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The Acari Hypothesis, VI: human
sebum and the cutaneous
microbiome in allergy and in
lipid homeostasis
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Parkersburg, WV, United States, 2Department of Pathology, Feinberg School of Medicine, Northwestern
University, Chicago, IL, United States
The Acari Hypothesis posits that acarians, i.e., mites and ticks, are causative
agents of IgE-mediated conditions. This report further develops The
Hypothesis, providing rationale for the childhood predilection of allergy. In
short, Malassezia, a fungus native to human skin and utterly dependent on
sebaceous lipids, prevents allergy by deterring acarians. Because sebum
output is limited before puberty, children are more prone to allergy than are
adults. Competition for sebaceous lipids by Staphylococcus aureus influences
not only Malassezia number—and, consequently, allergic predisposition—but
also lipid homeostasis. The latter, in turn, contributes to dyslipidemia and
associated conditions, e.g., the metabolic syndrome.
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1 Introduction

Per the fourth installment of The Acari Hypothesis, modern hygienic practices disrupt

human eccrine gland secretion, i.e., sweat, effectively increasing human—acarian

interactions responsible for IgE-mediated allergic diseases (1). Although The Hypothesis

and its corollaries provide rationales for why and how modern hygienic practices

account for the ongoing allergy epidemic (2–5), the childhood predilection of some

allergic diseases begs clarification. Indeed, the most remarkable epidemiologic finding

shared by asthma, food allergy and atopic dermatitis is their increased incidence during

childhood (6–8). Because IgE-mediated diseases are elicited by acarians acting on

human epithelial surfaces, it is reasonable to assume epithelial surfaces of adults differ

from those of children in a way that limits acarian activity. In this regard, the most

conspicuous difference between the skin of pre- and post-pubertal humans is

magnitude of sebum output by sebaceous glands (9, 10).

Sebum consists of a complex mixture of lipids that includes triglycerides, squalene,

wax esters, cholesterol esters, free cholesterol, and fatty acids, Table 1 (11). Following

puberty, sebum production increases 5-fold (9). Enhanced production continues

through the seventh decade, after which the androgenic stimulation driving it decreases

(9). Importantly, sebum output influences colonization of human skin by the lipid-

dependent basidiomycete, Malassezia. Following puberty, Malassezia becomes the

dominant eukaryote of the cutaneous microbiome (12), with malassezial colonization

increasing by more than an order of magnitude (13, 14).
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TABLE 1 Lipid composition of human sebum (11).

Lipid % of Sebum Lipid
Triglycerides 30–50

Free Fatty Acids 15–30

Wax Esters 26–30

Squalene 12–20

Cholesterol Esters 3–6

Cholesterol 1.5–2.5
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Because the behavior of Malassezia ranges from opportunism

to commensalism to guardianship, the relationship between the

fungus and humans has been difficult to characterize (12). The

perception of Malassezia as opportunistic pathogen stems from

its apparent etiologic involvement in many pathologies, most

especially atopic dermatitis (AD) and seborrheic dermatitis (SD)

(15–19). In the case of AD, afflicted persons synthesize IgE

against an array of malassezial molecules (20, 21). According to

The Hypothesis, the extensive targeting of such molecules by IgE

indicates Malassezia is problematic for acarians (5). For this

reason and because increased epithelial colonization by

Malassezia aligns temporally with decreased incidence of allergic

disease, the fungus participates in the anti-acarian defense

of humans.

Although the hosting of fungi as a means of anti-acarian

defense has never been described for mammals, mutualism of

this sort has been described for plants. Indeed, some plants host

fungal endophytes that protect them from bacterial and fungal

pathogens and from phytophagous arthropods, including

acarians (22). Fungal endophytes defend plants from acarians

either via secretion of mycoacaricidal agents or via direct

acarian inoculation (22).

Endophytic species of the basidiomycete, Meira, exemplify the

acaropathogenic benefits fungal endophytes confer to host plants

(23, 24). Meira geulakonigii protects citrus plants by killing the

rust mite, Phyllocoptruta oleivora (25, 26). Culture medium from

M. geulakonigii is acaricidal, indicating its anti-acarian activity is

due to a toxin, not to fungal parasitism. As another example,

Meira argove produces the mycoacaricide, argovin (4,5-

dihydroxyindan-1-one), the anti-acarian effects of which have

been well-characterized (27).

