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Background: Children are the age group with the highest exposure to antibiotics
(ABX). ABX treatment changes the composition of the intestinal microbiota. The
first few years of life are crucial for the establishment of a healthy microbiota and
consequently, disturbance of the microbiota during this critical period may have
far-reaching consequences. In this review, we summarise studies that have
investigated the effect of ABX on the composition of the intestinal microbiota
in children.
Methods: According to the PRISMA guidelines, a systematic search was done
using MEDLINE and Embase to identify original studies that have investigated the
effect of systemic ABX on the composition of the intestinal microbiota in children.
Results: We identified 89 studies investigating a total of 9,712 children (including
4,574 controls) and 14,845 samples. All ABX investigated resulted in a reduction
in alpha diversity, either when comparing samples before and after ABX or
children with ABX and controls. Following treatment with penicillins, the
decrease in alpha diversity persisted for up to 6–12 months and with macrolides,
up to the latest follow-up at 12–24 months. After ABX in the neonatal period, a
decrease in alpha diversity was still found at 36 months. Treatment with
penicillins, penicillins plus gentamicin, cephalosporins, carbapenems, macrolides,
and aminoglycosides, but not trimethoprim/sulfamethoxazole, was associated
with decreased abundances of beneficial bacteria including Actinobacteria,
Bifidobacteriales, Bifidobacteriaceae, and/or Bifidobacterium, and Lactobacillus.
The direction of change in the abundance of Enterobacteriaceae varied with ABX
classes, but an increase in Enterobacteriaceae other than Escherichia coli was
frequently observed.
Conclusion: ABX have profound effects on the intestinal microbiota of children,
with notable differences between ABX classes. Macrolides have the most
substantial impact while trimethoprim/sulfamethoxazole has the least
pronounced effect.
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Introduction

Children are the age group with the highest exposure to antibiotics (ABX). ABX are the

second most prescribed drugs for children, surpassed only by analgesics (1–5). More than

two-thirds of children receive ABX before reaching the age of two years (6) with exposure

to an average of almost three ABX in the first year of life (7). Approximately one third of
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hospitalised children (8) and nearly half of acutely ill children in

outpatient settings receive ABX (9), often with inappropriate

indications or drugs (10). While the widespread use of ABX has

significantly reduced childhood morbidity and mortality during the

last century (11), exposure to ABX is also associated with adverse

long-term health effects. These include an increased risk for atopic

dermatitis, allergies, wheezing and asthma, obesity, arthritis

idiopathic disorder, psoriasis, and neurodevelopmental disorders

(12). These adverse effects likely result from changes in the

microbiota, particularly the intestinal microbiota, which undergoes

significant development during the first two to three years of life

(13–15). Children are highly susceptible to ABX-induced dysbiosis

(an imbalance in the microbiota), whereas adults typically have a

more stable and resilient microbiota that recovers more easily from

such disturbances (16). The first years of life are critical for the

development and stabilisation of the intestinal microbiota,

coinciding with key milestones in the development of the immune

system, metabolism and neurodevelopment (17–19). Consequently,

any disturbances of the microbiota during this critical period may

have long-lasting and far-reaching consequences.

In this review, we systematically summarise studies that have

investigated the effect of ABX on the composition of the

intestinal microbiota in children of all age groups.
Methods

In May 2024, MEDLINE (1946 to present) and Embase

(1972 to present) were searched. Embase was searched using

the OVID interface. The detailed search terms can be found

in the supplementary data. No geographical limitations were

used. References of retrieved articles were searched for

additional publications.

Original studies which investigated effect of ABX on the

composition of the bacterial intestinal microbiota in children less

than 18 years of age were included, as well as studies involving

mixed-age populations that provided separate data specifically for

this age group. Exclusion criteria were studies which (i) included

children with underlying diseases (e.g., oncological diseases,

cystic fibrosis) and (ii) studies not published in English, German,

French, Spanish, Portuguese or Italian.

The following variables were extracted from included studies:

year of publication, country, study design, number and

characteristics of included children, number of samples, ABX

treatment (drug, dose, frequency, route of administration,

duration), previous ABX, microbiota analysis method, timing of

stool analysis and key findings (including changes in diversity,

abundance of microbes, antibiotic resistance genes, ARGs).

Studies were identified, selected, appraised, and synthesised

following the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) guidelines for systematic reviews

(20, 21). The level of evidence of each study was classified

according to the 2011 Oxford Centre for Evidence-Based Medicine

(OCEBM) Levels of Evidence (22). Risk of bias was assessed using

the 2017 Joanna Briggs Institution (JBI) standardised critical

appraisal checklist for case-control and cohort studies (23).
Frontiers in Allergy 02
Results

The search identified 6,146 and 11,470 studies in MEDLINE

and Embase, respectively. From the 17,616 studies, 2,183

duplicates were removed. 89 studies met the inclusion criteria

(24–112). No additional relevant studies were found through

citation searching. The selection of included studies is

summarized in Figure 1.

