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The Acari Hypothesis,
V: deciphering allergenicity
Andrew C. Retzinger1* and Gregory S. Retzinger2

1Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University,
Parkersburg, WV, United States, 2Department of Pathology, Feinberg School of Medicine, Northwestern
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The Acari Hypothesis posits that acarians, i.e., mites and ticks, are operative
agents of allergy. It derived from observations that allergens are molecular
elements of acarians or acarian foodstuffs. A corollary of The Hypothesis
provides how acarian dietary elements are selected as allergens; namely, a
pattern recognition receptor native to the acarian digestive tract complexes
with dietary molecules problematic to the acarian. By virtue of its interspecies
operability, the receptor then enables not only removal of the dietary
elements by the acarian immune system, but also—should such a complex be
inoculated into a human—production of an element-specific IgE. Because
pattern recognition receptors bind to molecules problematic to the organism
from which the receptors originate, it follows that molecules targeted by
adaptive IgE, i.e., allergens, must be problematic to acarians. This claim is
supported by evidence that host organisms, when infested by acarians,
upregulate representative members of allergenic molecular families.
Appreciation of the relationship between allergens and acarians provides
insight well beyond allergy, shedding light also on the anti-acarian defenses of
many living things, especially humans.
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1 Introduction

In hope of identifying a unifying principle on the nature of allergenicity, existing

allergy research has focused primarily on structural features of allergenic molecules.

Indeed, most allergens derive from about 30–40 molecular families (1). Although within

a given family significant sequential and structural homologies exist, allergenic

molecules from different families vary greatly. Consequently, no truly unifying principle

has come from structural analyses alone.

A teleological rationalization of allergenicity was proposed by Profet in 1991 (2). It

postulates that allergens are molecules generally toxic to humans, with mast cell-

mediated immune activation constituting a last line of defense against allergens as

toxins. Indeed, such rationalization is supported by allergens attributable to venomous

hymenopterans, e.g., Apis mellifera, the Western honeybee. With specific regard to

A. mellifera, at least 12 allergens have been identified, all of which are expressed in the

bee venom sac, venom duct and/or hypopharyngeal gland (3). Thus, at least in the case

of Western honeybees, IgE does appear to target materials that might adversely affect

human physiology.

Although the proposal of Profet accounts reasonably well for the allergenicity of

molecules expressed by honeybees, it does not account for the inadequacy of the

response directed against those molecules, i.e., the gross mechanical reflexes elicited by
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IgE do not effectively deter the sting of a bee. Furthermore, if

honeybee venom is threatening to all humans, then why do so

few humans elicit an IgE-mediated response following

envenomation? In the context of otherwise benign allergens, the

proposal is even more problematic. Pollens, as examples, cause

debilitating IgE-mediated symptoms in many humans (4).

The Acari Hypothesis was conceived only very recently (5–8).

Just as does the proposal of Profet, it foregoes structural

considerations in the assignment of allergenicity using, instead,

teleological considerations for that purpose. The Hypothesis

proposes most, if not all, allergens derive from acarians or their

foodstuffs. One of its corollaries offers mechanistic understanding

relevant to the elicitation of IgE. It proposes an acarian pattern

recognition receptor, perhaps a fibrinogen-related protein (FReP)

operating within the acarian digestive tract, elicits IgE in humans

following inoculation of the receptor and its associated materials (6).

Acarian FRePs, like many FRePs of other species, function as

innate immune effectors (9). They bind and agglutinate materials

that display molecular patterns dangerous to the acarian,

earmarking those materials for phagocytosis and degradation (10).

The fibrinogen-like domain of some FRePs contains multiple

binding sites that can operate independently or synergistically (11).

This enables them to recognize a vast array of endogenous and

exogenous ligands. As envisaged per The Hypothesis, acarian

FRePs may complex with 2 categories of allergens: (1) acarian

immunoregulators, e.g., Der p 2, a major allergen of the human

dust mite and a homolog of human myeloid differentiation factor

2 (12), and/or (2) molecular elements of acarian foodstuffs,

Figure 1. Following inoculation into a human, complexes

incorporating category 1 allergens prime the recipient for felicitous

IgE directed against the acarian. In contrast, complexes

incorporating category 2 allergens prime the recipient for specious

IgE directed against the acarian dietary element. There is yet a

third category of allergens: molecules that cross-react with IgE

directed against category 1 or 2 allergens. Allergens from category

3 are always problematic. They often derive from invertebrates,

e.g., insects, mollusks or helminths, because the allergenic

molecules of mites, e.g., tropomyosin or paramyosin, share strong

homology with the molecules of other invertebrates (13–17).