Given that other basidiomycetes protect their hosts from

acarian parasitism, it is entirely reasonable to assume Malassezia

protects humans from similar fate. Positioning Malassezia within

sebaceous glands that constitutively secrete sebum provides a

convenient means to deliver a Malassezia-derived anti-acarian

agent to an epidermal surface. If humans provide to the fungus

an essential nutrient whilst the fungus protects humans from

acarian infestation, then the relationship between humans and

Malessezia is most appropriately considered mutualistic. Such

mutualism surely influences the physiology and pathophysiology

of humans in unappreciated ways.

As for the involvement of Malassezia in human disease, firstly,

not all Malassezia are constituents of normal skin flora, with some

cross-colonization occurring due to cohabitation of humans and

domestic mammals (28). Secondly, human sweat creates a
Frontiers in Allergy 02
microenvironmental ecosystem unfavorable not only to acarians,

but also to a multitude of other microorganisms (29). Thus, even

as disruption of the ecosystem by, for example, hygienic

measures, enables problematic encounters between acarians and

humans, it also enables problematic encounters between other

invasive microorganisms and native Malassezia. As will be

discussed next, Malassezia-associated diseases of humans are

consequences of competition between native epidermal

Malassezia and invasive organisms, e.g., Staphylococcus aureus.
2 Malassezia and AD

Malassezia is a lipophilic basidiomycete that inhabits

epithelia of warm-blooded animals (30). The fungal genus is the

only one included in class Malasseziomycetes, subphylum

Ustilaginomycotina, a taxon consisting primarily of plant pathogens

(31). To date, 18 species of Malassezia have been identified (32).

Despite a requirement for long chain fatty acids, Malassezia

lacks a gene for fatty acid synthase (33), rendering the fungus the

only free-living one not able to synthesize fatty acids (34).

Consequently, Malassezia must exploit exogenous lipid sources to

survive. Human epidermis, upon which is constitutively secreted

an abundance of fatty acids (35), is an ideal environment for

malassezial colonization and propagation.

Although Malassezia subsists on the lipid-rich secretions of

mammalian sebaceous glands, the relationship between mammals

and Malassezia has, to date, not been considered mutualistic

because: (1) colonization by the fungus has not been appreciated

to confer substantial benefit to mammalian hosts, and (2) the

fungus seems to play a role in some human diseases (12). As an

important example of the latter, individuals with AD express

anti-malassezial IgE (20, 21), which may influence the symptoms

of the disorder (4).

Pathogen recognition receptors (PRRs) are utilized by

invertebrates and vertebrates to identify and neutralize

deleterious materials. As an example of invertebrate usage, ticks

secrete into their saliva immunoglobulin-binding proteins that

adsorb to and neutralize immunoglobulins ingested during a

blood meal (36). Per The Hypothesis, mammals exploit acarian

PRRs in the formation of IgE, to protect themselves from

acarian vectorial activity (3). The anti-acarian specificity of IgE

follows from how allergenicity is borne and conveyed. Namely,

following complexation with an acarian PRR within the acarian

digestive tract, substances become targeted by IgE when

inoculated into a human, e.g., during an invasive encounter (3).

IgE-targeted materials derive from either the acarian or its

foodstuffs. The targeting of malassezial molecules by IgE

indicates those molecules contributed to the diet of the

operative acarian (5).

The ubiquity of acarians ensures frequent encounters with

humans. Examples include well-defined ectoparasitism by

Sarcoptes scabiei, Demodex spp. and a multitude of tick species.

More subtle encounters involve synanthropic Pyroglyphidae, e.g.,

Dermatophagoides pteronyssinus and Dermatophagoides farinae.

Indeed, these house dust mites may contribute most to the
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development of allergy: (1) they exist in increased number on the

skin and in the homes of patients with IgE-mediated disease

(37, 38), and (2) they are intimately associated with sources of

common allergens. With regard to this last, note especially that

house dust mites consume human and pet dander, fungi and

wheat, and they use cockroaches as phoretic hosts (39–42).