The 89 studies investigated a total of 9,712 children (of these

4,574 were controls; mean 111 children per study, range 9 to

1,023) and 14,845 samples (mean 322 samples per study, range

20 to 1,247). Of the included studies, 47 were done in Europe

(Denmark, Netherlands, Finland, Spain, France, Italy, Germany,

Ireland, Estonia, United Kingdom, Sweden, Norway, Austria)

(24, 26, 28, 29, 31, 32, 34, 35, 37–39, 43, 45, 48–52, 60, 61, 63,

64, 66, 67, 70, 71, 74, 75, 81–83, 88, 92, 93, 95, 98, 101, 102,

104–112), 21 on the American continent (USA, Chile, Canada)

(25, 30, 41, 42, 44, 54–56, 58, 59, 69, 73, 76, 78, 84–86, 94, 96,

97, 99), 13 in Asia (China, India, Japan, Korea, Taiwan,

Lebanon) (27, 40, 53, 57, 65, 68, 72, 77, 80, 87, 90, 91, 100),

seven in Africa (Niger, Burkina Faso, Zimbabwe, South Africa)

(36, 46, 47, 62, 79, 89, 103) and one in Australia (33). The age of

participants ranged from preterm birth to 15 years. Of the

included studies, 75 were observational studies, including 60

cohort studies (24, 25, 27, 28, 30–35, 37–42, 44, 45, 48–58, 61,

64–68, 70, 71, 73, 74, 76–78, 84, 87–92, 94, 97–102, 109–112), 12

cross-sectional studies (26, 29, 43, 72, 75, 82, 85, 93, 95, 99, 108,

113), three pre-post-intervention studies (35, 60, 96); and 13

(cluster) randomised controlled trials (36, 46, 47, 59, 62, 63, 69,

79–81, 83, 86, 103). In total, 42 studies used 16S rRNA gene

sequencing (25–28, 40–46, 48, 51, 52, 55, 57, 58, 62, 64, 66, 68,

69, 71–73, 76, 77, 79, 80, 83–86, 91, 92, 98–103, 113), ten

shotgun metagenomic sequencing (29, 30, 36, 47, 54, 75, 83, 89,

94, 98), seven polymerase chain reaction (PCR) or PCR-

temperature gradient gel electrophoresis (PCR-TGGE) (39, 49,

50, 65, 67, 78, 82), one each fluorescence in situ hybridization

(FISH) (104) and 16S-23S IS profiling (48), and 30 cultures

(24, 31–35, 37–39, 49, 53, 56, 59–61, 63, 74, 81, 87, 88, 90, 93,

96, 105, 107–112).

Supplementary Table S1 provides a summary of the main

findings of the 89 studies included in this review.

All included studies had an overall risk of bias score (JBI

standardised critical appraisal checklist, yes%) over 60%

(acceptable quality) and 49% (44/89) of studies had an overall

score ≥80% (good quality) (Supplementary Table S3). The

most frequent risk of bias was attrition bias [present in 24%

(21/89) studies].
Penicillins

The effect of penicillins on the intestinal microbiota was

investigated in 13 studies including 1,311 children [one study did

not specify the number of children investigated (70); for detailed

information see Supplementary Table S3] (35, 55, 70, 71, 75, 78,

79, 87, 89, 90, 100, 107, 112).
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FIGURE 1

Selection of studies.
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Diversity

Two studies found a lower alpha diversity (a measure of the

variety and abundance of bacterial taxa within a sample) of the

intestinal microbiota during the treatment with amoxicillin

compared to controls with recovery either immediately after

stopping ABX (89) or six months after (71), respectively.

However, compared to controls, the first study found a higher

alpha diversity at the latest follow-up time point 24 months

after ABX (89). In other studies, compared to controls, a lower

richness was found to persist for less than two weeks after

treatment with ampicillin and penicillin (75), and for up to 6–

12 months (latest follow-up being after 12–24 months) in a

study (which did not report separate results for treatment with
Frontiers in Allergy 03
amoxicillin with or without clavulanate and penicillin V) (70)

(Figure 2). One study found a lower alpha diversity at day

seven of life compared to day three in preterm neonates after

treatment with penicillin plus moxalactam or piperacillin-

tazobactam, but no difference in diversity after ABX with the

two treatment regimens (100). Another study found no

difference in alpha diversity, at the latest follow-up point of the

study, five days after treatment with amoxicillin (79). Three

studies investigated beta diversity (a measure of the differences

in bacterial taxa between different samples) by comparing the

ABX group and controls and found a higher beta diversity

after treatment with penicillin, amoxicillin/ampicillin, penicillin

plus moxalactam and piperacillin-tazobactam, respectively

(75, 89, 100).
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FIGURE 2

Duration of decreased alpha diversity after ABX reported in different studies. Red bars depict duration of decreased alpha diversity in ABX group
compared to controls (red bars); black bars depict the duration of follow-up after ABX. Studies specifying Shannon index, inverse Simpson index
or richness for the ABX and control group were included. Studies which did not specify the time points when the alpha diversity was investigated
were excluded.
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Composition

When comparing the composition of the intestinal microbiota

during or after oral administration of amoxicillin, compared

to controls, increased abundances of Firmicutes (71),

Enterobacteriales (71), Ruminococcaceae (71), Lachnospiraceae

(71), Megasphaera (71), Coprococcus (71), Escherichia (89),

Dialister (71), Weissela confusa (89), Prevotella sp. 885

(89), Prevotella stercorea (89), Holdemanella biformis (89),

Lactobacillus animalis (89), Fusicatenibacter saccharivorans (89),

Catenibacterium mitsuokai (89), Slackia isoflavoniconvertens

(89), Weissella cibaria (89), Streptococcus macedonicus (89),

Gemmiger formicilis (89), and Actinomyces odontolyticus

(89), and decreased abundances of Coriobacteriaceae (71),

Bacteroidaceae (71), Streptococcaceae (71), Lactobacillus (89),

Bifidobacterium (71), Enterococcus (71), Streptococcus (87, 89),

Klebsiella (89), Holdemanella (89), Dorea (89), Bifidobacterium

bifidum (89), and Bifidobacterium longum (89) were observed.

