. Several proteins, such as

angulins, occludins, and claudins constitute these junctions (15).

The presence of numerous foreign antigens in the intestinal

lumen implies the accumulation of immune cell populations within

the GI tract. Nonetheless, immune cell subsets in the intestine

coexist to uphold homeostasis towards various stimuli in a well-

regulated manner. Disrupting the mechanisms underlying this

balance diminishes protective immunity and leads to the onset of

chronic inflammatory diseases as exemplified in Figure 1.

In this review we aim to summarize current evidence linking food

antigens, intestinal microbiota and gut permeability interference in

diverse disease conditions such as celiac disease (CeD), non-celiac

wheat sensitivity (NCWS), food allergies (FA), eosinophilic

gastrointestinal disorder (EOGID) and irritable bowel syndrome (IBS).
Food antigens clashing into the barrier

Gluten, celiac disease and non-celiac wheat
sensitivity

Celiac disease (CeD) is a systemic immunological disorder

triggered by the intake of gluten and related prolamins in
y response.
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genetically at-risk individuals, i.e., those bearing HLA-DQ2 or

HLA-DQ8 haplotypes (16). It presents with a wide range of

clinical symptoms, the presence of CeD-specific antibodies and

immune-mediated intestinal damage. While CeD can occur at

any age, most at-risk individuals are diagnosed during their early

childhood, typically within the first five years, as shown also by

several prospective studies (17–19). Due to its diverse systemic

and malabsorptive symptoms, CeD is often described as a

“clinical chameleon,” which can pose challenges for primary

care practitioners (20). Currently, many individuals with

CeD experience few symptoms or predominantly exhibit

extraintestinal issues, while only a minority manifests the

“classical” signs of malabsorption characterized by weight loss,

failure to thrive, and persistent diarrhea (21). The only effective

treatment for CeD is a strict gluten-free diet (GFD), albeit several

investigational drugs are in phase 2 clinical trials for non-dietary/

complementary management strategies (22).

In CeD patients, gluten-dependent increased intestinal

permeability is a paradigm of the disease, priming and

perpetrating intestinal damage on a gluten-containing diet.

Zonulin is a gastrointestinal paracrine hormone that, together

with other growth factors, negatively affects intercellular integrity

by disassembling tight junctions (23).

Among the various potential stimuli in the intestinal lumen that

can induce zonulin release, small intestinal exposure to

microorganisms and gluten have been identified as the most potent

triggers (24, 25). From an evolutionary perspective, the zonulin-

induced opening of the paracellular route might act as an ultimate

defensive process that washes out microorganisms, working

alongside other similar mechanisms, such as the IL-22-mediated

modifications of intestinal permeability against bacteria (26).

Gliadins are gluten-complex proteins usually rich in prolines

and glutamines, which are not digested by intestinal enzymes.

Few peptides that residue from partial digestion of gliadins

impact intestinal barrier function by triggering the release of

zonulin upon interaction with the chemokine receptor CXCR3

(27). Gliadin thus rapidly and temporarily enhances zonulin-

dependent paracellular permeability of the gut, regardless of

disease status (28). Notably, once the GFD is commenced, the

intestinal paracellular permeability is switched off (29).

Genetic studies have supported the role of the paracellular

pathway in gluten transport within the lamina propria, which

have found a connection between specific tight junction-related

genes and CeD (30, 31). In CeD, the loss of barrier function is

the first step towards the loss of tolerance to gluten and the

consequent damage to the intestinal mucosa. This is witnessed

by the fact that healthy first-degree relatives of patients with CeD

might present with increased intestinal permeability (32).

A preliminary study from the CD-GEMM (Celiac Disease

Genomic Environmental Microbiome and Metabolomic Study)

prospective cohort suggests that in infancy the onset of CeD is

preceded by an increase of zonulin levels months before the

disease manifests. This rise is associated with a medical history

of multiple courses of antibiotics, thus linking microbiota

disturbances to the subsequent loss of immune tolerance towards

gluten (33). In addition, infections by enteroviruses and
Frontiers in Allergy 03
rotaviruses have been accounted as putative triggers for CeD

onset in longitudinal studies (34, 35). Barrier breach and antigen

molecular mimicry could be hypothesized as underling

mechanisms preceding disease inception (36, 37).

Within the spectrum of gluten-dependent disorders, another

condition is the so called non-coeliac wheat sensitivity (NCWS),

currently defined as a wide set of intestinal and extraintestinal

symptoms after gluten consumption in subjects for whom CeD

and wheat allergy have been thoroughly excluded (38).

However, with except of symptoms such as brain fog, fatigue,

and joint pain, several features of NCWS overlap with functional

GI disorders, particularly IBS, thus posing a challenging task for

physicians who deal with these patients. To discriminate the two

conditions, Barbaro et al. have demonstrated that increased

serum levels of zonulin are more frequently present in NCWS

rather than in IBS, therefore highlighting within a clinical

framework the role of intestinal permeability in this condition

(39). In addition, Ahmed et al. very recently reported that the

presence of conventional anti-gliadin antibodies (AGA) is

strongly predictive of NCWS among IBS patients (40). Since

AGA have been previously associated with increased intestinal

permeability (41), this evidence reinforces the role of “leaky”

gut in NCWS.

Another in vivo study highlighted intestinal epithelial defects at

fluorescein-based confocal microscopy a few minutes after wheat

exposure in several patients with IBS-like symptoms. This was

linked to a heightened expression of the pore-forming protein

claudin-2, thus suggesting that a leaky gut seems to coexist with

NCWS misdiagnosed as IBS (42). Furthermore, another group has

reported elevated serum levels of lipopolysaccharide-binding protein

in patients with NCWS, advocating an increased passage of

microbial components from the lumen to the systemic circulation.

Notably, this phenomenon seems to revert on a GFD (43).

Notwithstanding these data from pre-clinical and clinical

studies, it should be considered that other translational studies

on this topic have shown contrasting results.

For example, Sapone et al. showed similar permeability

parameters in the small bowel of NCWS individuals and patients

with dyspepsia using the lactulose/mannitol ratio (44). Another

study measured the increase in permeability assessed as

modification of transepithelial electrical resistance from ex vivo

intestinal biopsies after exposure to gliadin: no increase was

found in those from NCWS subjects compared with those from

healthy controls (45). Nevertheless, it should be considered that

both these studies were affected by small sample size and that

both methods used to determine intestinal permeability are

pretty variable.

Exposure to wheat components other than gluten are currently

under scrutiny as possible etiology drivers for NCWS. Amylase-

trypsin inhibitors (ATIs) are water-soluble globulins from wheat

that play a role in grain maturation, carbohydrate storage and

defense from parasites. They are major stimulators of innate

immune cells but initially they were not considered to directly

affect intestinal permeability (46).

