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Sex hormones and allergies:
exploring the gender differences
in immune responses
Jesús Alberto Gutiérrez-Brito, José Álvaro Lomelí-Nieto,
José Francisco Muñoz-Valle, Edith Oregon-Romero,
Jazz Alan Corona-Angeles and Jorge Hernández-Bello*

Research Institute of Biomedical Sciences, University Center of Health Sciences, University of
Guadalajara, Guadalajara, Mexico
Allergies are closely associated with sex-related hormonal variations that
influence immune function, leading to distinct symptom profiles. Similar sex-
based differences are observed in other immune disorders, such as
autoimmune diseases. In allergies, women exhibit a higher prevalence of
atopic conditions, such as allergic asthma and eczema, in comparison to men.
However, age-related changes play a significant role because men have a
higher incidence of allergies until puberty, and then comes a switch ratio of
prevalence and severity in women. Investigations into the mechanisms of how
the hormones influence the development of these diseases are crucial to
understanding the molecular, cellular, and pathological aspects. Sex hormones
control the reproductive system and have several immuno-modulatory effects
affecting immune cells, including T and B cell development, antibody
production, lymphoid organ size, and lymphocyte death. Moreover, studies
have suggested that female sex hormones amplify memory immune
responses, which may lead to an excessive immune response impacting the
pathogenesis, airway hyperresponsiveness, inflammation of airways, and
mucus production of allergic diseases. The evidence suggests that estrogens
enhance immune humoral responses, autoimmunity, mast cell reactivity,
and delayed IV allergic reactions, while androgens, progesterone, and
glucocorticoids suppress them. This review explores the relationship between
sex hormones and allergies, including epidemiological data, experimental
findings, and insights from animal models. We discuss the general properties
of these hormones, their effects on allergic processes, and clinical
observations and therapeutic results. Finally, we describe hypersensitivity
reactions to these hormones.
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AM, alveolar macrophages; APC, antigen-presenting cell; AR, androgen receptor; ASM, airway smooth
muscle; BMM, bone marrow-derived macrophage; CAR-T, chimeric antigen receptor T; DHEA,
dehydroepiandrosterone; DHT, dihydrotestosterone; DNMT1, DNA methyltransferase 1; E1, estrone; E2,
estradiol; E3, Estriol; ED, enterodiol; eNO, exhaled nitric oxide; ER, estrogen Receptor; ERE, estrogen-
responsive element; FSH, follicle-stimulating hormone; GC, glucocorticosteroid; GPER, G protein-coupled
estrogen receptor; GR, glucocorticoid receptor; HRE, hormone response elements; HRT, hormone
replacement therapy; HSP, heat shock proteins; IFN, interferon; IL, interleukin; ILC2, type 2 innate
lymphoid cells; LH, luteinizing hormone; mERs, membrane estrogen receptor; MHC, major
histocompatibility complex; MR, mineralocorticoid receptor; NF- κB, nuclear factor -κB; NK, natural
killer; NOS, nitric oxide synthetase; NR, nuclear receptor; PBMC, peripheral blood mononuclear cell; Pg,
progesterone; PH, progesterone hypersensitivity; PIBF, progesterone-induced blocking factor; PR,
progesterone receptor; PRL, prolactin; SDG, secoisolariciresinol diglucoside; SLPI, secretory leukocyte
protease inhibitor; Sp1, specific protein 1; Th2, T cells subtype 2.
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1 Introduction

Allergies are the most common chronic inflammatory

disorders worldwide; triggered by immune reactions to specific

allergens, which can be proteins or glycoproteins and vary widely

in nature and origin (e.g., pollen, dust mite dander, food) (1).

Vary allergic conditions (e.g., urticaria, asthma, atopic dermatitis,

rhinoconjunctivitis, allergies to food or drugs, and anaphylaxis)

share common pathogenic mechanisms, though the precise

pathways remain not entirely clear (2). Additionally, epidemiological

data indicate notable differences in the incidence, prevalence, and

severity of allergies between sexes (3).

Globally, the prevalence of allergies is rising, with documented

cases indicating that 400 million people suffer from rhinitis, 300

million from asthma, between 200 and 250 million from food

allergies, and approximately 10% of the world population from

drug allergies (4). Although the precise mechanisms underlying

this rapid increase in prevalence are unknown, many factors can

influence allergic responses; emerging evidence suggests that

genetics, environment, microbiota, diet, and sex-related factors

may play a significant role (5).

Allergies are generally mediated by expanding populations of

helper T cells subtype 2 (Th2), which produce type 2 cytokines

such as interleukin IL-4, IL-5, IL-9, and IL-13. These cytokines

influence the pathology of allergies; IL-4 helps B cells

differentiate into IgE-producing plasma cells, triggering an

immediate allergic reaction after binding to high-affinity IgE

FcϵRI receptor on mast cells (6). It also promotes Th2 cell

differentiation. IL-5 induces differentiation, recruitment, and

activation of eosinophils (7), while IL-13 increases mucus

production in the bronchial epithelium and participates in

B cell activation (8).

The allergic response can be divided into two phases:

sensitization and effector. During the sensitization phase,

allergens can break through the body’s protective mucosal barrier

and be taken in by an antigen-presenting cell (APC). The APC

degrades the allergen into peptide fragments and presents them

to major histocompatibility complex (MHC) class II molecules.

This interaction activates CD4+ T cells or Th2 cells, which, in

turn, stimulate naïve B cells to differentiate into IgE-producing

plasma cells (9). Upon re-exposure, allergens bind to IgE on

sensitized mast cells or basophils, inducing cross-linking of

IgE-FcϵRI complexes, which triggers cell activation and

degranulation. During the effector phase, degranulation results in

the release of histamine and proinflammatory cytokines from

these cells. The release of these mediators produces allergy

symptoms in various organ systems and tissues, including the

alveoli (Figure 1). These symptoms include upregulating

inflammation, eosinophilia, smooth muscle contraction, excessive

mucus secretion, vasodilation, and tissue damage; thus, persistent

exposure to allergens causes the disease to become chronic (10).

Interestingly, hormonal variations have been identified to affect

the immune system. After puberty, males are believed to maintain

higher or similar total serum IgE and allergen-specific IgE levels

compared to females. As adults, both sexes experience a decrease

in IgE levels. In addition to age-related changes, menstrual cycles
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and pregnancy can also influence IgE levels, suggesting the role

of estrogens in their regulation (11).