When comparing the composition before and during

treatment with penicillin V, ampicillin and methicillin,

respectively, decreased bacterial counts of Lactobacillus (87),

Streptococcus (87), and Bifidobacterium (87) were found. One
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study found increased abundances of Bacteroidetes,

Rikenellaceae, and Dialister and decreased abundances of

Actinobacteria, Gemellales, Gemellaceae, Lactobacillus, and

Collinsella in children who were given penicillin or amoxicillin

with or without clavulanate, without reporting results for these

ABX separately and without reporting the route of

administration (70). Fluctuations in abundance over time were

found for Veillonellaceae (71), Clostridiaceae (both being lower

during treatment with amoxicillin and higher than in controls

after treatment) (71) and Parabacteroides (being higher within

less than 6 months after treatment with amoxicillin with or

without clavulanic acid or penicillin (without separate analysis)

compared with controls and then being lower 6 to 12 months

after treatment compared with controls (70) (Figure 3). One

study found no difference in bacterial abundance after

treatment with penicillin (75).
ARGs

The effect of penicillins on the abundance of ARGs was studied

in three studies. Two studies found an increased abundance of
frontiersin.org
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FIGURE 3

Differences in bacterial abundance between children treated with penicillins and controls. Included studies investigated amoxicillin (71, 89) and
amoxicillin with or without clavulanate and penicillin V (70). Studies which did not compare ABX group to controls and studies not providing
p-values were excluded.

Wurm et al. 10.3389/falgy.2024.1458688
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ARGs after treatment with penicillin and ampicillin/amoxicillin,

respectively, which returned to normal three to four weeks after

treatment (75, 89). The other study found increased abundances

of multiple ARGs, e.g., for β-lactamases (unknown), ABC efflux

pumps, araC, and emrD (55). A higher abundance of plasmids

after treatment with penicillin or ampicillin (without separate

analysis) was reported in another study (75).
Penicillins plus aminoglycosides

13 studies investigated combinations of different penicillins

plus gentamicin in 3,141 children (for detailed information see

Supplementary Table S3) (26, 37, 40, 52, 58, 63, 69, 81, 83, 85,

93, 94, 110).
Diversity

Compared with controls, three studies found a lower alpha

diversity in children treated with penicillin, amoxicillin, or

ampicillin plus gentamicin (52, 58, 83). The duration of

treatment with ampicillin plus gentamicin positively correlated

with the decrease in alpha diversity (58). One study found a

lower alpha diversity in children treated for more than seven

days with ampicillin plus gentamicin compared with these

treated for a shorter duration (94). Another study found a lower

richness in children treated with ampicillin plus gentamicin

compared with controls two months after treatment (52)

(Figure 2). In contrast, one study found no difference in alpha

diversity at two weeks of life after treatment with ampicillin plus

gentamicin (69), and another one, one year after treatment with

penicillin plus tobramycin (26). Yet another study compared the

alpha diversity one week after treatment with ampicillin plus

tobramycin, ampicillin plus tobramycin plus metronidazole, and

ampicillin plus cefotaxime and found no difference between these

groups (85). Another study compared alpha and beta diversity

after treatment with ampicillin plus gentamicin and ampicillin

plus cefotaxime and found no differences at the latest follow up

at 30 days of life (40).
Composition

Compared to controls, after treatment with ampicillin plus

gentamicin increased abundances/colonisation rates of

Proteobacteria (52), Bacilli (94), Clostridiales (94), Bacteroidales

(94), Enterobacteriaceae (52), Peptostreptococcaceae (52),

Clostridium (52), Klebsiella (37, 83, 94), Enterobacter (58, 93),

Klebsiella/Enterobacter (93), Veillonella (80), Streptococcus (80),

and Enterococcus faecalis (37), and decreased abundances of

Bifidobacteriacea (52), Bifidobacterium (52, 83), Escherichia (83),

Staphylococcus (58, 83), and Lactobacillus (52); after treatment

with penicillin plus gentamicin increased abundances of

Acinetobacter (83), and Klebsiella (83), and decreased abundances

of Bifidobacterium (83), Escherichia (83), Staphylococcus (83),
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and Escherichia coli (83); after treatment with penicillin plus

netilmicin decreased abundance of Clostridum difficile (63); and

after treatment with penicillin plus tobramycin decreased

abundances of Bacteroidetes were found (26). Conflicting results

were reported for the abundance of Actinobacteria (52, 69),

Enterococcus (52, 58, 83) and Bacteroides (83, 94), and

Escherichia coli (37, 93, 94) (Figure 4).
ARGs

One study reported that changes in the ARG profile persisted

for up to four months after treatment with amoxicillin/

clavulanate plus gentamicin with 10 of 31 ARGs being more

abundant, while after penicillin plus gentamicin five of 10 ARGs

were found to be more abundant (83). One study found

resistance to ampicillin in E. coli, Klebsiella, and Enterobacter

after ampicillin plus gentamicin treatment (93).
Penicillins plus cephalosporins

Five studies investigated combinations of penicillins plus

cephalosporins, including 1,123 children (for detailed

information see Supplementary Table S3) (34, 40, 83, 85, 101).
Diversity

One study found a lower alpha diversity in children treated

with amoxicillin plus cefotaxime compared with controls (83).