However, in a model of specific pathogen-free mice lacking

Toll-like receptors, a Canadian group has reported that ATIs can
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increase intestinal permeability assessed by Ussing chambers (47).

Of note, tissue conductance was ameliorated when specific strains

of Lactobacilli expressing enzymes for digesting ATIs were

provided in the medium. This experiment has shown an exciting

attempt to counteract barrier dysfunction in gluten-related

disorders. Nevertheless, for the time being evidence has been

scant regarding the possibility of modulating intestinal

permeability through other probiotic interventions.

There is extensive literature on numerous strains of Lactobacilli

and Bifidobacteria possessing proteolytic enzyme machinery for

gluten. Still, these have been tested mainly for improving clinical

outcomes, and they were not assessed as regards peptide residual

interference on intestinal permeability (48). Fewer studies focused

on probiotics and intestinal permeability in the setting of

experimental models for CeD. An interesting study from Lamas

et al. highlighted in NOD/DQ8 mice the indirect action of

L. reuteri that reduced intestinal permeability by enhancing the

tryptophan-derivates pathways (49). Moreover, on Caco-2 cells, a

specific strain of Bifidobacterium (B. lactis) could inhibit the

gliadin-induced increase in epithelial permeability, and this effect of

the strain was clearly dose-dependent (50). Another preclinical

study on L. rhamnosus GG showed that this latter strain sustained

the expression of the intercellular junction proteins, thus

contrasting the increase in intestinal permeability in the context of

murine enteropathy induced by pepsin-trypsin-digested gliadins (51).
Food allergens: food allergy and
eosinophilic GI disease

Food allergy (FA) is defined as “an adverse health effect arising

from a specific immune response that occurs reproducibly on

exposure to a given food”. FA is a growing public health concern,

with increasing prevalence in Western countries. It currently

affects 8% of children and 3% of adults, with prevalence rising

every year and significantly varying depending on the method of

assessment (self-reported FA vs. gold standard oral food challenge)

(52–54). According to the pathophysiologic immune mechanisms,

it can be classified into IgE-mediated, non-IgE-mediated (cell-

mediated) or mixed (IgE and cell-mediated) (55, 56).

Post-translational modifications of antigens, including

processes such as glycosylation, phosphorylation, acetylation and

hydroxylation, may alter the allergenic potential of food proteins

(57). These modifications may enhance protein stability, modify

epitopes that immune cells recognize or affect how proteins are

processed and presented to the immune system. As a result, the

same protein can elicit different immune responses depending on

its post-translationally modified forms, contributing to the

variability observed in allergic reactions among individuals. For

example, glycosylation of casein hinders its full digestion,

therefore its allergenicity is enhanced (58). As regards peanut

allergy, boiled vs. roasted peanut proteins show a marked

difference in their ability to trigger IgE response. Boiling tends to

denature some of the proteins responsible for allergic reactions

and this can lead to a less severe allergic response in sensitive

individuals (59). In contrast, roasting provokes the Maillard
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reaction, which in its early phases is a glycation of proteins;

glycated peanut proteins are more likely to trigger allergic

reactions due to a preferential recognition by dendritic cells (60).

Although genetic factors play a role, FAs are increasing

in prevalence at a higher rate that cannot be explained only

by genetics (61).

It has been known for years that many environmental factors are

associated with the development of FAs, such as caesarean section,

formula feeding, early antibiotic exposure, not having siblings or

pets; nevertheless, the connection between epidemiological data

and the underlying immune mechanism remains elusive. This gap

is being filled by increasing evidence about gut microbiota as one

of the main actors in the complex mechanism of sensitization.

Indeed, the previous mentioned epidemiological factors have been

shown as culprits in the development of dysbiosis (62–67).

The gut microbiota, which consists of trillions of

microorganisms including bacteria, viruses, fungi, and archaea,

plays a vital role in maintaining immune homeostasis and

protecting the epithelial barrier.

Human milk microbiota and the birth canal in vaginal delivery

are the two main sources through which infants can acquire

microbes colonizing gut lumen. Moreover, children ingest every day

with breast milk an amount of bacteria ranging between 1 × 105

and 1 × 107, which is almost 30% of whole infant bacteria pool (68).

Human milk could play a pivotal role in preventing or

promoting allergy development by modulating gut microbiota

biodiversity and gut barrier function due to the activity of

molecules such as milk oligosaccharides, glycomacropeptides,

lactoferrin, defensins, and other metabolites (69). Human milk

oligosaccharides (HMO) are non-digestible oligosaccharides

having a very important probiotic role: they inhibit bacterial

adhesion to intestinal mucosa surface and prevent colonization of

certain bacteria strains (70). Casein glycomacropeptides,

defensins and tryptophan metabolites have also shown specific

antimicrobial properties (71). Finally, lactoferrin, a protein that

binds and separates iron from bacterial pathogens, has both

antiviral and antibacterial activities (72).

The composition of human milk microbiota may be influenced

by many factors such as stage of lactation, maternal body mass

index (BMI), age and diet, geographical location, socioeconomic

status, use of antibiotics and probiotics during pregnancy (73–77).

As regards specific microbiota signatures and atopy,

Lachnospiraceae have shown to be well represented in children

allergic to cow’s milk (78); moreover, Canadian Health Infant

longitudinal development (CHILD) study has shown that a

reduction of genera such as Lachnospira, Veilonella,

Faecalibacterium and Rothia, and an abundance of Clostridium

difficile and Staphylococcus aureus are linked with asthma

development later in life (79).

An early gut colonization by Bacteroides fragilis expressing

polysaccharide A could inhibit Treg proliferation, therefore

predisposing towards allergy (80).

It has been also highlighted that early colonization with

Clostridium genera is related to an increased IL-22 secretion by

group-3 innate lymphoid cell and T-helper 17 and specific IgE

production in children with FA (81).
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The importance of microbiota-host relationship in allergy is

witnessed by murine models of germ-free mice displaying

elevated blood levels of IgE. Instead, after microbial colonization

which starts between birth and the first week, IgE production is

completely inhibited (82).

Among the important functions that intestinal microbiota plays

in the host, its contribution to immune tolerance for orally

administered antigens is key. Oral tolerance is a state of systemic

unresponsiveness that should be the default response to food

antigens in the GI tract. This is an active process that begins with

the uptake of potential food antigens by immune cells of the gut-

associated lymphoid tissue (GALT) in the small intestine (83).