Clinical data supports the role of sex in the sensitization

process, indicating that women may be more prone to allergies

than men, including conditions such as urticaria, anaphylaxis,

food allergy, and asthma (12). Additionally, clinical investigations

and longitudinal studies have highlighted the higher prevalence

of systemic allergic reactions in women, who are more

susceptible than men to both idiopathic allergic reactions and

those induced by food, drugs, and radiocontrast agents (13, 14).

Specific associations have been reported between pregnancy,

hormonal therapies, and the severity of allergic reactions (15).

Therefore, differences among sexes can significantly affect

allergy prevention, detection, diagnosis, and treatment (16).

Immunological sexual dimorphism can cause discrepancies in

allergic responses in men and women because of a dynamic and

complex combination of hyperreactivity, deregulated immune

response, chronic inflammation, and tissue remodeling in

affected organs (17).

Regarding asthma, global reports indicate variations between

sexes. It is observed that men have a higher incidence of asthma

until puberty. Still, after puberty, there is a switch in the ratio,

and the prevalence and severity of asthma increase in women

(3, 18). Furthermore, approximately 30 to 40% of asthmatic

women report cyclical changes in the disease during pre and

perimenstrual phases, leading to a reduction in lung function,

severe asthma attacks, needing more bursts of corticosteroid,

and having to be hospitalized (2, 11). Moreover, hormonal

fluctuations during pregnancy and menopause may be

responsible for exacerbations of asthma in women (19).

In addition to asthma, Eczema is more common among boys

during childhood, but girls are more likely to have it after puberty.

This indicates a switch from male to female predominance by

early adulthood (20). Another example is what happened in

Vernal keratoconjunctivitis, a severe ocular allergy that mainly

affects boys but almost disappears after puberty (21). Even in

the cases of peanut allergy, females are more affected than

males (22). This could have occurred because androgens

produced in more significant amounts in men after puberty

generally suppress the responsiveness of immune cells (23).

In this sense, changes in the sex hormones, such as those

occurring at puberty, may influence the development of

allergic diseases.

Although the effect of sex hormones on immune cell function,

innate immune sensing in the airways, development, T-cell

activation, and B-cell responses have been extensively studied, the

mechanisms by which sex hormones specifically influence the

sensitization process in individuals of different age groups, such

as young people, adolescents, and adults remain unclear.

Age-related and sex-based differences in allergic disease

prevalence highlight the significant roles of biological sex and

gender-related factors in allergy development and progression.

Boys tend to have a higher incidence of allergic conditions in

childhood, but this trend reverses at puberty, leading to a

higher prevalence in women throughout adulthood. This shift

likely arises from complex interactions involving sex hormones,
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FIGURE 1

The intricate stages of the allergic response. 1. Sensitization phase involves (a) the contact of the allergens (e.g., dust, mold, pollen, silver and food) with
the body’s tissues and starts the allergic process; (b) estrogens (via ERα, ERβ, GPER, and E2) promote the synthesis of MHC-II and B7 receptors on the
membranes of antigen-presenting cells (APCs) and enhance cytokine production to activate naïve CD4+ T cells; (c) in the absence of estrogens, naïve
CD4+ T cells differentiate into Th1 cells, producing IL-12, IL-18, TNF-α, and IFN-γ, which inhibit Th2 cell differentiation; (d) in the presence of E2, naïve
CD4+ T cells differentiate into Th2 cells, producing IL-4, IL-5, IL-9, IL-13, or IL-10, which subsequently activate B cells; (e) B cells are activated by IL-4,
IL-5, IL-9, and IL-13, and in the presence of E2, they express more CD40 receptor on their membranes; (f) APCs (e.g., activated mast cells) may bind to
B cells through the CD40l/CD40 interaction and this lead also the activation of B cells. 2. The effector phase involves (g) the production of IL-25, IL-33,
and TSLP in response to tissue damage or stress from allergen contact, which activates ILC2 cells. These cells then produce IL-5, IL-9, IL-13, and IL-4;
IL-5 plays a key role in eosinophil recruitment and activation, while all are crucial for B cell activation; (h) the isotype switching of activated B cells to
plasma cells results in the production of specific IgE antibodies; (i) estrogens promote the expression of FcϵRI on mast cells, which is a specific
receptor for IgE binding; (j) the binding of the antigen, in the reexposure to the allergen, to IgE-FcϵRI on the mast cells, triggers the degranulation
of some proteases and, primarily, histamine; (k) the presence of E2 enhances degranulation by increasing expression of FcϵRI on mast cells; (l) the
inflammatory enzymes and histamine can lead to symptoms such as rhinitis, eczema, urticaria, or asthma, depending on tissue involvement.
(Created with BioRender).
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genetic and epigenetic regulation, lifestyle factors, microbiota

diversity, and environmental exposures. Such insights

emphasize the need for further studies to better understand the

underlying mechanisms and the influence of gender-specific

factors in the sensitization and development of allergic diseases

across different life stages (24).
2 Sex hormones and the
immune system

The term sex hormone typically refers to sex steroid hormones,

which are derived from cholesterol metabolism (25). However,

other non-steroidal hormones, like prolactin (PRL), which plays
Frontiers in Allergy 03
a vital role associated with sex, are not usually considered within

this category (26, 27).

Although sex hormones have well-known effects on sexual

differentiation and reproduction, they also influence the

immune system and cause sexual dimorphism in the immune

response (28). Thus, women often develop more robust

immune responses than men, making them more resistant to

certain infections (29).

However, increased immunity has significant drawbacks,

particularly the high prevalence of autoimmune and allergic

diseases among women. Over 80% of patients with antibody-

mediated autoimmune conditions, such as systemic lupus

erythematosus, Sjögren’s syndrome, and Hashimoto’s thyroiditis,

are women. This suggests that the immunological mechanisms
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underlying sex differences in infectious diseases and acquired

immunity to pathogens may also contribute to the higher rates

of autoimmune and allergic diseases observed in women (5).

These findings suggest that hormonal differences between sexes

may modulate the normal and dysfunctional regulation of the

immune system.

Allergic inflammation of the airways, characterized by the

presence of the Th2 cytokines profile (19), is stronger in women,

probably because estrogens could enhance it (30). In contrast to

the drop in asthma incidence observed in and around puberty in

males, the increased number of remissions observed intensely

suggests the protective action of male sex hormones (31).