The same study also found a high beta diversity with a dissimilar

composition between children treated with amoxicillin plus

cefotaxime and controls, which was still present four months

after stopping ABX (83). One study compared alpha diversity

one week after treatment with ampicillin plus tobramycin,

ampicillin plus tobramycin plus metronidazole, and ampicillin

plus cefotaxime and found no difference between these groups

(85). Another study compared alpha and beta diversity after

treatment with ampicillin plus gentamicin and ampicillin plus

cefotaxime and found no differences at the latest follow-up at

30 days of life (40).
Composition

Increased abundances of Enterococcus (101), Clostridium

(101), and Acinetobacter (83), and decreased abundances

of Bifidobacterium (101), Akkermansia (83), and Escherichia

coli (83) were found in children after treatment amoxicillin

plus cefotaxime or ceftazidime compared to controls.

One study compared abundances after treatment with

ampicillin plus tobramycin, ampicillin plus tobramycin

plus metronidazole, and ampicillin plus cefotaxime

and found no difference between groups (85). One
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FIGURE 4

Differences in bacterial abundance or colonization rate between children treated with penicillins plus aminoglycosides and controls. Studies included
investigated ampicillin plus gentamicin (52, 58, 69, 81, 93, 94), penicillin plus gentamicin (81, 83), and penicillin plus tobramycin (26). Studies which did
not compare ABX group to controls and studies not providing p-values were excluded.

Wurm et al. 10.3389/falgy.2024.1458688
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study did not provide p-values for their analysis of

colonisation rates (34).
ARGs

One study reported changes in the ARG profile with 10 of 31

ARGs being more abundant after treatment with amoxicillin plus

cefotaxime. Compared to penicillin plus gentamicin (five of 10

ARGs being more abundant), amoxicillin plus cefotaxime was

found to have a higher impact on ARG abundance (83).
Cephalosporins

The effect of cephalosporins on the intestinal microbiota in

children was investigated in nine studies including 916 children

(for detailed information see Supplementary Table S3) (55, 57,

60, 63, 87, 88, 90, 91, 93).
Diversity

One study found a lower alpha diversity in infants treated with

cefalexin compared with controls at two months of life (91).

Another study found a lower richness immediately after

treatment with cefotaxime and cefazoline compared to before

ABX (55). One study found no difference in alpha diversity in

neonates at ten days of life between the ABX group and controls

after treatment with cefotaxime (57). Three studies did not

analyse alpha diversity or richness (60, 87, 93).
Composition

The administration of cefalexin was associated with increased

abundances of Enterobacteriaceae (91), Enterococcus (91), and

decreased abundances of Bifidobacterium (91) compared to

controls. The administration of cefuroxime was associated with a

decreased abundance of Escherichia coli (93). When comparing

before and after treatment with cefaclor decreased bacterial counts

of Enterobacteriaceae (87), and Bifidobacterium (87), were found,

while when comparing before and after treatment with ceftazidime

decreased bacterial counts of Enterobacteriaceae (87), Lactobacillus

(87), and Bifidobacterium (87), were found. After treatment with

cefotaxime, compared to controls, increased abundances of

Enterobacteriaceae (57) and Parabacteroides (57), and decreased

abundances of Bifidobacterium (57), Clostridium difficile (63) and

Escherichia coli (55) were found. After treatment with ceftriaxone,

abundances of Enterobacteriaceae and Lactobacillus increased

compared to before ABX (88). When comparing before and after

treatment with cefpiramide decreased counts of Enterobacteriaceae

(87), Bacteroidaceae (87), Bifidobacterium (87), Lactobacillus (87),

and Staphylococcus (87) were found.
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ARGs

After treatment with ceftriaxone, one study found Klebsiella/

Enterobacter, Citrobacter, Serratia and E. coli to be resistant

to cefoperazone and ceftriaxone and Pseudomonas aeruginosa to

ceftriaxone (60). One study found increased abundances of

multiple ARGs after treatment with cefotaxime, e.g., β-lactamase

(CMY-LAT-MOX), MFS efflux, ABC efflux, and robA (55).
Carbapenems

The effect of carbapenems on the intestinal microbiota was

investigated in three studies including 67 children (for detailed

information see Supplementary Table S3) (55, 96, 105).
Diversity

One study found a reduced richness comparing before and two

days after treatment with meropenem (55). Two studies did not

analyse alpha or beta diversity (96, 105).
Composition

The studies reported an increased bacterial count of

Enterococcus (96), Proteus (96), Pseudomonas (96), Enterobacter

(96), and Staphylococcus epidermidis (55), and a decreased

abundance of Klebsiella (96), Lactobacillus (96), and Streptococcus

(96) comparing before and after treatment with imipenem-

cilastatin, while the second study did not find changes in the

abundance of different bacteria (105).
ARGs

The first study did not identify bacteria with resistance to

imipenem (96), while in the second study, in one child P.

aeruginosa resistant to imipenem was found after treatment. This

child was previously also treated with aztreonam (105). One study

found increased abundances of multiple ARGs after treatment with

meropenem, e.g., mecA, norA, dfrC, gyrA, and qacA (55).
Macrolides

The effect of macrolides on the intestinal microbiota was

investigated in 13 studies including 802 children (for detailed

information see Supplementary Table S3) (38, 46, 62, 70, 71, 75,

79, 80, 87, 95, 103, 111, 112).
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Diversity