Given that the primary foodstuffs of dust mites are human

epidermal materials, the digestive tract of dust mites must be

exposed to malassezial elements routinely (43). Furthermore,

because most skin flora are not targeted by IgE, the specificity of

the antibody for malassezial materials indicates a special affinity

of the acarian PRR for Malassezia. For this reason, and because

the increase in malassezial colonization that follows puberty

coincides with the decrease in the incidence of allergy, it is

reasonable to assume Malassezia is involved in the anti-acarian

defense of humans.

Humans are not the only animals with sebaceous glands.

Indeed, all extant mammalian lineages either now express

sebaceous glands or did in the past (44–46). Like humans, many

of the other mammals that have sebaceous glands host

Malassezia (47–49). Because those mammals, too, are subject to

acarian parasitism, sebaceous glands somehow effectively ward

off acarians. Given that IgE and sebaceous glands are both

defining features of mammalian species and cardinal to

mammalian anti-acarian defense, it appears acarians very

significantly influenced mammalian evolution. If that is the case,

then other mammalian adaptations also arose in response to

evolutionary pressure exerted by acarians.

Mammary glands may predate the origin of class Mammalia,

but their modern-day expression is limited to extant mammalian

lineages (50). Although the evolutionary pressure responsible for

emergence of mammary glands is poorly understood, a leading

theory holds that the glands evolved as a neomorphic mosaic,

combining the properties of both sebaceous and apocrine glands

(51). If a primary function of sebaceous glands is support of

epidermal colonization by Malassezia, then mammary glands

must somehow promote the growth and vertical transmission of

the fungus. It should come as no surprise that Malassezia

represents the dominant fungus present in the breastmilk of

healthy mothers (52). Indeed, transmission of Malassezia

between human mothers and their progeny has already been

demonstrated: 89% of infants have detectable levels of dermal

Malassezia on day 0, with 100% having detectable levels by day 1

(53). By day 30, malassezial diversity conforms to that of adults,

with fungal genotypes being those of mothers (53). As will next

be argued, not only does mutualism between humans and

Malassezia provide rationale for mammary glands, but it also

provides insight into human dermatopathologies attributed

to Malassezia.
3 Adaptations and associations

The Acari Hypothesis clarifies the role of some human

adaptations in the anti-acarian defense of humans. According to

The Hypothesis, both endogenous molecules, e.g., dermcidin and
Frontiers in Allergy 03
apolipoprotein D, and skin microbiota, e.g., Malassezia, protect

humans from the vectorial threat posed by acarians (5).

Although The Hypothesis was developed primarily to help

‘decipher’ allergy, it also addresses other matters pertinent to

human pathophysiology, especially ones relating certain

dermatopathologies to dyslipidemia (54, 55).

Multiple dermatopathologies are associated with dyslipidemia,

including, most notably, SD, a chronic recurring skin condition

characterized by greasy erythematous plaques and yellow-gray

scale (56). Because anti-fungal therapy resolves the symptoms of

SD, Malassezia is believed central to the pathophysiology of the

disorder (57, 58). Relatedly, Malassezia influences sebum content

via metabolism of triglycerides and liberation of free fatty acids,

especially oleic acid (59). For reasons yet unknown, skin of

persons with SD reacts strongly to oleic acid whilst skin of

healthy individuals does not (60).