Some asthmatic patients present a reduced (or no)

Th2-mediated airway profile; however, they present an increase

in neutrophils driven by airway inflammation mediated by Th1

or Th17 cytokines profiles. These cases may respond to different

causes, e.g., non-allergic asthma, corticosteroid resistance, and

genetic or environmental factors, such as high levels of hormones

like testosterone (32, 33).

Animal studies suggest that pregnancy is associated with

cytokine polarization towards a Th2 profile, with early increases

in several cytokines followed by a decrease in Th1 cytokines,

such as IL-2 and Interferon gamma (IFN-γ), and an increase in

Th2-like cytokines, such as IL-4, as pregnancy progresses. Thus,

the physiological increase in cortisol, progesterone, estradiol, and

testosterone concentrations observed during the third trimester of

pregnancy could be involved in Th2-like cytokine polarization (34).

These findings suggest that sex hormones could have essential

implications in immunological pathogenesis, such as asthma and

hypersensitivity reactions. However, the underlying mechanisms

must be fully elucidated (19, 35).

Hormones also regulate the thymus’s structure and function,

affecting B and T lymphocytes, mast cells, natural killer (NK)

cell activity, phagocytic cells, and cytokine production (36).

Additionally, they regulate type 2 innate lymphoid cells (ILC2),

which are more abundant in asthmatic women than in men’s

peripheral blood (37).

Hormones can make these effects by binding to their receptors,

triggering intracellular signaling cascades that can induce the

expression of immunomodulatory genes in the pathophysiology

of allergies (38).

The sex hormone receptors could be present on the surface of

immune cells like transmembrane proteins or, more classically, in

the cytoplasm. These receptors trigger specific cellular-type

responses; for example, they can modulate antigen presentation

mediated by dendritic cells, mast cells, or monocytes/

macrophages, which is why they are crucial to determining

the type of adaptive immune response under normal or

pathological conditions (39).

Scientific evidence suggests that female sex hormones act as

enhancers of autoimmunity, mast cell reactivity, and delayed-type

IV allergic reactions. At the same time, male hormones and

glucocorticoids may have an immunosuppressive effect (40, 41).

The following sections summarize the specific effects of sex

steroid hormones and PRL on allergic reactions in humans and

some animal models.
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3 Steroid sex hormones

Sex hormones and corticosteroids are complex organic

molecules of four rings produced in several organs, such as the

adrenal glands, gonads, placenta, and adipose tissue. They all

originate from cholesterol through the same steroidogenic

pathway. Sex hormones include androgens (such as testosterone

and androstenedione), estrogens (like estradiol, estrone, and

estriol), and progesterone (42).

Other non-steroid sexual hormones, like follicle-stimulating

hormone (FSH) and luteinizing hormone (LH), have low levels

during menopause and are associated with allergies, such as

asthma (35). Additionally, PRL is involved in allergic lung

inflammation (43).

The steroid hormones function as endogenous endocrine

hormones, exerting physiological effects in cells by binding to

and activating specific intracellular proteins called nuclear

receptors (NRs). Class I NRs include estrogen receptors alpha

(ERα) and beta (ERβ), androgen receptor (AR), glucocorticoid

receptor (GR), progesterone receptor (PR), and mineralocorticoid

receptor (MR) (44).

Hormones readily penetrate the cell membrane to the cytosol;

NRs are located mainly in an inactive state, forming an inactive

complex with heat shock proteins (HSP) (27). When a steroid

ligand binds to its receptor, it dimerizes, then translocate to the

nucleus and binds to specific palindromic sites called hormone

response elements (HRE) located in the promoters of target

genes; NRs can activate or repress their transcription, which

means that they act as transcription factors (30, 31, 36).

The effects mediated by hormones are also due to their ability

to regulate gene expression without direct binding to DNA but

rather through protein interactions with other transcription

factors that bind to DNA, including nuclear factor -κB (NF- κB),

specific protein 1 (Sp1), CCAAT-enhancer-binding protein β

(C/EBP β), or Fos/Jun AP-1 complex (activator protein-1); which

are all involved in the synthesis of proinflammatory cytokines by

innate immune cells (45, 46).
3.1 Estrogens

Over the years, several studies have investigated the

immunological mechanisms by which estrogens influence and

alter immune cells, potentially contributing to the development

of autoimmune diseases and allergies. These pathologies share

common pathogenic mechanisms, and estrogens remain among

the most studied hormones regarding their impact on allergic

disease pathology.

Estrogens control both sexes’ critical processes, such as glucose

and lipid metabolism, brain function, growth, and cell activation

(47). Moreover, they play an active role in producing

proinflammatory cytokines and have different effects throughout

the menstrual cycle, pregnancy, and menopause (48, 49).

In adulthood, there are three physiological forms of estrogens:

estrone (E1), estradiol (E2), and estriol (E3). Studies have described

that E2 is the principal and potent circulating estrogen, with
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various effects on the immune system cells, including its ability to

modify the differentiation, maturation, and effector functions of

conventional dendritic cells, which play a critical role in

activating and polarizing the adaptive immune responses (50).

E2 is also attributed to immunomodulatory effects (51),

suppressing the effector function of T lymphocytes and

increasing Th2 cell function and subsequent antibody production

(52–55). In addition, E2 has been associated with delayed-type

hypersensitivity responses (54) and relatively higher antibody

responses in women after vaccination, except IgG titers (56).

Estrogens can also control immune tolerance through

epigenetic and transcriptional mechanisms. They suppress DNA

methyltransferase 1 (DNMT1), causing hypomethylation in CD4

+ T cells, increasing activation. Also, an imbalance in histone

acetylation profiles has been observed in Peripheral blood

mononuclear cells (PBMCs). Estrogen also impacts transcription

factors, like AIRE, FOXP3, and RORγT, which are crucial for

immune tolerance control (57).

Estrogens mediate signaling by binding to their receptors,

which belong to two families: the G protein-coupled estrogen

receptor (GPER) and the NRs (ERα and ERβ) (58, 59). ERα and

ERβ can also be located in the cell membrane, initiating

membrane-initiated steroid signaling (MISS). This allows for a

faster response to estrogens compared to classical genomic

signaling, in which estrogens pass through the membrane and

bind to the receptors in the cytosol (60).

GPER is a seven-transmembrane domain protein that binds

specifically to E2 and is relevant in regulating non-genomic actions

(not involving transcriptional components). It is encoded by the

gene GPER1 located in the human chromosome 7; the protein is

expressed on the surface of the membrane and at intracellular

membranes (61). This receptor mainly mediates rapid intracellular

responses induced by estrogens, including activation of intracellular

signaling exemplified by AKT and MAPK pathways (62–64).