Four studies found a lower alpha diversity (46, 79, 95, 103) and

three a lower richness (70, 75, 80) between five days and 12–24

months after treatment with macrolides. One study reported a

decrease in alpha diversity after 14 days but no further changes

between 13 and 39 months after treatment with azithromycin

(95). After treatment with azithromycin, one study found a

difference in richness between children with ABX and controls,

but no difference in alpha diversity (80) (Figure 2). Three studies

analysed beta diversity and found a high beta diversity between

ABX group and controls up to 14 days after treatment with

azithromycin (80, 95) and a distinct composition on phylum

and genus level in the ABX group up until six months after

treatment with either azithromycin or clarithromycin without

reporting results separately (70). One study did not detect a

difference in beta diversity five days after treatment with

azithromycin (46).
Composition

Compared to controls, after treatment with azithromycin

increased abundances/bacterial counts of Clostridium (95), and

Blautia (46), and decreased abundances/bacterial counts of

Actinobacteria (95), Verrucomicrobia (80), Betaproteobacteria (80),

Verrucomicrobiae (80), Bifidobacteriales (95), Bifidobacteriaceae

(95), Clostridiacea (95), Bifidobacterium (95), Anaerovibrio (46),

Peptoniphilus (46), Succinivibrio (46), Megasphaera (46), Escherichia

(80), Akkermansia (80), Peptostreptococcus (80), Campylobacter

hominis (62), Campylobacter ureolyticus (62), and Campylobacter

jejuni (62) were found. Two studies did not report separate results

for changes in abundances after treatment with different macrolides

and found compared to controls, increased abundances of

Bacteroidetes (70), Alphaproteobacteria (71), Bacteroidales (70),

Lactobacillales (70), Rikenellaceae (70), Subdoligranulum (71),

Salmonella (71), Eggerthella (70), Bacteroides (70), Parabacteroides

(70), Eubacterium (70), and Clostridium (70), and decreased

abundances of Actinobacteria (70), Bifidobacteriales (70),

Coriobacteriales (70), Clostridiales (70), Gemellaceae (70), Collinsella

(70), and Bifidobacterium (70, 71). Conflicting results were reported

for abundances of Proteobacteria (70, 80), Bacillales/Gemellales

(70, 71), and Dialister (70, 95) (Figure 3). Two studies found

no difference in bacterial abundance between children with ABX

and controls (38, 75). Three studies did report p-values for

abundances (38, 79, 111). One study did not investigate bacterial

abundances (103) (Figure 5).
ARGs

ARGs were investigated in two studies (70, 114). One study

found increased macrolide resistance after treatment with

azithromycin or clarithromycin (without separate analysis),

which declined linearly until going back to baseline 6 to
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12 months after ABX. The study also found that the abundance

of ermF and ermB genes correlated negatively with time since the

last macrolide treatment, while the abundance of the bsh gene

correlated positively with time since the last macrolide treatment

(70). One study found a higher abundance of ARGs and

plasmids in the ABX group compared with controls, without

performing a separate analysis for different macrolides (75).
Trimethoprim/sulfamethoxazole

The effect of trimethoprim/sulfamethoxazole on the intestinal

microbiota was investigated in six studies, including 254 children

(27, 36, 47, 53, 55, 79).
Diversity

Two studies detected no difference in alpha diversity between

the ABX group and the control group within the first week after

ABX and after seven and eight years of continuous prophylactic

treatment (Figure 2) (36, 79). Another study found a longitudinal

increase in alpha diversity between six weeks and six months after

the ABX in the ABX group (47). Another study found a decrease

in diversity two weeks after the start of prophylactic treatment

compared to before treatment, which recovered within one to two

months (27). Another study found a decreased richness

comparing before and two days after ABX (55). One study found

no difference in bacterial counts between the two groups (53).

Two studies analysed beta diversity, of which one did not detect a

difference in between the ABX group and controls (36) and the

other one found a lower beta diversity in the ABX group

compared to controls (47). Comparing before to after treatment

with trimethoprim/sulfamethoxazole decreased bacterial counts of

Enterobacter (53) and Veillonella (53) were found.
Composition

Comparing the ABX group to controls increased abundances

of Enterobacteriales (27), Alistipes onderdonkii (36), Eggerthella

lenta (36), Clostridium bartlettii (36). Haemophilus

parainfluenzae (36), Streptococcus mutans (36), Streptococcus

parasanguinis (36), and Streptococcus vestibularis (36), and

decreased abundances of Enterobacteriaceae (36) were found

after ABX. One study detected no differences in bacterial

abundance after treatment with trimethoprim/sulfamethoxazole

(47) and another study did not provide p-values for changes in

abundances (79).
ARGs

ARGs were studied in one study, dfr and sul genes were found

to be more abundant in the ABX group after the ABX compared to

before (47).
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FIGURE 5

Differences in bacterial abundance or total bacterial count between children treated with macrolides and controls. Included studies investigated
azithromycin (80, 95, 103), azithromycin and clarithromycin (70) or did not separately analyse different macrolides (71). Studies which did not
compare ABX group to controls and studies not providing p-values were excluded.
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Aminoglycosides

The effect of aminoglycosides on the intestinal microbiota was

investigated in three studies, including 52 children (for detailed

information see Supplementary Table S3) (55, 87, 112).
Diversity

The first study found no difference in alpha diversity three

days after treatment with gentamicin (55) and the second did

not analyse alpha diversity (87). Both studies did not analyse

beta diversity.
Composition

One study observed decreased bacterial counts of

Enterobacteriaceae (87), Streptococcus (87), Clostridium (87), and

Lactobacillus (87) comparing before and three to six days after

treatment with gentamicin.
ARGs

One study found increased abundances of multiple ARGs after

treatment with gentamicin, e.g., evgA and emrK (55).
Glycopeptides

The effect of glycopeptides on the intestinal microbiota was

investigated in three studies, including 48 children (for detailed

information see Supplementary Table S3) (45, 55, 84).
Diversity

One study found a lower alpha diversity seven days after

treatment with vancomycin compared to before ABX, but no

difference between the ABX group and controls (45). Another

study found a lower richness two days after treatment with

vancomycin compared to before ABX (55). One study found no

difference in alpha diversity after treatment with vancomycin at

25 days of life (84).
Composition

One study found increased abundances of Staphylococcus and

decreased abundances of Commamonadaceae, Pseudomonas,

Bifidobacterium when comparing before and after ABX (45).