Although Malassezia is believed critical to the etiology of SD,

the skin of persons with the disorder is also characterized by a

striking bacterial dysbiosis, with S. aureus being the most

abundant microorganism (61). S. aureus is a facultative,

anaerobic, gram-positive bacterium that has historically been

considered a constituent of the normal flora of human skin and

nasal passages (62, 63). In addition to being an opportunistic

pathogen, S. aureus contributes to the pathophysiology of IgE-

mediated diseases, including AD, allergic rhinitis, and asthma

(64–66). Like Malassezia, S. aureus is unusual in that persons

with allergic conditions often produce IgE against proteins

expressed by the organism. One study found that 27% of dust

mite-sensitized patients who suffer from both asthma and allergic

rhinitis express IgE against toxic shock syndrome toxin-1

(TSST-1) (66), a protein secreted by S. aureus. Another study

found that 38% of patients with moderate AD express IgE

against TSST-1 (67). As follows from The Hypothesis, the

existence of IgE against TSST-1 confirms interaction between

S. aureus and acarians and suggests TSST-1 has anti-acarian activity.

Numerous studies have shown oleic acid significantly impacts

S. aureus physiology by decreasing bacterial adhesion (68),

disrupting cell membranes (69) and/or limiting expression of

bacterial virulence genes (70). Inasmuch as S. aureus is the most

abundant organism on the skin of individuals with SD, it is

entirely possible oleic acid reactivity is not a direct response to

the lipid, rather it is a secondary response to materials expressed

by S. aureus.

Importantly, molecular constituents of eccrine gland secretions

have antimicrobial activity against S. aureus (29, 71). Just as

hygienic removal of eccrine gland secretions fosters acarian

infestation, it also fosters S. aureus colonization. Consequently,

just as acarian dysbiosis can cause human disease, i.e., allergy, so,

too, can bacterial dysbiosis cause human disease, e.g., SD. If the

relationship between Malassezia and humans is mutualistic, then

Malassezia must be native to the human epidermal ecosystem/

microbiome. It follows that S. aureus should not be considered

normal skin flora. Instead, the bacterium should be considered a

strict pathogen; one that is invasive to the epidermal ecosystem

and only present on contemporary humans because of

modern hygiene.
frontiersin.org

https://doi.org/10.3389/falgy.2024.1478279
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


Retzinger and Retzinger 10.3389/falgy.2024.1478279
Unlike Malassezia, S. aureus does not depend on exogenous

fatty acids for its survival (72). Still, because de novo synthesis of

fatty acids for bacterial membrane inclusion requires substantial

energy expenditure, S. aureus scavenges fatty acids of its host

(73, 74). Consistent with this operation, S. aureus expresses

lipases that liberate fatty acids from triglycerides, the major

component of sebaceous gland secretions (75). The importance

of sebaceous lipids to S. aureus is further supported by the

microanatomic distribution of the bacterium: its colonies

preferentially cluster around pilosebaceous units (76, 77). Given

both the lipid dependence of Malassezia and the co-localization

of Malassezia and S. aureus, the two organisms undoubtedly

compete for host lipids. The response of Malassezia toward

S. aureus may be one of self-preservation. Alternatively, the anti-

staphylococcal activity of Malassezia may benefit the host

directly, a consequence of unappreciated evolutionary design.

Evidence indicates epidermal competition between Malassezia

and S. aureus has systemic consequences. As one instructive

example, severe SD is associated with development and

progression of the dyslipidemia characteristic of the metabolic

syndrome (MetS) (78, 79). If Malassezia contributes to the

antimicrobial defense of humans, and sebum enables epidermal

colonization by Malassezia, then the fungus influences lipid

homeostasis. Further, because systemic lipids are undoubtedly

trafficked to sebaceous glands during the epidermal inflammatory

response, epidermal co-localization of pathogens that influence

the well-being of either Malassezia or its human host may

beget dyslipidemia.
4 Closing

The Acari Hypothesis is a construct with which to address

unknowns relevant to IgE-mediated disease. As with any disease-

related hypothesis, its utility depends upon its ability to facilitate

mechanistic understanding. In this regard, not only does The

Hypothesis provide rationale satisfying to allergy and its related

issues, but it also helps to answer questions relevant both to

human evolution and to pathophysiologies of other diseases. As

one very salient example of the latter, MetS refers to co-

occurrences of insulin resistance, obesity, dyslipidemia and

hypertension (80). Persons who have MetS are at elevated risk of

cardiovascular disease (81). As elaborated above, dysbiosis that

results in S. aureus colonization and subsequent competition

with Malassezia may yield the dyslipidemia of MetS. Indeed, in
Frontiers in Allergy 04
some animal models, S. aureus infection induces both insulin

resistance and adipogenesis (82–84). Thus, S. aureus may be the

causative agent of MetS. If that is so, then hygienic practices may

drive heart disease in developed countries (ACR, submitted).
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