Indeed, the tropomyosin family exemplifies the complicated

nature of IgE reactivity. Cockroach tropomyosins, which are

homologous with acarian tropomyosins, are strongly allergenic

(18–20). Thus, they may be category 3 allergens in persons

sensitized to acarian tropomyosin. Cockroaches can also serve as

phoretic hosts or foodstuffs for some acarian species (21, 22),

rendering them a source of category 2 allergen. In short,

depending upon the situation, cockroach materials are sometimes

sensitizing and other times cross-reacting. This situational

dependence undoubtedly also applies to other important

allergens, even ones that derive from acarians.

In all instances, the human immune system construes the

allergen as acarian in nature. Following subsequent exposure, the

system activates reflexes intended to clear acarians from epithelial

surfaces, e.g., cough, spit, itch, vomit, defecate, etc.

The Acari Hypothesis explains the observations that gave rise to

the Profet proposal. It also accounts for the shortcomings of that
Frontiers in Allergy 02
proposal. Category 2 allergens are materials uniformly toxic to

acarians, not to humans. Although some category 2 allergens are

toxic to humans as well, e.g., melittin, most are problematic only

to the acarian species from which the sensitizing complex originated.

Researchers studying plant immunity have classified 19 groups

of molecules participating in plant defense against pathogens and

phytophagous arthropods, i.e., pathogenesis-related proteins (PR

1–19) (23, 24). PR proteins are well-represented among human

allergens (25), entirely consistent with the idea that IgE-targeted

materials are toxic to acarians. From among the groups of PR

proteins, the ones best exemplifying this unifying allergenic

attribute are the defensins, cystatins, peroxidases, chitinases, and

PR-10 proteins. That being the case, the remainder of this report

focuses on them and three other families of common category 2

allergens: lipocalins, secretoglobins and palate lung nasal clone

(PLUNC) proteins.
2 Defensins

The defensins are cysteine-rich, cationic immuno-polypeptides

expressed by many plants and animals (26, 27). The group includes

at least two protein superfamilies, each of which took a convergent

evolutionary path predicated on the utility of a structural motif

consisting of a cysteine-dense core and exteriorly displayed loops

(28, 29). Defensins are well-represented within the human

allergen database and include molecules from ragweed, peanut,

celery and soybean (30).

Functionally, defensins have antimicrobial activity against a

diverse microbial repertoire (31, 32). Their antimicrobial activity

is believed to be due to direct interaction with cell membranes,

causing lytic defects (33). Some defensins also inhibit α-amylase

(34, 35), an enzyme commonly expressed within the digestive

tract of arthropods, including acarians (36). Inhibition of

α-amylase limits the ability of arthropods to digest foodstuffs.

Consistent with an anti-acarian role, organisms upregulate

defensins in response to acarian infestation. As an example,

A. mellifera is subject to parasitism by the mite, Varroa

destructor (37). Upon infestation by the mite, defensins are

upregulated in A. mellifera, and increasing mite infestation

increases defensin expression (38, 39). Because defensins inhibit

acarian digestion, it is reasonable to assume acarian immune

effectors operating within the acarian digestive tract complex

with, and neutralize, defensins.

Plant defensins are categorized in the PR-12 grouping, and

their role in defense against pathogens and phytophagous

acarians is very well-established. As an example, Arabidopsis

upregulates defensins in response to herbivory by the spider

mite, Tetranychus urticae (40).

Humans also produce defensins, and there is evidence human

defensins are involved in IgE-mediated disease. Human β-defensin-

1 (HBD-1) and human β-defensin-2 (HBD-2) are innate immune

effectors constitutively secreted by epithelial cells and leukocytes

(41, 42). Consistent with the ideas that IgE-mediated disease is

caused by acarian species and HBDs participate in human anti-

acarian defense, levels of HBD-1 and -2 are altered in allergic
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FIGURE 1

Deciphering allergenicity. See text and previous installments of this series for details (5–8).
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disease (43, 44) and functional mutations in HBD-1 and -2

predispose children to both atopic dermatitis and asthma (45, 46).
3 Cystatins

Cystatins are a family of small proteins that are also well-

represented in the database of the allergens of humans. They

include molecules from plants, e.g., ragweed and kiwi (47–49),

and mammals, e.g., canines and felines (50, 51). Plant cystatins

are commonly referred to as phytocystatins and are assigned to

the PR-6 grouping. The primary function of phytocystatins is
Frontiers in Allergy 03
inhibition of cysteine proteases, including those used by acarians

to digest foodstuffs (52). Such inhibition deprives acarians of

essential nutrients.

There are many examples of plant species that upregulate

phytocystatins in direct response to acarian herbivory (53).