Another study reported increased abundances of Staphylococcus

(in intestinal tissue but not in stool) when comparing children

treated with vancomycin to other ABX (84).
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ARGs

One study found an increase in ARGs after treatment with

vancomycin, e.g., evgA, emrK (55).
Mixed and not specified ABX

Various ABX without reporting separate results were

investigated in 19 studies (24, 31–33, 44, 48, 49, 54, 59, 64–66,

72–74, 77, 86, 92, 97), while another 20 did not specify which ABX

were investigated (28–30, 38, 42, 43, 50, 51, 56, 61, 67, 68, 76, 82,

98, 99, 104, 106, 109, 115). These studies included a total of 5,139

children (for detailed information see Supplementary Table S3).
Diversity

A decreased alpha diversity in ABX compared to controls was

found in seven studies (29, 54, 72, 74, 77, 97, 98) and lower

richness in two studies (66, 99). One study found a decrease in

alpha diversity during ABX and an increase afterwards (64). One

study found a lower alpha diversity in children treated for two

days compared to seven days or more (44). Two studies reported

that alpha diversity inversely correlated with increase in number

of ABX courses (54, 74). One study found a decrease in diversity

and in richness with each additional day of ABX (76) and

another study found a lower diversity within the Bacteroidetes

phylum in the ABX group than in controls (48). Other studies

found no difference in alpha diversity between birth and hospital

discharge (86), at ten days of life (43), or up to six month of life,

when comparing children after ABX to controls (92). One study

found no difference in alpha diversity comparing before, during,

and after ABX (25). Twelve studies did not analyse alpha

diversity or richness (28, 31–33, 39, 42, 49, 56, 61, 67, 73, 82,

104). Five studies found a high beta diversity with a dissimilar

bacterial composition between the ABX group and controls

(54, 72, 92, 98, 25). One study found a dissimilar composition in

children with two days of ABX compared to seven or more days

(44). One study found a dissimilar composition between

neonates receiving ABX in the first week of life only and

neonates receiving ABX in the first week of life plus after the

first week of life (54). Samples collected in controls showed more

similarity to each other than samples from the period when

children were starting or stopping ABX (30). One study found

no effect of ABX on beta diversity at one year of life (51).

Another study found a decrease in beta diversity in neonates

from week one to week three of life in the ABX group compared

to controls (97).
Composition

When comparing ABX groups and controls, after

ABX, increased abundances/colonisation rates/bacterial counts

for Proteobacteria (28), Gammaproteobacteria (73),
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Enterobacteriaceae (29, 54), Veillonella (54), Klebsiella (56),

Escherichia/Shigella (72), Enterobacter (56), Klebsiella/

Enterobacter (31), Sphingomonas (97), Acidovorax (97), Proteus

(42), Bacteroides vulgatus (74), Bifidobacterium bifidum (74),

Staphylococcus epidermidis (54), Veillonella parvula (54),

Veillonella unspecified (54), Klebsiella oxytoca (54), Escherichia

coli (54), Bifidobacterium breve (54), and decreased abundances

for Bacteroidetes (48, 72, 76, 92), Clostridiales (54),

Bifidobacteraceae (54), Prevotella (54), Bacteroides (29, 65, 72, 77,

82), Parabacteroides (29), Ruminococcus (25), Haemophilus (97),

Blautia (97), Erysipelatoclostridium (97), Gemella (97), Rothia

(97), Streptococcus (97), Clostridium perfringens (33),

Eubacterium rectale (98), Akkermansia muciniphila (80),

Lactobacillus mucosae (80), Bacteroides fragilis (80), Actinomyces

odontolyticus (74), Bifidobacterium longum (50, 54, 74),

Bifidobacterium bifidum (50, 54) Bifidobacterium lactis (50),

Escherichia coli (30, 31) Escherichia coli 8711 (80), and

Escherichia coli 17709 (80) were found. Conflicting results were

found for Actinobacteria (28, 72), Firmicutes (28, 72, 92),

Clostridium (29, 65, 73, 76, 98), Enterococcus (54, 77, 97),

Lactobacillus (32, 33, 61, 65, 92), Bifidobacterium (29, 32, 54, 72,

82), Citrobacter (42, 56), Staphylococcus (54, 97), Clostridium

difficile (33, 67), Clostridium butyricum (33, 49), Enterococcus

faecialis (31, 54), and Bifidobacterium breve (50, 54, 74)