Antigens are then degraded into small peptides inside vesicles,

loaded into MHC-II in endosomes and released to be taken up

by CD103 + dendritic cells (84, 85). Antigens with resistance to

proteolysis can reach the basolateral membrane in an intact form

(86). M cells can endocytose antigens and myeloid cells such as

dendritic cells and/or macrophages may directly capture potential

food antigens from the gut lumen by extending a process through

a tight junction (periscoping behaviour) or by extending a

process through a transcellular pore in an M cell (87, 88). These

dendritic cells can then migrate from the lamina propria to the

draining lymph nodes where the dendritic cells express

transforming growth factor-β (TGFβ) and retinoic acid, inducing

naive T cells to differentiate into regulatory T (Treg) cells;

therefore, the cell-mediated trafficking of antigen to the secondary

lymphoid tissue promotes the establishment of tolerance (89, 90).

Tregs regulate the immune response by producing inhibitory

mediators, such as IL-10 and TGF-β (91).

Dendritic cells also imprint GI homing capacity, allowing the

recently primed Tregs to home back to the lamina propria where

they interact with macrophages that produce IL-10 and expand.

In addition, anergy and T cell depletion have also been shown as

mechanisms of oral tolerance, with anergy referring to T-cell

unresponsiveness to the antigen and depletion to the apoptosis of

antigen-specific T cells. These two mechanisms cooperate

depending on the dose of antigen exposure: high dose antigen

exposure induces anergy or depletion while low dose antigen

leads to induction of Tregs (92).

The microbiota plays a key role in the development of oral

tolerance by multiple ways. Intestinal bacteria stimulate the

production of mucus glycoproteins, sealing the intestinal barrier

and protecting the epithelium from the growth of pathogenetic

bacteria. In addition, they have a role in the modulation of

Th1/Th2 response in favor of a tolerogenic immune response

and in the activation of Tregs: these events are mediated by

metabolites such as butyrate, a short-chain fatty acid (SCFA)

produced by the fermentation of dietary fiber in the colon, which

has a strong immunoregulatory effect (93, 94).

On the other hand, several studies in mice have demonstrated an

association between compositional and functional changes of the gut

microbiota, also known as dysbiosis, and development and

progression of FA (95, 96). Early studies showed that germ-free

mice were unable to achieve oral tolerance to food allergens (97).

Recent studies have further shown that transferring gut microbiota

from patients with FA to germ-free mice can transmit susceptibility
Frontiers in Allergy 05
to FA (98). Conversely, germ-free mice colonized with bacteria

from healthy infants were protected against anaphylactic responses

to a cow’s milk allergen (99). Certain microbial orders, including

Clostridiales and Lactobacillales, have been related to suppression

of FA in mouse studies (100). Similarly, Bacteroidales and

Enterobacteriales have been described to have both beneficial and

detrimental effects with regards to FA (101, 102).

The hypothesis on gut dysbiosis preceding FA relies on several

basic science and clinical studies showing proinflammatory

microbiota changes nurturing a chronic, low-grade, inflammation

(103–120). Moreover, intestinal dysbiosis cooperates with a leaky

gut barrier in FA pathogenesis (121–123). External factors

(particularly the consumption of ultra-processed foods, but also

other dietary factors, infections, inflammatory bowel diseases etc.)

can influence both the gut microbiota and epithelial barriers

leading to a pro-inflammatory milieu: when the epithelial barrier is

damaged, antigens may cross freely, causing the release of pro-

inflammatory epithelial-derived molecules like IL-25, IL-33 and

thymic stromal lymphopoietin (TSLP), which promote T-naïve cell

differentiation into Th2 cells, IgE class-switching, and tissue

accumulation of mast cells and eosinophils (124). After

sensitization to a food allergen, allergen-specific IgE antibodies

bind to basophils and mast cells surface IgE receptors.

A subsequent exposure to the allergen can cause these cells to

immediately release histamine and other proinflammatory

mediators, such as leukotrienes and prostaglandins, that lead to

tissue inflammation and recruitment of inflammatory cells,

worsening gut permeability and amplifying type-2 inflammation

(125). Several studies have identified a mutual link between

increased intestinal permeability and FA: not only the

establishment of FA is favored by a leaky intestinal barrier, but also

the allergic response further impacts intestinal permeability

allowing the translocation of allergenic molecules (126–128).

Complementary food introduction is known to influence gut

microbiota composition and future health outcomes. The first

1,000 days of life indeed seem to represent the critical window of

opportunity for microbiota modulation. A delayed introduction

of solid food could cause a lag in microbial maturation

increasing susceptibility to allergies and obesity (129). On the

other hand, an earlier introduction could expose infants to

potential pathogens and allergens. Therefore, the timing of solid

food introduction should be balanced between these risks and

benefits (130, 131). Particularly, a meta-analysis on the timing of

introduction of egg and peanut in infant diet showed indication

to introduce egg at age 4–6 months and peanut at age 4–11

months (in an age-appropriate form to avoid risk of inhalation),

as this behavior was associated with reduced egg and peanut

allergy (132). Notably, this is strikingly conflicting with the

previous recommendation to delay the introduction of allergenic

foods to the infant diet to prevent sensitization (133).

An earlier introduction of multiple allergenic foods was

associated with reduced IgE-mediated allergy, consistent with the

findings of the Preventing Atopic Dermatitis and Allergies in

Children (PreventADALL) trial. Even though safety data were

generally reassuring, their findings were limited by high rates of

withdrawal from the intervention (134).
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Breast-feeding and diet diversity promote a healthy microbiota

not only during the weaning period, but also over the whole critical

time of the two first years of life. After this period, the gut

microbiome tends to acquire an adult-like configuration with

distinct microbial community composition and functions.

A varied and healthy diet appears to confer a positive

modulation of gut microbiota: a significant association between

higher diet diversity and a lower prevalence of parent-reported,

doctor diagnosed food allergy has been demonstrated (135).

The immunologic basis explaining how diet diversity

potentially affects allergy outcomes may be mediated by the

induction of tolerance mechanisms including T and B regulatory

cells, immune regulatory cytokines and suppressed IgE antibodies.

Amore diverse dietmay indirectly affect tolerance development via

an effect on themicrobiota as increased diet diversity leads to increased

microbial diversity in infants at weaning.Moreover, amore diverse diet

may also lead to exposure to different food antigens that impact on the

development of immune tolerance, though this may be “low dose”

exposure, supporting recent randomized controlled trials regarding

early allergen introduction (136).

Though there is a need to harmonize study methods and define

diet diversity for studying adequate dietary intake and allergy

outcomes, diet seems to be a modifiable factor that can be used

to prevent or manage allergic disease (137).