Indeed, GPER is expressed in non-immune cells and cells from the

innate and adaptive immune system, including circulating

B lymphocytes, T lymphocytes, monocytes (65), macrophages (66),

neutrophils (67–69), and eosinophils (70).

On the other hand, the classical or genomic (nuclear) pathway

is mediated by the ERα and ERβ. Both ERs bind the same ligands

with similar affinity (60) and are encoded by ESR1 and ESR2 genes

located on human chromosomes 6 and 14, respectively (71).

Interestingly, some single nucleotide variants in the ESR1 gene

have been associated with hypersensitivity and allergies in

asthmatic women (72).

ERs can regulate cellular function through two different

mechanisms: The nuclear, in which the activated ERs form

homodimers or heterodimers to tightly fix chromatin directly at

the estrogen-responsive element (ERE) sites or indirectly at AP1

or Sp1 sites (Figure 2). ERs can then remodel chromatin by

recruiting cofactors and activating RNA polymerase II at target

genes (genomic action). The second is the non-genomic

mechanism; ERs on the cell membrane (mERs) initiate signals

through kinases such as MAPK, PI3K, and GFR pathways (73).

The ERα and ERβ are expressed in several immune system

cells, including T suppressor/cytotoxic (74), helper T, and B cells
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(75). The expression levels vary between cell types. For instance,

T CD4+ cells and M2 macrophages express more ERα, while

B cells and respiratory tract epithelial cells express more ERβ

(76–78). Furthermore, the expression of both receptors has been

found in mature lymphocytes, which explains the immunological

changes that occur in women when estrogen is present (79, 80).

The study by Narita et al. showed the effect of E2 on cultured

mast cells, where E2 stimulation enhanced IgE-induced

degranulation. This indicates that estrogen stimulation can lower

the threshold of allergens. The study also demonstrated that ERα

mediates part of the degranulating activity of estrogen on mast

cells (81).

The action of estrogens in the allergic sensitization phase has

been studied in APCs differentiated cells, including dendritic

cells, macrophages, epithelial cells, and mast cells. It has been

shown that E2 in APCs increased expression of MHC-II and

costimulatory molecules like B7 receptors or CD40. The

expression of these receptors facilitates the allergic sensitization

and activation of B cells to IgE plasma cells (82, 83).

Despite limited information on the role of GPER in allergies

today, studies have shown contradictory findings. The study by

Tamaki et al. showed that activation of GPER through G-1

(a specific agonist) on human eosinophils inhibits the enzymatic

activity of caspase-3 and reduces spontaneous apoptosis,

suggesting a potential mechanism for GPER’s impact on asthma

pathogenesis; thus, these findings prove a mechanism of direct

interaction between estrogen and eosinophil functions (70). If

female hormones enhance eosinophil function, it could signify

that estrogens accelerate allergic inflammation.

In contrast, the recent study by Itoga and colleagues reported

different functions of GPER. They found that when G-1 is

administered to a mouse model of chronic asthma, it suppresses

allergic airway inflammation. They observed that the G-1 treated

group had significantly fewer peribronchial inflammatory cells,

eosinophils, and lymphocytes in their bronchoalveolar lavage

fluid (BALF) than the untreated group. Additionally, in splenic

mononuclear cells, the percentage of Foxp3 + CD4+ Treg was

significantly increased in the G-1 treated group. In conclusion,

GPER could be a therapeutic target for allergic airway

inflammation (84).

Furthermore, studies suggest that estrogens play an essential

role in the proliferation and survival of B cells and the antibody

or autoantibody response (85), which may explain the higher

prevalence of autoimmune diseases in women. Estrogens can

induce the expression of critical molecules in B cells, such as

CD22, SHP-1, and Bcl-2, which regulate apoptosis processes

through genetic programming (82). ER-mediated transcriptional

regulation induces class switching to IgE and somatic

hypermutations in developing B cells (85, 86). It has also been

shown that estrogen and estrogenic compounds can promote IgE

production in mouse splenocytes, which may worsen allergic

inflammation (87). Furthermore, estrogen increases histamine

secretion from human basophils, an essential mediator of allergy

and inflammation in asthmatic patients (87).

Estrogens also promote the dissociation of endothelial nitric

oxide synthetase (NOS), activating the nitric oxide (NO)
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FIGURE 2

Schematic of mechanisms of steroid action on cellular responses. Genomic and non-genomic, ligand-dependent and ligand-independent, classic and
non-classic receptor-mediated steroid-steroid receptor signaling pathways are shown. Membrane-Initiated Steroid Signaling (MISS) is also depicted,
representing the rapid response initiated when membrane-bound estrogen receptors interact with estrogens. The receptors are found in the
cytoplasm of target cells, where they are associated with large heat-shock protein-containing complexes that keep the receptors inactive. When
the steroid hormone receptor binds to the ligand, it undergoes a series of changes. It releases inhibitory proteins, forms dimers, moves into the
nucleus, and interacts with specific enhancers or hormone response elements near the promoters in target genes. This process of activation
allows the receptors to directly interact with specific estrogen response elements on DNA or be attached to DNA through interactions with other
transcription factors that are already at the enhancers. Signaling pathways like MAPK can converge on receptor-coregulator complexes, modifying
their activity and enabling receptors to activate target gene transcription without a classical ligand. (Created with BioRender).
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pathway, vasodilatation, and consequently increased inflammation

(87). An in vitro study on bronchial epithelial cells showed that

treatment with 10 nM of estrogen induces NOS expression and

NO production through the ERs, resulting in bronchodilation (88).

Macrophages are crucial in allergic inflammation, particularly

in allergic asthma, where alveolar macrophages are central to

inflammation and tissue remodeling; in this disease, IL-4/13

promotes the polarization of M1 to M2 type macrophages in the

airways (89). Indeed, the study by Keselman et al. showed that

women stimulated with estrogens produce a more significant

amount of IL-4, promoting the polarization to M2a-type
Frontiers in Allergy 06
macrophages that participate in eosinophil infiltration in the

alveoli, producing inflammation and greater severity (89).