(Figure 6). One study found Clostridium perfringens abundance

decreased compared to controls 3–4 weeks after ABX and

increased 5–6 weeks after ABX (42). One study found a lower

abundance of Bacteroides and a higher abundance of

Actinobacteria, Proteobacteria, Bacteroidetes in children treated

for more than seven days compared to these treated for two days

(44). Another study found lower abundances of Lactobacillus and

Enterococcus after more than seven days of treatment compared

to less than seven days of treatment (68). Three studies did not

compare bacterial abundances (66, 99, 104). One study, only

investigating Bifidobacterium abundance, found no difference in

abundance between the ABX group and controls (39).
ARGs

ARGs were studied in two studies, which found a higher

abundance of ARGs in ABX group including resistance to ABX

rarely/never used in neonates and to multidrug-resistant

organisms (MDROs) (54), higher abundance of ARGs and

episomally encoded genes in the ABX group (98).
Discussion

The first three years of life are pivotal for the development of

the intestinal microbiota (14, 25), which, in turn, plays a crucial

role in shaping the immune system. Moreover, early colonization

of the intestine significantly impacts later microbial communities,

so changes in this early period will have long-lasting

consequences (115). A lower diversity of the intestinal microbiota

has been associated with an increased risk of developing allergic
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diseases, type 1 diabetes, and rheumatic diseases (116–118). It is

therefore concerning that all the ABX investigated in the studies

in our review had profound effects on the intestinal microbiota

in children associated with a decrease in alpha diversity. In some

studies, this decrease was positively associated with duration of

ABX. This effect was prolonged, persisting up to 12–24 months

after stopping ABX for macrolides, and up to 36 months for

ABX in the neonatal period.

In our review, we found that exposure to certain ABX

(penicillins, penicillins plus gentamicin, cephalosporins,

carbapenems, macrolides, and aminoglycosides, but not

trimethoprim/sulfamethoxazole) is associated with decreased

abundances of Actinobacteria (52, 70, 95), Bifidobacteriales

(70, 95), Bifidobacteriaceae (52, 54, 95), and/or Bifidobacterium

(52, 57, 70, 83, 87), and Lactobacillus (52, 70, 87, 88, 96). The

direction of change in the abundance of Enterobacteriaceae

depends on the ABX class but often an increase in

Enterobacteriaceae other than E. coli is observed. These findings

are in accordance with findings from a similar review in adults,

which, after ABX, along with a decrease in alpha diversity, also

found decreased abundances of Bifidobacterium and Lactobacillus

and increased abundances of Enterobacteriaceae, other than

E. coli (e.g., Klebsiella, Citrobacter and Enterobacter) (16). The

results from our review, also align with results from a large

in vitro study, which tested the effect of 144 ABX on 38

common human intestinal microbiota species (119). The study

found that macrolides strongly inhibit the growth of most tested

intestinal microbes, while beta-lactams have strain specific effects.

This strain-specific effect of ABX might lead to large community

composition disturbances with “killing-sensitive” strains more

readily being eliminated from communities.

As mentioned above, almost all ABX are associated with a

reduction in bacteria which have been identified as being

beneficial. Bifidobacterium and Lactobacillus contribute to

maintaining the gut barrier by producing high concentrations of

short chain fatty acids (SCFA) such as acetate, propionate, and

butyrate (120). However, SCFA not only serve as energy sources

for the interstitial epithelium, but also have diverse effects on

host physiology and immunity. In children, a decreased

abundance of Actinobacteria has been associated with type 1

diabetes (121), while lower abundances of Lactobacillaceae and

Bifidobacteriaceae have been associated with the development of

allergic sensitization, eczema, or asthma (116). Reduced

Bifidobacterium abundance has also been linked to childhood

obesity (122, 123). Furthermore, it has been shown that

peptidoglycans from Bifidobacterium can cross the blood-brain

barrier and enhance neuronal maturation by influencing cytokine

production by microglia (124). However, it’s important to note

that most of the studies investigating associations between

variations in the intestinal microbiota composition and diseases

are cross-sectional and therefore, it cannot be determined

whether factors like ABX use, which may transiently decrease the

abundance of different beneficial taxa, impact the development of

these diseases. Nevertheless, a large meta-analysis has shown that

ABX exposure in the first years of life is associated with an

increased risk of developing atopic dermatitis, allergies, wheezing
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FIGURE 6

Differences in bacterial abundance or colonisation rate between ABX groups and controls of studies investigating various ABX without separate analysis of
individual ABX. Included studies investigated: ampicillin, nafcillin, gentamicin, tobramycin, others (97), penicillin (plus aminoglycoside), others (92),
ampicillin/sulbactam, cefotaxime (72), penicillin plus gentamicin, amoxicillin plus gentamicin, amoxicillin plus ceftazidime, others (48), ampicillin and
cefotaxime, amikacin, vancomycin, others (65), ampicillin, cefotaxime, gentamicin, others (54), cephalosporin, penicillin, others (113), penicillins,
macrolides, cephalosporins, others (115), beta-lactams, aminoglycosides, vancomycin, others (73), benzylpenicillin, cloxacillin, flucloxacillin, others (32),
benzylpenicillin, cloxacillin, flucloxacillin, others (31), penicillin, penicillin plus gentamicin, others (33), or did not specify which ABX they investigated (28,
29, 42, 56, 61, 82, 98). Studies which did not compare ABX group to controls and studies not providing p-values were excluded.

Wurm et al. 10.3389/falgy.2024.1458688
and asthma, obesity, rheumatological and neurodevelopmental

diseases (12) and it is very likely that the mechanism behind this

are changes in the microbiota (125).

The exact mechanism by which different intestinal bacteria

influence the developing immune system is not yet clear but

dysbiosis has been associated with a pro-inflammatory state (e.g.,

increased T-helper 17 cells (126). A decreased abundance of

Bacteroides uniformis has been associated with increased

production of interleukin (IL)-17, which is associated with

increased neutrophil extracellular trap (NET) formation (114).