As one example, phytocystatins expressed by barley protect

against acarian parasitism (54). Indeed, transgenic expression of

barley phytocystatins by wheat and maize confers anti-acarian

protection (55). Maize, too, upregulates phytocystatins, especially

in response to parasitism by mites T. urticae and Oligonychus

pratensis (56). As another example, a cystatin expressed in the

seeds of chestnuts inactivates Der f 1, the dominant allergen and
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well-described cysteine protease of the dust mite,

Dermatophagoides farinae (57, 58).

Dermatophagoides is a genus of polyphagous synanthropic

acarian proposed by The Acari Hypothesis to be a primary

etiological agent of allergic disease. To digest human materials,

the mites use cysteine proteases, like Der p 1 and Der f 1 (59).

As do plants, humans express their own array of cystatins.

Cystatin A is a cysteine protease inhibitor expressed by human

keratinocytes (60). It neutralizes Der f 1 (61). Thus, just as

phytocystatins defend plants against herbivory by phytophagous

acarians, human cystatins defend humans against carnivory by

anthropophagous acarians. Consistent with the proposal that

mites are the etiological agents of allergy, a mutation of cystatin

A is associated with development of atopic dermatitis (62).

Another human cystatin, the salivary cystatin SN, has also been

shown to inhibit mite proteases, and its expression is upregulated

in asthmatic patients (63).
4 Peroxidases

Plant peroxidases are another family of molecules used by

plants to defend against pathogens and phytophagous acarians.

Peroxidases are assigned to the PR-9 grouping. They generate

and detoxify peroxide, thereby regulating reactive oxygen species,

which are directly toxic to numerous pathogens (23, 64, 65).

Many plant species use peroxidase in defense against acarian

infestation. As examples, Solanum dulcamara upregulates

peroxidase following its infestation by the gall mite, Aceria

cladophthirus (66), and peroxidase activity confers resistance to

T. urticae infestation by both the hops plant, Humulus lupulus,

and the cassava plant, Manihot esculenta (67, 68). As in the cases

of other PR proteins, peroxidases are well-represented among the

allergens of humans. They include enzymes expressed by wheat,

bananas and tomatoes (69–71).

Just as humans express analogs of plant defensins and

phytocystatins, so, too, do humans express a peroxidase, and that

peroxidase is involved in allergic inflammation. In humans,

eosinophils mediate the late-stage inflammation characteristic of

allergic disease (72). The cells drive inflammation via the release

of chemical mediators, including eosinophilic peroxidase (73, 74).

Obvious parallels between the secretory milieu of plants

following acarian infestation and that of humans during bouts of

allergic disease lend further credence to the proposal IgE is

intended to target acarian species.
5 Chitinases

Chitin [β- (1–4)-poly-N-acetyl-D-glucosamine] is the primary

structural component of acarian exoskeletons (75, 76). Because

it is essential to acarian physiology, many organisms have

evolved enzymes to degrade chitin, i.e., chitinases, to defend

against acarian threats. As examples, maize and barley

upregulate chitinase expression in response to infestation by

phytophagous mites (56).
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Using current nomenclature, and based on structural

characteristics, chitinases are categorized into PR groupings 3, 4,

8 and 11 (77). Chitinases are well-represented in the database of

known allergens of humans, and they include molecules from

bananas, avocados, tomatoes and maize (78–81).

The human proteome includes two chitinases, chitotriosidase 1

(CHIT1) and acid mammalian chitinase (AMCase), and evidence

indicates both enzymes play a role in IgE-mediated disease.

CHIT1 is expressed by epithelial cells and monocytes (82).

AMCase is expressed by monocytes/macrophages, lung epithelial

cells and natural killer cells (83). Levels of CHIT1 and AMCase

are elevated in persons with allergic disease (84–86).

Additionally, genetic variations in AMCase predispose to

bronchial asthma (87). These observations highlight yet other

instances in which diverse organisms use a shared means to

defend against acarian species.
6 PR-10 proteins and lipocalins

PR-10 proteins are another group of phytoproteins that

participate in plant defense against pathogens and phytophagous

acarians. Although their exact mechanism-of-action is unknown,

it likely relates to a large hydrophobic cavity that spans the

length of the molecules (88). The cavity, which binds a wide

variety of ligands, is suspected to sequester and/or deliver

hydrophobic molecules (88), perhaps ones vital to acarian

metabolism/physiology.

The PR-10 proteins are well-represented in the database of

known allergens of humans and include molecules from—among

many other sources—birch pollen (Bet v 1), cherries, peanuts,

tomatoes, celery and walnuts (89–93). They, too, are upregulated

in response to acarian infestation. As an example, the

subterranean clover, Trifolium subterraneum, upregulates a PR-10

protein in response to infestation by the red-legged earth mite,

Halotydeus destructor (94).