Restrictive dietary regimens of children with specific diseases

(FA, inborn errors of metabolism, CeD, etc.) may alter the gut

microbiota triggering the overgrowth of intestinal inflammation.

Elimination diets that decrease SCFA-producing bacteria, such as

the gluten-free diet, phenylketonuria diet, and ketogenic diets

and those with overall low consumption of a plant-based

products may have negative effects on the microbiota (138–141).

Despite a significant impact on some pre-clinical and clinical

aspects, current evidence does still not support a clear

recommendation on the use of probiotics in the prevention or

treatment of FA. Clear information on the specific strain, dosage,

and adequate duration of therapy is lacking. Moreover, future

strain-specific studies should ideally take into account that gut

microbiota also reflects the integrity of the gut barrier and any

supplementation approach should contextually aim for its

restoration. A summary of specific bacteria/probiotics and their

impact on food allergies is presented in Table 1.

Eosinophilic gastrointestinal diseases (EGIDs) are a group of

chronic inflammatory disorders characterized by eosinophilic

infiltration into various segments of the GI tract, including

eosinophilic esophagitis (EoE), eosinophilic gastritis (EoG), and

eosinophilic colitis (EoC) (142). The pathophysiology of these

conditions is multifactorial, involving complex interactions

between environmental triggers, such as food antigens, immune

responses, and alterations in the epithelial barrier and the gut

microbiota (143, 144). Recent studies have provided both pre-

clinical and clinical evidence that these diseases are associated with

significant changes in gut permeability, membrane integrity, and

microbita composition (145). These alterations appear to play a

pivotal role in disease progression and symptom manifestation.

One of the critical components of EGIDs is the dysfunction of

the intestinal epithelial barrier, which is often referred to the
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aforementioned leaky gut. This term describes the increased

permeability of the gut lining. In EGIDs, intestinal barrier is

compromised, leading to increased intestinal permeability (146).

Pre-clinical models have demonstrated that this increased

permeability may facilitate the translocation of food antigens

and bacterial products into the lamina propria, thereby triggering

or exacerbating local immune responses. Specifically, it has

been shown that eosinophils, key effector cells in these diseases,

are recruited to the gut in response to antigen exposure, where

they release pro-inflammatory mediators such as cytokines,

chemokines, and granule proteins (including major basic protein

and eosinophil-derived neurotoxin), which further disrupt

epithelial integrity and amplify the inflammatory response.

Clinically, patients with EGIDs exhibit a range of symptoms that

are closely linked to this compromised epithelial barrier. Small bowel

permeability is overall increased in patients with active EoE, and is

normal in patients with EoE in remission when compared to

healthy controls (147). In eosinophilic gastritis, patients may

present with abdominal pain, nausea, vomiting, and malnutrition,

symptoms that are also likely exacerbated by a dysfunctional

epithelial barrier that allows for abnormal exposure to luminal

antigens and microbial products. Endoscopic evaluations in these

patients often reveal mucosal erythema, edema, and furrowing,

further evidence of the inflammation and tissue damage caused by

increased permeability (148).

A growing body of literature also highlights the significant role

of the microbiome in the pathogenesis of EGIDs. Alterations in the

composition and diversity of the gut microbiota, known as

dysbiosis, have been also implicated in EGIDs. In the context of

EoE, for instance, several studies have reported significant

differences in the esophageal microbiota of patients with the

disease compared to healthy controls. Specifically, there is

evidence of a relative abundance of Streptococcus species in the

esophagus of EoE patients, which may contribute to disease

pathogenesis by promoting a pro-inflammatory environment that

favors eosinophil recruitment and activation (149).

The increase in permeability is believed to result from a

disruption in the regulation of tight junction proteins, specifically

claudin 1 (CLDN1) and zonula occludens 1 (ZO-1) (150).

However, it is possible that the compromised mucosal integrity

observed in EoE may be secondary to byproducts of the

inflammatory infiltrate, suggesting that it could be a consequence

rather than a cause of the inflammation. Previous research has

indicated that the inflammatory cytokines associated with EoE,

including IL-13 and IL-5, have the ability to downregulate key

barrier proteins such as desmoglein (DSG1) and filaggrin (FLG)

(151, 152). Interestingly, in the context of atopic dermatitis,

similar barrier dysfunctions have been observed not only in the

skin but also in the small intestine (153). This raises an

important question: is the esophagus the only site of allergen

penetration in EoE, or could allergens also enter through the

small intestine, potentially triggering or exacerbating

inflammation in the esophagus? The current evidence on whether

the duodenum plays a role in EoE is conflicting. One study in

adults found increased small intestinal permeability (147), while

another study in children did not show such findings (154).
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TABLE 1 Literature summary of specific bacteria/probiotics and their impact on food allergies.

Species/Strain Type of study Outcome Year No. of
patients

Author Study
PMID

L. rhamnosus GG (LGG) - in vivo
- Placebo-controlled-

prospective randomized
controlled study

Suppression and prevention of allergic response 2019 na Fu et al. PMID 30660420

2001 132 Kalliomäki
et al.

PMID 11297958

L. plantarum JC7 - in vivo
- in vivo

Microbiota/barrier restoration in food allergy 2022 na Duan et al. PMID 36194269

2021 na Jiang et al. PMID 34606539L. plantarum HM-22

L. acidophilus KLDS 1.0738 - in vivo
- in vitro

Inhibition of allergic response and suppression of
allergic pathways

2019 na Ni et al. PMID 31477403

2021 na Li et al. PMID 33990976

L. casei - in vivo
- Randomized, double-blind,

placebo-controlled, parallel-
group study

- Alleviation of tropomyosin-induced
food allergy

- Benefits on atopic dermatitis for children with
CMP allergy

2020 na Fu et al. PMID 32243079

L. casei LOCK 0918 2021 151 Cukrowska
et al.

PMID 33916192

B. longum longum 51A - in vivo
- in vivo

- Reduction of allergic inflammation 2021 na Santos et al. PMID 34558015

2021 na Pyclik et al. PMID 34354710B. longum longum CCM
7952

B. bifidum TMC 3115 - Randomized double-blind
control trial

- Multicenter, randomized,
and controlled clinical trial

- Improving of anti-inflammatory responses
- Reduced risk of gut dysbiosis

2020 256 Jing et al. PMID 34741472

2024 413 Bellomo et al. PMID 38930475

B. infantis 14.518 - in vivo - Alleviation of Tropomyosin-induced
allergic responses

2017 na Fu et al. PMID 29176981

A. muciniphila - in vivo
- in vivo

- Detrimental effect in case of fibre deprivation
- Protective effect to ovalbumin food allergy