Bone marrow-derived macrophages (BMMs) from

ovariectomized mice serve as an in vitro model for studying the

effect of estrogens on macrophage biology. These cells show

decreased TGFβ1 mRNA levels, which are rescued by estrogen

treatment. This study highlights the role of estrogens in tissue

remodeling during allergic inflammation by inducing TGFβ1

(89). In experimental models of asthma, female mice, after

allergen challenge, have increased airway hyperresponsiveness,

eosinophil influx, and more cytokine type 2 production (IL-4,
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IL-5, and IL-13) compared to males. Moreover, ILC2s produce

more IL-5 and IL-13 than Th2 cells (90).

Moreover, estrogens can induce the relaxation of airway

smooth muscle (ASM) (91), leading to bronchodilation and more

frequent exacerbations in the presence of low E2 levels (48).

Another finding is that E2 can influence the production of

secretory leukocyte protease inhibitor (SLPI), which inhibits a

serine protease and thus protects against tissue damage (92).

Studies by Macsali et al. and Erkoçoğlu et al. indicate that oral

contraceptives containing estrogens and progestogens are associated

with increased wheezing in women with asthma (93, 94).

Menopause, which leads to lower estrogen levels, is also associated

with worsened asthma symptoms (95), suggesting that estrogen

may have a protective effect at certain levels (96). Hormone

replacement therapy (HRT) can increase estrogen levels and

alleviate postmenopausal symptoms (97); however, new asthma

diagnoses tend to rise following HRT initiation and decrease after

its discontinuation (98). These findings suggest that estrogen’s

effect on asthma symptoms may vary based on dosage, with both

very low and high levels potentially contributing to adverse

respiratory outcomes (96).

Postmenopausal women have a higher prevalence of allergic

rhinitis, which has been associated with a decrease in estrogen

levels and a corresponding shift in immune profile. This shift

away from a Th2-dominant response may alter IgE regulation

and contribute to increased susceptibility to allergic conditions

(99). On the other hand, during pregnancy, fluctuating estrogen

levels can influence the course of allergic rhinitis. While some

women experience a worsening of pre-existing symptoms, others

may develop a distinct condition known as pregnancy-induced

rhinitis, which affects approximately 20% of pregnant women

across all trimesters and resolves shortly after delivery (100).

Despite these seemingly contradictory effects, estrogens have also

been shown to have a protective role by promoting the activation

of regulatory T cells, IL-10, and FOXP3, which can help alleviate

symptoms of allergic rhinitis (101). This duality in the action of

estrogens suggests that their influence on allergic rhinitis depends

on the specific physiological context and interactions with other

hormonal and immunological factors.

Finally, it is important to note that xenoestrogens and

estrogenic environmental pollutants (e.g., dioxins) interact

equally with ERα and ERβ receptors. These contaminants could

promote allergic diseases by supporting the release of histamine

and an allergic reaction, thus facilitating their release (81, 102).

However, recent research has revealed a unique aspect of

phytoestrogens, such as secoisolariciresinol diglucoside (SDG),

found abundantly in flaxseed, which undergoes metabolic

conversion to exert anti-allergic properties. In an ovalbumin-

induced allergic rhinitis mouse model, it was demonstrated that

dietary SDG alleviated allergic rhinitis through its microbial

conversion to enterodiol (ED). Notably, ED circulated primarily

in the glucuronide form (EDGlu) in the blood, and

deconjugation to ED aglycone occurred in the nasal passage, an

activity enhanced after the induction of allergic rhinitis and

mediated by β-glucuronidase. Furthermore, ED aglycone, but not

EDGlu, inhibited IgE-mediated degranulation in a G protein-
Frontiers in Allergy 07
coupled receptor 30 (GPR30)-dependent manner. These findings

provide new insights into the anti-allergic properties of

phytoestrogens and their potential metabolism in vivo, suggesting

that estrogens, including phytoestrogens, could be a novel target

for therapeutic strategies against allergic rhinitis (103).
3.2 Progesterone

Progesterone (Pg or P4) is a steroid hormone synthesized by

several organs during pregnancy, including the adrenal glands,

ovaries (by the corpus luteum), testicles, brain, and placenta. It

serves as a precursor for the biosynthesis of androgens, estrogens,

and corticosteroids and has many metabolic and physiological

functions related to the menstrual cycle, pregnancy,

embryogenesis, and lactation (104, 105).

Pg has immunomodulatory and anti-inflammatory effects that

inhibit glucocorticoid-mediated apoptosis of thymocytes,

macrophage activity, and IFN-γ production in NK cells (84–87,

195, 196). It also reduces NO production (106) and TLR

expression by macrophages (107) and promotes the

differentiation of Th2 lymphocytes in vitro (90).

Pg exerts its effects through intracellular Pg receptors (PR).

Additionally, it has rapid, non-transcriptional actions mediated by

membrane Pg receptors (mPR), which are structurally distinct (108).

Studies have demonstrated that PR expression is absent in

neutrophils, eosinophils, and B cells (109, 110). In contrast, PR is

present in mast cells, natural killer (NK) cells, macrophages,

dendritic cells, CD4+ T cells, and CD8+ T cells, though its

characterization in these cells is not yet fully understood (94–98).

When Pg binds to its receptor, it triggers intracellular signaling

cascades, including classical and non-classical pathways (Figure 2),

leading to different effects in immune cells (197). For example, in

T lymphocytes, Pg induces the release of progesterone-induced

blocking factor (PIBF), which stimulates the expression of

cytokines, such as IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13.

Meanwhile, in NK cells, Pg decreases the expression of IFN-γ and

regulates their localization and proliferation (111). In contrast, the

effect of Pg on mast cell degranulation is still unclear. Some

studies suggest activation (112) and another inhibition effect (113).

In mouse models, Pg has shown anti-inflammatory effects (114).

Furthermore, in some cases, severe premenstrual asthma exacerbation

has been treated effectively with Pg, likely due to smooth muscle

relaxation and regulation of microvascular permeability (115).

In another study, lower doses of progesterone were found

to stimulate TNF-α production in human and mouse

macrophages. In comparison, higher doses were shown to

suppress cytokine release and IL-1 mRNA expression (116).

These findings suggest that the hormonal profile is vital in

releasing inflammatory mediators.
3.3 Androgens

The gonads and adrenal glands synthesize four androgens,

including dihydrotestosterone (DHT), testosterone, androstenedione,
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and dehydroepiandrosterone (DHEA), all derived from cholesterol.