These web-like structures are composed of DNA, histones, and

antimicrobial proteins and released by activated neutrophils in

response to infection or inflammation. NETs play an important

role in fighting pathogens. In critically ill patients, progressive

intestinal dysbiosis characterised by a high abundance of

Enterobacteriaceae has been associated with a shift towards

immature neutrophil populations with reduced NET formation

(127). In contrast, dysregulated NET formation has been

associated with various inflammatory and autoimmune diseases,

e.g., rheumatological diseases (128). Other studies showed that

the abundance of Klebsiella pneumoniae and Streptococcus mitis

in the intestine positively correlates with the amount of natural

killer cells in blood, the abundance of B. uniformis with

immunoglobulin M levels as well as the erythrocyte

sedimentation rate, and the abundance Eubacterium eligens with

IL-4 and CD3 +CD8+ T cells levels (129).

Antimicrobial resistance is an increasing problem; it is estimated

that by the year 2050, 10 million people will die annually because of

infections with ABX-resistant bacteria (130). Therefore, another

important finding in our review is the increase in ARG following

ABX with all ABX classes, which persisted for as short as three

weeks for some ABX, but up to four months after treatment for

others. This is particularly important for ABX, such as amoxicillin

and trimethoprim/sulfamethoxazole, which are often given for

long-term prophylaxis. Even a transient increase in ARGs can

have significant clinical implications, especially if a child develops

a new infection during this period, as it may lead to infections

that are harder to treat, requiring ABX with more side effects

or which have broader spectrum activity, further exacerbating

the problem of antimicrobial resistance.

The impact of ABX on the intestinal microbiota is multifaceted,

influenced by both their spectrum of activity, and whether

ABX are administered orally or intravenously. Formulation is also a

factor: for example bacampicillin syrup alters bacterial abundance

but tablets do not (131). ABX with a broad spectrum of activity and

selective killing are the most dangerous to the intestinal microbiota
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and it is important to find drugs with a narrow spectrum of activity

that inhibit pathogens but not intestinal commensals.

Other factors can mitigate ABX-induced dysbiosis. In infants,

this includes breastfeeding and administration of pre-, pro- and

postbiotics (132). Breastfeeding has been associated with an

increased abundance of Bifidobacterium, Staphylococcus, and

Streptococcus and lower abundances of Enterococcus and

Enterobacteriaceae (133). Breast milk itself is an important source

of pre-, pro- and postbiotics. A recent study showed that

breastfeeding reduced the decrease in B. infantis which was seen

after ABX and protected from ABX-associated increased asthma

risk (134). The European Society for Paediatric Gastroenterology

Hepatology and Nutrition recommends probiotics for the

prevention of ABX-associated diarrhoea (132, 135), particularly

Saccharomyces boulardii and Lactobacillus rhamnosus GG (136).

In an RCT involving healthy children, the administration of

Bacillus subtilis DE111 increased alpha diversity (137). Similarly,

an observational study in preterm neonates showed an increase

in alpha diversity, higher abundances of Bifidobacterium and

Lactobacillus, and lower abundances of Streptococcus after the

administration of a probiotic containing Lactobacillus acidophilus

and Bifidobacterium bifidum (138). These findings, which

contrast with the ABX-induced microbial disturbances observed

in our systematic review, suggest that probiotics might help

restore gut microbiota balance after ABX. A Cochrane review

including 33 RCTs concluded that the administration of

probiotics led to a reduction of ABX-associated diarrhoea from

19 to 8% with a number needed to treat of nine (132). However,

many important questions remain open, such as the ideal timing,

dosage, duration and strain selection for probiotics, as well as the

benefit of co-administration with pre- and postbiotics.
Strengths and limitations

A strength of this study is the comprehensive literature search,

including children of all age groups and various ABX classes.

However, the study is also subject to some limitations: First, most of

the included studies were observational studies and only few RCTs

were identified. Second, although most studies used longitudinal

designs, the variability in follow-up periods, ranging from days to

years, complicates inter-study comparisons. The timing of stool

sampling is crucial, as changes in the bacterial composition of the

intestinal microbiota can be transient or fluctuant. Third, a significant

portion of the studies did not differentiate between various ABX or

did not specify ABX. This may introduce bias into the results, as
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different ABX classes have been shown to have different effects.

Therefore, the results of these studies have been pooled for this

review. Even within an ABX class, the spectrum of activity differs and

the effect on the intestinal microbiota will therefore be different.

Fourth, except for five studies, all included participants had

(suspected) infections, potentially introducing infections as a

confounding factor. Furthermore, the analysis encompassed diverse

age groups, though the impact of ABX on the microbiota is likely

most pronounced in younger children, particularly neonates or

infants. Lastly, microbiota research is largely influenced by the used

analysis techniques. Molecular diagnostics are influenced by DNA

extraction and library preparation method, used sequencing platforms

and protocols and bioinformatic pipelines and tools. Culture-based

diagnostics are influenced by the choice of culture media and

incubation conditions and techniques for assessing ABX resistance.

In summary, ABX have profound effects on the intestinal

microbiota, with notable differences between ABX classes. The

duration of ABX likely influences the magnitude of these changes.

Among those studied, macrolides have the most substantial impact

while trimethoprim/sulfamethoxazole has the least pronounced

effect. Important remaining questions include how long ABX-

induced changes in the composition of the intestinal microbiota

persist and the long-term effect of transient changes on health

outcomes, particularly if they are given beyond the critical period

of microbiota development in the first two to three years of life.

Additionally, it is crucial to investigate whether ABX-resistant

strains persist in the absence of selective pressure from ABX.

Another area for further research is the development of remedies

which can selectively protect intestinal microbiomes.
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