2023 na Parrish et al. PMID 37696941

A. muciniphila BAA-835 2023 na Miranda et al. PMID 37097372

B. coagulans 09.712 - in vivo - Ameliorates shrimp tropomyosin induced
allergic response via suppression of
mTOR signalling

2017 na Fu et al. PMID 28512288

C. butyricum
CGMCC0313-1

- in vivo
- in vivo
- in vivo

- Reduction of beta-lactoglobulin-induced
intestinal anaphylaxis

- Reduction of ovalbumin-induced allergic
airway inflammation

- Strengthening of gut barrier function And
attenuation of disease in models of colitis and
allergic diarrhoea

2017 na Zhang et al. PMID 28250847

2017 na Juan et al. PMID 28122397

2018 na Wang et al. PMID 30014710C. butyricum CGMCC 7281

L. acidophilus CGMCC
7282 plus C. butyricum
CGMCC 7281

Clostridiales - Cohort study
- Prospective case-control

follow-up study

- Increased Bacteroidales and reduced
clostridiales in allergic adults

- Higher total bacterial and anaerobic counts in
cow’s milk protein allergic children compared
with healthy children

2015 1879 Hua et al. PMID 26870828

Bifidobacteria 2009 92 Thompson-
Chagoyan et al.

PMID 19889194
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Regardless, the integrity of the mucosa in both the esophagus and

possibly the small intestine may be crucial to understanding the

disease’s pathology, and restoring this integrity may be key to

achieving complete histological remission. Elemental diet studies,

which exclude food allergens, have demonstrated significant clinical

and pathological improvements in EoE (155, 156). However, the

impact of eliminating food allergens on mucosal integrity has not

yet been explored in these patients. In addition to changes in

microbial composition, recent research has suggested that the

function of the microbiota may also be altered in EGIDs (157). The

gut microbiome is known to produce a variety of metabolites that

influence both local and systemic immune responses. For example,

SCFA have been shown to have anti-inflammatory effects and to

promote the integrity of the epithelial barrier (158). However, in

patients with EGIDs, there may be a reduction in the production of

these beneficial metabolites, leading to a dysregulated immune

response and further compromising barrier function. This

hypothesis is supported by a study demonstrating that the

dominant taxa in patients with EGIDs was increased (Streptococcus
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in esophagus; Prevotella in stomach) (149). Specific taxa were

associated with active disease for both EoE (Streptococcus,

Gemella) and EoG (Leptotrichia), although highly individualized

communities likely impacted statistical testing. Stool analyses did

not correlate with bacterial communities found in mucosal biopsy

samples and was similar in patients and controls. Therefore, further

study is needed to determine if therapeutic interventions contribute

to the observed community differences.

Nevertheless, pre-clinical models of EGIDs have provided

valuable insights into the mechanisms by which microbiota

alterations contribute to disease pathogenesis (159). In mouse

models of EoE, for example, it has been shown that antibiotic

treatment, which disrupts the gut microbiota, can exacerbate

disease symptoms and lead to increased eosinophilic infiltration

of the esophagus. Conversely, the administration of probiotics or

microbiota-targeted therapies has been found to reduce

eosinophil levels and improve epithelial barrier function,

suggesting that modulating the gut microbiota may be a

promising therapeutic strategy for patients with EGIDs (160, 161).
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The clinical implications of these findings are striking. Current

treatment options for EGIDs primarily focus on suppressing the

immune response and reducing eosinophilic inflammation

through the use of corticosteroids, biologic agents (such as anti-

IL-5 and anti-IL-4Rα therapies), and dietary interventions (such

as elimination diets that remove suspected food triggers).

However, emerging evidence suggests that targeting the gut

microbiota may represent a novel therapeutic approach for these

diseases (162). For example, clinical trials are currently underway

to evaluate the efficacy of fecal microbiota transplantation (FMT)

and other microbiota-targeted therapies in patients with EoE and

other EGIDs. These therapies aim to restore a healthy microbial

balance in the gut, thereby improving epithelial barrier function

and reducing inflammation.

The need for further research is evident, particularly in

exploring how dietary interventions and microbiota-modulating

therapies affect barrier integrity and inflammation. Understanding

the mechanisms by which allergens and microbial products

interact with the immune system in these diseases will be crucial

for developing more effective, targeted treatments aimed at both

preventing eosinophil infiltration and restoring mucosal health.
Other food components as barrier
disruptors: emulsifiers, plastic
nanoparticles and advanced glycation
end products

A higher consumption of processed foods in Western and

Westernized countries has unfortunately been driven by the

increase in productivity in modern societies. These foods are rich

in food additives such as emulsifiers, plastic nanoparticles and

AGEs (advanced glycation end products) which can all pose risks

for human health (163).

Emulsifiers play a very important role in industrial food

production, helping to combine immiscible ingredients such as oil

and water, and can be commonly found in many processed foods.

They are widely used in industrial processed food as they optimize

food properties and help to exalt appearance, texture and flavor.

Main food emulsifiers include guar gum (E412) found in cheese

and other dairy products, lecithin (E32) commonly used in

chocolate, xanthan gum (E415) usually found in mayonnaise,

carrageenan (E407) found in ice creams/desserts and polysorbates

(E432-436) found in ice cream, cakes and oils (164).

Polysorbate—60, polysorbate—80, carboxymethylcellulose

(CMC), glyceryl monolaurate and carrageenan are mainly studied

and, as shown in vitro and in animal models, they are known for

their detrimental effect on human health and intestinal

inflammation due to their impact on gut microbiota and gut

permeability (165–177).

Emulsifiers may determine gut dysbiosis and reduce

biodiversity of gut microbiota: many studies have proven an

emulsifier-driven reduction of Lactobacillales and Clostridiales

such as Faecalibacterium genera and specifically Faecalibacterium

prausnitzii in inflammatory bowel disease (IBD); on the contrary,

an increase of other specific commensals such as Escherichia,
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Roseburia, Bradyrhizobium and Turicibacter genera have been

also described on a emulsifier-rich diet (178).

As shown in murine and human models, mucus layer thickness

was reduced upon exposure to CMC and polysorbate 80, common

emulsifiers used in foods, and there were also an increased bacterial

penetration of the mucus and a shift to proinflammatory

microbiota composition (179, 180).

It has been demonstrated that polysorbate 80 could increase the

viscosity of mucus, due to smaller pores in mucus layer and those

changes could accelerate movement of some bacteria as Escherichia

Coli and modify interaction with other bacteria (181).