DHT is considered more potent than testosterone, whereas

androstenedione and DHEA have a lower potency than

testosterone, with only 10% and 5%, respectively (117). In adult

men, testosterone is found in the serum in higher concentrations

than other androgens. At the same time, DHT is present at a

concentration of approximately one-tenth of testosterone.

Additionally, DHEA can undergo reversible modifications to

produce DHEA-S, which can be metabolized peripherally to

form testosterone (particularly in premenopausal women) and

estrogens (particularly in postmenopausal women) (118).

Androgens such as testosterone and DHT primarily exhibit

immunosuppressive effects, inhibiting the activities of Th1, Th2,

and Th17 cells, while promoting the activity of regulatory T cells

(Tregs) (119). DHT has been shown to suppress

proinflammatory gene expression (120). Androgens inhibit Th1

differentiation by reducing the production of IFN-γ and the

expression of T-bet in CD4+ T cells. An in vitro study using an

androgen analog (R1881) shows that CD4+ T cells cultured

under Th1-polarizing conditions in the presence of androgens

produce significantly less IFN-γ compared to controls. This effect

is specific to the differentiation phase, as cells differentiated

without androgens but restimulated in their presence produce

normal IFN-γ levels. The findings suggest that androgen impacts

Th1 differentiation by limiting the early molecular events

essential for this immune pathway (121).

In a model of male castrated mice with allergic rhinitis

sensitized to phospholipase A, administration of testosterone

reduced the production of phospholipase A-specific IgE,

demonstrating the inhibitory effects of androgens on allergic

rhinitis (122). Furthermore, in asthma, studies have shown

that DHEA may improve lung function, reducing symptoms

(123). Phase II clinical trials have demonstrated that oral

administration of slow-release or nebulized DHEA to men and

women with severe asthma decreases symptoms and increases

lung function (123–125).

Lower levels of DHEA have been associated with increased

severity of asthma, especially in relation to age. Conversely,

studies have shown an inverse correlation between serum

testosterone levels and the prevalence of asthma (126).

Additionally, other studies demonstrate that higher testosterone

levels are linked to improved lung function, as evidenced by

higher forced expiratory volume in one second (FEV1) and

forced vital capacity (FVC) across various racial and ethnic

groups (127, 128).

Additionally, it was observed that individuals with asthma,

with increased expression of the AR in their airways, tend to

have better lung function and lower fractional exhaled nitric

oxide (eNO) (a marker of inflammation) (129). Interestingly,

when nebulized dehydroepiandrosterone 3-sulfate was

administered, it improved asthma control scores for people with

moderate-to-severe asthma (124).

The administration of DHEA and its conversion rate to

androgens have been linked to improved responsiveness to

glucocorticoids or lung function in asthma patients (124, 125, 130).

However, while AR signaling does not directly decrease the
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production of Th2 cytokines (131), it enhances the suppressive

function of regulatory T cells (Tregs), thereby reducing allergic

inflammation of the respiratory pathways. This is achieved by

enhancing Treg stability by limiting allergen-induced IL-33

production in epithelial cells and ST2 expression in Treg cells

(132). These findings highlight the clinical relevance of androgen-

and its receptor-mediated signaling in attenuating airway

inflammation in asthma.

Androgens also affect ILC2 cells, which are crucial in

producing IL-5 and IL-13. Specifically, androgens attenuate

the differentiation of ILC2 and decrease their numbers within

the lung (37, 133).

In a murine model of allergic asthma, these hormones showed

an effect by reducing neutrophilic inflammation (134).

Furthermore, in a model of allergic rhinitis, castrated males had

higher levels of antigen-specific IgE compared to a control group

that underwent a sham operation. Interestingly, when the

castrated mice were treated with androgens, the levels of antigen

IgE decreased significantly (135). This finding underscores the

role of androgens in modulating different kinds of responses.

Therefore, in male guinea pig asthmatic models, androgens

positively affect through different mechanisms, including the

relaxation of ASM via an epithelial pathway that relies on nitric

oxide (NO), demonstrated by dehydroepiandrosterone (136).

The AR acts as a transcription factor requiring ligand binding

to activate gene expression. The human AR is a 110 kD protein

composed of 919 amino acids (137, 138). The expression of the

AR has a much more restricted expression pattern in the body; it

has been found in several immune cells, such as neutrophils,

mast cells, macrophages, B cells, and T cells (134, 139), and such

immune cells found in bone marrow, thymus, and spleen (120).

The androgen signals and ARs are responsible for controlling

the development and function of both male and female

reproductive systems (140). However, AR signaling has a

different effect on the immune response compared to ERs. By

inhibiting the immune response, AR signaling may explain why

males are more susceptible to common pathogens (120).

Studies using immune cell-specific AR knockout mouse

models have demonstrated that androgens and their receptors

play a significant role in innate and adaptive immunity.

For instance, the binding of androgen/AR is essential for

proper neutrophil generation and function and for regulating

wound healing processes by recruiting macrophages and

promoting proinflammatory cytokine production. Additionally,

this binding suppresses T and B cell development and

activation in adaptive immunity (134). Therefore, the role of

androgens in allergies should be further explored using these

approaches in humans.

According to Becerra-Díaz et al. (141) found that androgens

increase the polarization of alveolar macrophages (AM) to an M2

phenotype via AR, upregulating the expression of the genes

Chil3l3, Retnla, and Arg1 (141).

In summary, androgens have immunosuppressive effects and

may critically modulate immune responses in specific

pathological conditions, presenting promising avenues for future

research and treatment.
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4 Glucocorticoids

Glucocorticosteroids (GCs), also known as corticosteroids or

steroids, are natural regulators that play a vital role in regulating

various biological processes such as the hypothalamic-pituitary-

adrenal axis, immunity, and energy metabolism to maintain

balance within the body. Cortisol, the primary glucocorticoid

synthesized and secreted by the adrenal cortex, interacts with the

GC receptor (GR) to regulate multiple human signaling pathways

(142). Synthetic GCs are immunosuppressive drugs for treating

immune-related disorders, including allergies (143). The most

common treatments for asthma are inhaled glucocorticoids for

suppression of inflammatory gene expression and β2-adrenergic

receptor agonists for inhibition of bronchoconstriction (144).

Synthetic GCs bind to its cognate intracellular receptor GR

with higher affinity than endogenous glucocorticoids, which

means synthetic glucocorticoids are more potent immunoregulators

than cortisol because they are not subject to endogenous inhibitors

of cortisol activity (143).