These changes in intestinal barrier could determine an

increased permeability and a greater bacterial translocation. In

fact, it has also been shown that exposure to carrageenan

changed location of zonula occludens (Z0-1) from peripheral to

more central position in cell membrane and altered actine

filaments (182). Carrageenan also causes non-reversible

modification in microbiota composition, bacterial density and

enhancement of pro-inflammatory pathways (168, 183). These

mechanisms could be crucial for determining intestinal

inflammation at the onset or perpetrating IBDs.

In addition, CMC and polysorbate 80 also have a pro-

inflammatory effects, as they induce an increased intestinal

production of tumor necrosis factor (TNF)-α, IL-1 β, IL-6, IL-8

and activated B cells unleashed by Toll-like Receptor-4 (TLR4) (184).

As regards the possible involvement of emulsifiers in Th2-type

adaptive immunity, in murine models a dietary exposure to CMC

and polysorbate 80 increased IL-4 and IL-5 gene expression;

specifically, the latter upregulated gene involved in histamine

synthesis, IL-4, IL-5, IL-13, IL-33 and other genes involved in

mast cell activation (185).

Another important role in barrier disfunction could be played

by plastic nanoparticles (NP), which are commonly found in

human food, due to an increased release of plastic waste in the

environment. Among plastic particles, those with less than

100 nm are more easily internalized by enterocytes through

endocytosis, avoiding tight junction defense system. Their role,

especially for long term exposure, is still to be completely defined

as a health risk factor, both alone or as a cofactor when

epithelial barrier presents a dysfunction. While several inorganic

plant-derived NP may reduce diversity of microbiota (186), other

NP might interfere with immune system and gut-brain axis,

through an exacerbation of oxidative stress or an increase in gut

permeability (187, 188).

A summary of studies on specific food additives and

their impact on gut permeability/inflammation/microbiota is

shown in Table 2.

AGEs are a heterogenous group of compounds which are

formed during the Maillard reaction, a non-enzymatic reaction

or glycation that occurs between reducing-sugars and free

aminoacidic group of proteins, peptides or free amino acids. This

process is very common in the food industry because it helps to

improve taste, consistency, color and aroma (189). Many human

and animal studies point out that AGEs could be partially

absorbed in the intestinal lumen and could distribute across

various tissues and organs. About 60% of absorbed AGEs were
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TABLE 2 Literature summary of specific food additives/nanoplastic compounds and their impact on gut permeability/inflammation/microbiome.

Food Additive Type of Study/
Model

Outcome Year Author Study
(PMID)

Carboxymethylcellulose Murine model Increased inflammation levels and colitis driven by B-cell leukemia/
lymphoma 10 (Bcl10)

2013 Bhattacharyya
et al.

23766559

Carboxymethylcellulose Murine model Bacterial overgrowth and increased bacterial adherence due to
distention of spaces between villi and migration of bacteria to the
bottom of the intestinal crypts

2009 Swidsinski et al. 18844217

Carrageenan Murine model and
peripheral blood
monocytes

Increased inflammation levels and colitis linked to NF-κB activation. 2010 Benard et al. 20072622

Polysorbate 80 Murine model Reduced microbiota diversity, colitis driven by elevated levels of
lipopolysaccharide and flagellin in the metagenome patterns

2017 Viennois et al. 27821485

Carrageenan Murine model Inflammation promoted by LPS-induced IL-8 expression 2017 Wu et al. 28163398

Carrageenan Murine model Carrageenan-induced colitis linked with changes in gut microbiota’s
composition: a reduction of Akkermansia mucinofila, which has
important anti-inflammatory properties

2017 Shang et al. 28778519

Glyceryl monolaurate Murine model Increased inflammation levels: upregulation of circulating levels of
serum LPS, IL-1β, IL-6, and TNF-α. Dysbiosis in gut microbiota

2017 Jang et al. 29131494

Methylcellulose Murine model Methylcellulose exposure was associated with more severe colitis 2018 Llewellyn et al. 29174952

Polysorbate 80 Murine model Increased ileal dysbiosis 2020 Furuhashi et al. 31359491

Polysorbate 80 and
Carboxymethylcellulose

Murine model Increased interleukin-1β expression, induced colitis, increased
bacterial adherence, increased the Gammaproteobacteria abundance
and decreased the α-diversity in the small intestine

2020 Viennois et al. 33027647

Carrageenan Human intestinal
epithelial cells

Increased inflammation levels (via activation of Bcl10 with NF-κB
activation and upregulation of IL-8). Colitis.

2007 Borthakur et al. 17095757

Carrageenan Human intestinal
epithelial cells

Toll-like receptor 4 interaction induced the Bcl10-NFkappaB-
interleukin-8 inflammatory pathway

2008 Bhattacharyya
S et al.

18252714

Polysorbate 60 and Polysorbate
80

Caco-2 cell model Alteration in intestinal permeability and increased bacterial
translocation

2010 Roberts et al. 20813719

Carrageenan Human intestinal
epithelial cells

Alteration in intestinal permeability and increased bacterial
translocation

2012 Choi et al. 22561171

Carrageenan Caco-2 cell model Inflammation due to increased secretion levels of TNF-α, IL-1β and
IL-6; colitis

2013 Jiang et al. 24126493

Carrageenan Caco-2 cell model Alteration in intestinal permeability and increased bacterial
translocation

2017 Fahoum et al. 27718308

Polysorbate 80 and
Carboxymethylcellulose

Murine model and
M-SHIME model

Alteration in microbiota composition 2017 Chassaing et al. 28325746

Polysorbate 80 and
Carboxymethylcellulose

Porcine mucus model Altered mucus production and bacterial colonization 2018 Lock et al. 29968743

Maltodestrin E1400, Polysorbate
80 and Carrageenan

Fecal samples
collection

Alteration in microbiota composition, increased LPS levels and
bacterial density

2021 Naimi et al. 33752754

Polystyrene nanoparticles Murine model Changing in microbial barrier: decrease Verrucomicrobiota genera and
increase the abundance of Spirochaetota

2022 Xiao et al. 34715478

Polystyrene nanoparticles Murine model Production of ROS and oxidative stress in cells, activation of NF-κB/
NLRP3 pathway, decrease in expression tight junction proteins (ZO-1,
Claudin 1, and Occludin) levels, overexpression of inflammatory
cytokines (TNF-α, IL-6, and IFN-γ)

2022 He et at. 35830933

Polystyrene nanoparticles Murine model Damage to the intestinal barrier due to increased reactive oxygen
species (ROS)-mediated apoptosis of intestinal epithelial cells