The mechanisms by which natural or synthetic GCs mediate

their genomic effects involve binding the GCs to GR
FIGURE 3

The schematic represents the GR signaling pathways. The glucocorticoid (GC
bind with its receptor (GR). The receptor/corticosteroid complex can bind
proteins and inhibit the synthesis of pro-inflammatory proteins by interactin

Frontiers in Allergy 09
homodimers in the cytoplasm, forming the GC/GR complex.

This complex translocates to the nucleus, where it interacts with

glucocorticoid response elements (GRE), which are 15 bp in

length and consist of two pseudo-palindromic hexameric sites

separated by a three bp spacer: GGAACAnnnTGTTCT (where n,

is any nucleotide) (145). GRE is present in the promoter regions

of steroid-sensitive genes (transactivation), or it can inhibit the

activity of transcription factors (transrepression) (Figure 3) (146).

Moreover, GCs have non-genomic effects that involve the direct

interaction of liganded GR with diverse intracellular mediators,

modulating several signaling pathways, including protein kinase

C (PKC), phosphatidylinositol-specific phospholipase C (PI-PLC),

and SRC kinase pathways (38).

The GR is encoded by a nine-exon NR3C1 gene, positioned at

5q31–32 in humans. GR is a 777-amino acid multidomain protein

like the other NRs; the GRs comprise the domains: a variable

N-terminal domain, a C-terminal domain, and a DNA-binding

domain containing zinc fingers capable of binding to DNA

(122). GRs are expressed by nearly all nucleated cells, but the

functional effects of glucocorticoids differ by cell type. The

variety in GR signaling arises from the influence of distinct GREs
) signaling pathway starts at the cell membrane and moves into the cell to
to the GC response element on genes coding for anti-inflammatory

g with transcription factors NF-κB and AP-1. (Created with BioRender).
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and numerous receptor isoforms that emerge through alternative

splicing and the commencement of alternative translations (147).

The GCs are the primary therapy for managing airway

inflammation in asthma (148). The GC/GR complex leads to the

expression of anti-inflammatory genes and suppression of pro-

inflammatory gene expression, thus inhibiting Th2 cell-mediated

inflammation in the airways. Additionally, GR interacts with

coactivator molecules to suppress the expression of inflammatory

genes by inhibiting the action of proinflammatory transcription

factors such as NF-kB and activating protein 1 (AP-1) (149)

to suppress the production and release of cytokines,

proinflammatory chemokines, and airway epithelial cell adhesion

molecules, which are crucial in the pathogenesis of asthma (150).

GATA3 is the master transcription factor of Th2 cells. It helps

differentiate them from CD4+ lymphocytes to Th2 cells. It

promotes the expression of IL-4, IL-5, and IL-13, which mediate

allergic inflammation. Furthermore, it is essential for developing

ILC2 progenitors (ILC2p) in the bone marrow and maintaining

mature ILC2 populations in the periphery (151).

The GC/GR complex competes with GATA-3 for nuclear

import via importin-α. Higher concentrations of GC increase the

expression of MAP kinase phosphatase (MKP)-1, which inhibits

p38 MAP kinase activity and prevents GATA-3 phosphorylation.

This phosphorylation is necessary for GATA-3’s interaction with

importin-α and subsequent nuclear import (151). Moreover, GCs

reduce the immune response and inflammation and trigger the

differentiation toward Type 1 regulatory T (TR1) cells by a

FOXP3-dependent mechanism (152).
5 Prolactin: a non-steroidal hormone

PRL is a 23 kD peptide hormone primarily produced by

lactotroph cells in the anterior pituitary gland. It is named for its

ability to promote lactation in response to the suckling stimulus of

hungry young mammals. However, it can also be produced in the

ovaries, prostate, mammary gland, brain, and immune cells (153).

Cytokines that promote PRL production, including IL-1, IL-2,

and IL-6, regulate it, while endothelin-3 and IFN-γ have inhibitory

effects. Post-translational modifications can result in different

isoforms of PRL (153), including small, large, and macro PRL.

Among these isoforms, the small one, which consists of 199 amino

acids and weighs 23 kDa, is the most biologically potent (154).

PRL plays a significant role in regulating both innate and

adaptive immune responses. It affects the maturation of

CD4-CD8- thymocytes into CD4+ CD8+ T cells by regulating

the expression of the IL-2 receptor (155). Studies suggest that

PRL is involved in deregulating B cell activation, which can lead

to autoimmunity (156). Moreover, PRL has been found to either

promote or regulate the production of cytokines, including Th1

and Th2 type cytokines, IL-6, IFN-γ, and IL-2 (157, 158).

The PRL receptor (PRLR), which belongs to the type 1 cytokine/

hematopoietic superfamily, is expressed in various immune cells,

including monocytes, lymphocytes, macrophages, NK cells,

granulocytes, thymic epithelial cells, and Treg cells (159). Therefore,

the interaction of PRL with its receptor plays a critical role in
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regulating immune cell proliferation, differentiation, secretion, and

survival through signaling pathways (Figure 4) (160, 161).

PRL has been shown to promote the transcription of interferon

regulatory factor 1 (IRF-1), a critical factor in the maturation of

T and B cells. Additionally, it can trigger the production of

inducible NO synthase (iNOS), an enzyme that generates NO

and participates in immune responses and inflammation.

Furthermore, PRL can enhance the synthesis of IFN-γ in both

T and NK cells (162).

PRL is also a modulating apoptosis agent that regulates the

expression of genes such as BAX and BCL2. This allows it to

have an immunological maintenance function in stress states and

can counteract the apoptotic effects of GCs on lymphocytes (163).

In allergies, such as eosinophilic esophagitis, PRL has been

studied from the point of view of the T cells involved in

inflammation: CD3+, CD4+, and CD8+, which are of great

importance because they produce cytokines of the Th2 profile,

PRL can regulate the production of these cytokines (164).

In addition, it has been observed that patients with allergic

fungal sinusitis may present hyperprolactinemia. This rhinological

disease is relatively new and is characterized by polyposis, fungal

remnants, and hypersensitivity (165). Until now, the relationship

of PRL with this pathology has mainly been due to the

compression of the pituitary gland, which stimulates the

deregulation of the synthesis of hormones (166).

On the other hand, in asthma, it has been evaluated and

reported in murine models that domperidone-induced

hyperprolactinemia exhibits a decrease in lymphocytes in

bronchial lavage, a cellular decrease in femoral marrow lavage

fluid, and mucus. Furthermore, it has been related to an increase

in IL-4, IL-6, IL-10, TNF-α, and IFN-γ in the lungs, causing the

allergic inflammatory response of the lungs to decrease (43).

A study conducted by Tugrul Ayanoğlu et al. compared the serum

PRL levels of patients with atopic dermatitis and controls. They

suggest that PRL may not play a role in disease pathogenesis (167).

Overall, while PRL’s role extends beyond lactation to significant

immunological functions, its exact impact on various allergic

conditions remains an area of ongoing research, warranting

further studies to elucidate its full spectrum of biological activities.
6 Hormone allergy or hypersensitivity

Paradoxically, steroid hormones can trigger what is yet a rarely

diagnosed disease, which is hormonal allergy (168). Several studies

have suggested that sensitization to steroid sex hormones may

cause clinical symptoms such as dermatitis, dysmenorrhea,

rhinitis, pruritus, and erythema multiforme (169). In severe cases

of hypersensitivity to sex hormones, anaphylaxis, a life-

threatening allergic reaction with rapid onset, has been observed

(170). Case studies have shown that patients suffer unexplained

anaphylactic reactions for years before sex hormone allergy is

diagnosed correctly (171–175).

Hormone hypersensitivity can be triggered by pregnancy,

exogenous hormone intake, oral contraceptives, and in vitro

fertilization. These factors indicate multiple potential causes,
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The schematic represents the PRLR signaling pathways, including both long and short isoforms. Homodimer of the hPRLR long form (LF) mediates
PRL-stimulated JAK2/Stat5 signaling required for transcription/expression of PRL/PRLR target genes, which are essential for the various biological
effects of the hormone. The activation of the MAP kinase pathway involves both PRLR isoforms. The connections between the JAK-Stat and
MAPK pathways are also suggested, but the interactions between receptors and various transducing molecules remain unclear. (Created with
BioRender).
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including hormone administration, elevated hormone levels during

pregnancy, and increased hormone sensitivity (168). The

underlying mechanism remains unclear; however, it may involve

IgE antibodies, T cells, an inappropriate cytokine response,

natural killer (NK) cell activity, or drug hypersensitivity (176).

Progesterone hypersensitivity (PH) can occur due to natural

progesterone production or after allergic sensitization to

progestins used for contraception and fertility treatment, which

may be recognized as foreign by the immune system (177). Thus,

progestogen-specific IgE antibodies may be formed in susceptible

patients following exposure to exogenous progestins. PH mainly

affects young females, with fewer than 200 cases reported to date

(178). As we mentioned before, one of the risk factors includes

exposure to exogenous progestins and high-dose progesterone for

in vitro fertilization. The exact cause of PH is unknown, but it is
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likely multifactorial due to its varied symptoms, including skin

issues like dermatitis, urticaria, erythema multiforme, and other

immediate reactions (179).
7 Discussion

Allergies are the most common worldwide diseases with an

increasing prevalence and incidence. The influence of sex

hormones (i.e., estrogens and androgens) on the allergic response

is relevant in the appearance of autoimmune diseases and

allergies in women and men (5). However, female hormones give

more susceptibility to developing allergies like asthma, food

allergies, or hypersensitivity than males (180). This gap in the

prevalence of allergies in women and men may be regulated by
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hormones derived from cholesterol or peptides. Women often

develop stronger immune responses, and during menstrual

cycles, pregnancy, or menopause, allergic inflammation appears,

perhaps because estrogens enhance the production of the Th2

cytokine profile (19, 30).

Cytokines produced by the immune system mediate the

pathophysiology of allergies. About the Th2 cytokines IL-4/IL-13,

some inhibitory monoclonal treatments contribute to decreasing

asthma symptoms (181). However, the antibodies of the treatment

show different therapeutic effects in the groups of patients, and

this could be explained by the fact that some genetic alterations

within the cytokines coding genes were not contemplated (182).

The US Food and Drug Administration (FDA) has approved

several anti-IL-5 therapies targeting eosinophilic disorders.

For eosinophilic asthma, all three biologics—mepolizumab,

benralizumab, and reslizumab—are approved for adults aged 18

and older, with both mepolizumab and benralizumab additionally

approved for patients aged 6 and above (183).

Several research groups around the world have documented the

complex connection of steroid sex hormones with menstrual cycle

and allergies (168). In the case of HRT, estrogens trigger asthma

symptoms due to the activation of the immune system in

postmenopausal women (98). On the other hand, the treatment

with Tamoxifen (estrogen receptor blocker) has reported good

results in neutrophilic inflammation in animal models (184).

However, its usage may cause fertility problems in the long term

and some other cardiovascular side effects in both sexes (185, 186).

The use of Pg as a pro-inflammatory cytokines suppressor has

shown promising results in animal models with allergic lung

inflammation (114–116). However, the cases of Pg

hypersensitivity are increasing because of contraceptives and

fertility treatments (187). Exposure to exogenous Pg may present

symptoms like dermatitis, urticaria, angioedema, asthma, or

anaphylaxis. In these cases, it has been reported that the Pg

desensitization protocol is effective (177, 188).

As we described above, allergic diseases are associated with low

levels of testosterone and high levels of estrogen (189). In this

context, replacement therapy with testosterone in men with

allergies due to hypogonadism impacts positively on the anti-

inflammatory cytokines stimulation and Treg differentiation

(190). This replacement therapy in women with allergies has

been considered, but several side effects data must be obtained

before releasing a safety therapy (191).

Other hormones, like GCs, are primary immunosuppressive

drugs for inflammation in asthma. However, some adverse effects

are registered in patients with chronic treatments, and they are

indicated only in anaphylaxis crises or emergencies associated

with pro-inflammatory effects. Nevertheless, contradictory data

on the severity of allergies have been shown; some studies have

associated hyperprolactinemia with a decrease in asthma

symptoms (43), but others have reported no differences in PRL

serum levels in dermatitis (167, 192).

Hypersensitivity to hormones may include several allergic

responses with different symptoms. These allergic reactions may

be treated with monoclonal antibodies such as Omalizumab,

which avoids anaphylaxis (193, 194).
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Finally, it is essential to acknowledge the significant

controversy surrounding findings on each hormone’s role in

either alleviating or worsening allergic symptoms. Research that

considers genetic, epigenetic, and environmental factors is

needed to advance the development of precision medicine

tailored to individual patients. This approach will deepen our

understanding of the diversity across various allergic conditions.
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