2021 Liang et al. 34098985

Valitutti et al. 10.3389/falgy.2024.1505834
found after 3 days especially in kidney and liver, but they were also

found in heart, lung and spleen (190, 191). AGEs could also be

endogenously produced. An accumulation of endogenous and

exogenous AGEs could increase the production of ROS and

determine cellular dysfunction and apoptosis. In fact, these

compounds can interact with surface receptors of the antigen

presenting cells and with RAGE, the receptor for advanced

glycation end products (192–194). An exposure to AGEs could

determine in human enterocytes a sizable increase in the

production of IL-25 e IL-33, thus shaping immune response to

Th2-pathways and allergic inflammation (195). Furthermore, it

has been demonstrated that AGEs also cause a downregulation of
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tight junction protein expression, with a higher mucosal

permeability and higher susceptibility to environmental triggers,

amplifying the inflammatory response and potentially induce also

epigenetic modifications (196). This alteration can theoretically

facilitate the development of FA due to an increased exposure to

food antigens. In addition, AGEs can also increase oxidative

stress, as we know that the binding of their cellular receptor

(RAGE) on enterocyte’s surface leads to the activation of an

extracellular kinase pathway (ERK 1 and 2) and NF-kb pathway,

which bring to ROS production (197).

AGEs could also have an extra impact on the development of

food allergy. Heilmann et al. have shown in a murine study that
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the specific glycation of food antigens could have allergenic potential

by influencing T-cell immunogenicity. Their study showed an

increased production of several cytokines (IL-2, IL-17, IFN-y) with

glycated-ovalbumin compared to native ovalbumin (198).
The brain-gut-microbiome axis and its
barrier

Most functions of GI physiology are influenced by neural

control, both enteric nervous system (ENS) and autonomic

nervous system (ANS). The influence on the gut is bidirectional,

as the gut also sends information to the systems through

complex pathways to achieve homeostasis, and alterations in this

communication have been proven to be associated with diseases.

Cross-communication between the brain and gut occurs through

multiple biological axes involving the above-mentioned neural

network, the neuroendocrine and immune system, and metabolic

pathways, enabling bidirectional communication (199). The

intestine physically communicates with the brain through 2

neuroanatomical pathways: the ANS and the vagus nerve (VN).

The afferent VN innervates the mucosal and muscle layers of the

gut, senses stimuli as luminal volume through mechanoreceptors

or chemical stimuli (hormones, neurotransmitters, and

metabolites) through chemoreceptors, and transmits these signals

to the brain. On the other hand, the efferent VN transfers

information from the central nervous system (CNS) to the gut.

The other bidirectional exchange is guaranteed via the enteric

nervous system (ENS) in the intestine, which is connected to the

ANS and VN in the spinal cord and transmits information to

the brainstem nuclei (200). Recently, the microbiome has

emerged as an integral player in gut-brain communication, and

the concept of a microbiome-gut-brain axis has substituted the

previous gut-brain axis entity. Gut microbiota interplays with

the human host in a mutually beneficial relationship, influencing

the development and maturation of the immune, endocrine, and

nervous systems. Microbiota composition depends on various

factors including the physiological changes in the gastrointestinal

tract such as motility and secretion, which are tightly regulated

by the central nervous and enteric nervous systems (201).

Changes in small intestine or large intestine motility, such as

diarrhea or constipation, can cause dysbiosis (202). At the same

time, several studies in germ-free animals have shown an

abnormal gut motility and altered perception of inflammatory

pain, stressing out the importance of microbiota in the regulation

of gut motility (203, 204).

Moreover, the central nervous system can control

microorganisms by affecting the secretion of serotonin, cytokines,

catecholamines, and dynorphin from enteroendocrine cells,

immune cells, and nerves, responsible for mucus production,

secretory functions, mucosal immune responses, and direct

changes in intestinal mucosal permeability (205). Despite the

physical separation constituted by the intestinal epithelium,

microbiota can also affect the brain-gut axis: the VN can sense

microbial signals (i.e., bacterial metabolites) or can be influenced

via microbiota-mediated modulation of enteroendocrine cells in
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the gut epithelium (206). Microbial metabolites include

metabolites generated by the host and modified by the gut

microbes, such as secondary bile acids, dietary product-derived

molecules (compound K), or de novo synthesized compounds

such as SCFAs. SCFAs may deeply affect gastrointestinal

physiology, influencing peristalsis, visceral pain, epithelial

proliferation, barrier function, host immunity, but also bacterial

pathogenesis itself (207). SCFAs can epigenetically modulate

epithelial cells; for example, butyrate enhances mucus

production, activating the MUC2 promoter and enhancing

histone acetylation in cell cultures. Moreover, SCFAs can bind to

specific receptors like G- protein-coupled receptors (GPR),

inducing the production of chemokines and cytokines. For

example, butyrate induces the IL-18 excretion in epithelial cells

by binding to GPR109a, thus protecting the colon against

inflammation and carcinogenesis (208).

On the contrary, gut microbiota can also directly transmit signals

to submucosal afferent nerve receptors which acts as microbe-

associated molecular patterns (MAMPs) such as peptidoglycan or

lipopolysaccharide (LPS) in the cell wall. MAMPs can activate

various immune cells, especially innate immune cells such as

macrophages, neutrophils, and dendritic cells. Inflammatory

cytokines such as IL-1α, IL-1β, TNF-α, and IL-6 produced by

these cells can pass through the blood-brain barrier and affect

brain function by acting on receptors expressed on neurons and

glial cells, especially microglia (209, 210). LPS can also directly

affect the brain through the blood-brain barrier (211).

Gut microbiota can also influence the host’s metabolic state

and neuroendocrine system. For example, SCFAs produced by

microbes regulate the expression and secretion of glucagon-

like peptide-1 (GLP-1) through the free fatty acid receptor

of L cells, controlling insulin release and appetite (212).

In addition, secondary bile acids metabolized by microbes

activate the G protein-coupled bile acid receptor (TGR5) of

L cells to secrete peptide YY (PYY) and GLP-1 (213). PYY

inhibits GI motility, slows food intake, decreases appetite, and

increases energy consumption.

The intestinal microbiota can also affect the secretion of

serotonin (5-HT), a neurotransmitter fundamental for different

gastrointestinal functions, such as sensory-motor function and

gut homeostasis. Specific spore-forming bacteria from both

humans and mice can increase colonic and serum 5-HT levels in

germ-free (GF) mice and ameliorate GF-associated gut

dysmotility by producing SCFAs (214), which increase 5-HT

production by enteroendocrine cells (EECs) (215, 216).

Moreover, SCFAs can increase serotonin production by

increasing the expression of tryptophan hydroxylase-1 in ECCs

(217). In addition, indole produced by microorganisms

metabolizing tryptophan can stimulate ECC receptors to promote

serotonin secretion (218). Interestingly, the gut microbiota can

directly produce neurotransmitters such as serotonin, dopamine,

epinephrine, norepinephrine, γ-aminobutyric acid, and

acetylcholine (219, 220). However, neurotransmitters have large

molecular weights and cannot pass through the blood-brain

barrier, making it difficult for neurotransmitters in the periphery

to affect the central nervous system directly. It is possible that
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the gut microbiota can regulate and influence the metabolism or

production of precursors that can pass through the blood-brain

barrier (221). Some crosstalk pathways between brain and gut-

microbiota are summarized in Table 3.

Microbial activity is fundamental in regulating epithelial

permeability: indole derivatives, bile acid metabolites,

conjugated fatty acids, polyamines, and polyphenolic derivatives

are other microbial-derived compounds that actively regulate

gut barrier function (222). In addition, gut microbiota as well

as bacterial and viral infections can also influence intestinal

barrier function through the modulation of tight junction

expression and assembly (223, 224). In a Canadian study,

germ-free mice proved to have a higher colonic expression of

claudin-1 and occludin and a lower paracellular uptake of

probes as compared with conventional mice, suggesting that

commensal microbiota may control colonic tight junction

proteins and paracellular permeability (225). The same study

demonstrated that transplantation of fecal microbiota from

healthy humans can restore the barrier features (paracellular

permeability, colonic barrier structure) of conventional mice

within a week. Altogether, these data suggest that gut

microbiota is crucial in preserving the integrity of the intestinal

barrier and preventing the systemic spread of potentially

harmful antigens (226).

In particular, specific gut microbiota components may

modulate the intestinal permeability differently. For example,
TABLE 3 Pathways of crosstalk between brain and gut-microbiota.

From gut microbiota to brain From brain to gut
microbiota

Immune system Immune system
- MAMPs induce cytokines production

(IL-1α, IL-1β, TNF-α, and IL-6)
- SCFAs induce cytokines production and

stabilize tight junctions

- Modulates mucosal
immune system

Neuroendocrine system Neuroendocrine system
- SCFAs induce 5-HT, GLP-1,

PYY production
- Modulates 5-HT and

catecholamines secretion
- Modulates cortisol production
- Modulates gut

microbiota composition

Enteric nervous system Enteric nervous system
- MAMPs can interact with submucosal

afferent nerve receptors
- Direct regulation of neurotransmitter

precursors production (5-HT, dopamine,
GABA, glutammate)

- Modulates dynorphin secretion

Circulatory system
- MAMPs directly affect the brain through

blood-brain barrier
- Cytokines can modulate neurons and

glial cells

Vagus nerve Vagus nerve
- Microbial metabolites direct action
- Modulation from EECs in gut epithelium

- Interacts with gut through
efferent fibers

- Modulates
catecholamines secretion

- Modulates intestinal
mucosal permeability

Frontiers in Allergy 11
colonization of germ-free mice with Bacteroides or Escherichia

coli Nissle 1917 (EcN) led to the up-regulation of genes encoding

for proteins such as small proline-rich protein-2 (sprr2a) and

ZO-1 responsible for cellular adhesion (227, 228). Moreover, it

has been demonstrated that the increase in paracellular

permeability in patients with IBS could be ameliorated by EcN,

thus reducing abdominal pain and bloating (229).

The gut microbiota might also overstimulate the immune

system by facilitating a leaky gut, leading to the release of

immune mediators, such as histamine, tryptase, serotonin,

polyunsaturated fatty acids (12-hydroperoxyeicosatetraenoic acid,

15-hydroxyeicosatetraenoic acid, 5-hydroxyeicosatetraenoic acid,

5-oxoeicosatetraenoic acid and leukotriene B4), known to evoke

sensory afferent over-stimulation and pain (230–232). Moreover,

some recent studies confirmed that IBS is associated with

reduced stability and biodiversity of the gut microbiota (233).

Also, an Italian cross-sectional study revealed significant

differences among IBS subtypes in the distribution of

Clostridiales. Relative Clostridiales abundance was correlated with

significant differences in the level of fecal SCFAs, which together

were associated with altered fecal cytokine levels (234).

Similarly, in clear-cut inflammatory conditions such as IBD,

microbiota dysbiosis has been well described in association with

an impairment of intestinal permeability. The intestinal barrier

may represent the target of mediators released by inflammatory

cells in the lamina propria, and disruption of the physiologic

barrier would then allow the passage of antigen, leading

to further inflammation in a self-maintaining pathological

inflammatory process and antagonizing tissue repair (235).

In patients with IBD, there has been a loss of biodiversity (with a

decreased concentration of Firmicutes species and Akkermansia

muciniphila) and microbial stability, while an increased

concentration of Proteobacteria such as Enterobacteriaceae,

Bilophila, and Bacteroidetes (236, 237). Furthermore, in

patients with IBD, a reduction in SCFA-producing bacteria

such as Faecalibacterium prausnitzii has been observed (238).

F. prausnitzii is well-known to have anti-inflammatory properties

through its ability to produce butyrate, thus regulating

T regulatory cell and T helper 17 (239). Doubtlessly, these

changes may alter intestinal barrier integrity, potentially

resulting in increased immune responses and the diffusion

of pathogens into the intestinal tissues. The intestinal

inflammatory process depends on the TLR pathway, responsible

for the downstream production of cytokines such as TNF-α and

IFN-γ, further fueling increased permeability both in IBD

and IBS (240, 241).
Conclusion

From the gathered evidence, it is clear that food antigens might

interfere with gut permeability in diverse ways and in several

diseases. This interference, however, does not rely on one-to-one

relationship, given the fact that genetic background, barrier

disruptors, microbiota perturbances and inflammation interact in

a multidimensional fashion on a path towards disease onset.
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Unfavorable dietary choices and consequential changes in gut

microbiota can promote intestinal barrier dysfunction and,

subsequently, loss of tolerance towards food antigen and mucosal

inflammation, with effects not only restricted to the

gastrointestinal tract. On the other hand, inflammatory mediators

can increase mucosal permeability and influence gut microbiota,

leading to a vicious and self-maintaining circle.

Several gaps of knowledge still exist as regards this multi-level

interaction. For example, it remains elusive why only one twin from

monozygotic twins, with almost overlapping genetics, similar

microbiota and diet, might develop a multifactorial disease, while

the other twin might not. System biology approaches could

hopefully sort out many unanswered questions if properly

applied to a large set of metadata and biological samples from

prospective cohorts.

By advancing our understanding of these intricate and

interactive processes, future personalized therapies could more

effectively alleviate the burden of food-triggered diseases and

improve quality of life for affected individuals.
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