Although PR-10 proteins do not have obvious mammalian

analogues, they share structural homology with lipocalins (95), a

family of proteins expressed by bacteria, plants and animals,

including mammals (96, 97). Just as the structure of PR-10

proteins features a large central cavity for transporting and/or

sequestering hydrophobic molecules, so does the structure of

lipocalins (98). Given this feature, it is not unreasonable to think

lipocalins share the anti-acarian activity of PR-10 proteins.

Importantly, the secretory lipocalins of domesticated mammals

are a major source of the allergens of humans (99). As examples,

the lipocalins, Can f 1, Can f 2, Can f 4 and Can f 6 are

allergens derived from canines (100).

Relatedly, humans secrete apolipoprotein D (apo D), a

lipocalin, onto their epithelial surfaces (101, 102). Apo D,

produced by eccrine glands, is the third most abundant protein

in the sweat of healthy humans (102). In the context of The

Hypothesis, it was recently theorized that the expansion of

eccrine glands across the epidermal surface of catarrhine

primates was a consequence of an acarian-related evolutionary

pressure (8). As a consequence of that pressure, eccrine gland
frontiersin.org

https://doi.org/10.3389/falgy.2024.1454292
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


Retzinger and Retzinger 10.3389/falgy.2024.1454292
secretions evolved to become the primary anti-acarian defense of

humans. Thus, the inclusion of apo D in those secretions is

entirely consistent with an anti-acarian role for lipocalins.

Catarrhine primates are not the only mammals subject to

acarian ectoparasitism. Just as catarrhines developed an expanded

eccrine glandular system to deal with acarian threats, other

mammals evolved other means to protect from acarians. And

just as IgE informs on the anti-acarian activities of plant

proteins, so, too, does it inform on the anti-acarian activities of

mammalian proteins. Although the library of the allergens of

humans continues to expand, mammalian allergens from two

molecular families, secretoglobins and PLUNC proteins, are

already well-described. These last two will be elaborated next, in

the context of The Hypothesis.
7 Secretoglobins

Secretoglobins are another family of proteins against which

humans produce IgE (103). They are expressed by mammals

exclusively, and representative molecules are typically secreted

onto epithelial surfaces (104). They are found in abundance

within the surface liquids of the uterus, prostate, lungs, and

lacrimal and salivary glands (104). Secretoglobins are released as

disulfide-linked dimers that, like PR-10 proteins and lipocalins,

have an internal hydrophobic cavity that binds and transports

small hydrophobic molecules (104). Two secretoglobins are well-

described allergens. Fel d 1, a major allergen from felines, is

expressed in cat saliva. It is also secreted by cat sebaceous glands

(105) and, therefore, present in exfoliated feline scale and related

detritus. Ory c 3, a major allergen from rabbits, is present on

rabbit fur (106). Although the functions of these allergenic

molecules are not yet well-defined, their localization to epidermis

ideally positions them to defend against acarian ectoparasitism.

The best studied human secretoglobin, secretoglobin family 1A

member 1 (SCGB1A1), is expressed by clara cells, which are non-

ciliated secretory cells of the upper airways (107). In comparison to

healthy controls, asthmatics have lower levels of SCGB1A1 in both

serum and bronchoalveolar fluid (108), and mutations in

SCGB1A1 are associated with increased asthmatic risk (109). If,

as proposed, asthma is an IgE-associated bronchospastic disease

attributable to acarian species, and SCGB1A1 has an anti-acarian

role, then one would expect both low levels and mutations of

SCGB1A1 to influence the development of the disease.
8 PLUNC proteins

PLUNC proteins are a molecular family unique to air-breathing

vertebrates (110). Like secretoglobins, they are secreted by mammals

onto epithelial surfaces. PLUNC proteins are expressed abundantly

in liquids that bathe oral, nasal and upper respiratory airways,

where they act as surfactants and participate in mucosal immunity

(111). Examples of major allergens include Fel d 8, which is

secreted from the salivary glands of cats (112), and Ecu c 4, i.e.,

latherin, the dominant protein of equine sweat (113, 114).
Frontiers in Allergy 05
Equine sweat is fundamentally different from human sweat,

having developed via a distinct evolutionary pathway. Whereas

human sweat is made by eccrine glands, equine sweat is made by

apocrine glands and is much more protein-rich than its human

counterpart (115). Like human sweat, equine sweat contains a

lipocalin, in this case, the allergen, Ecu c 1 (114). Given the

targeting of molecules in equine sweat by IgE, it is tempting to

speculate that equine sweat, like human sweat, developed in

response to acarian-related evolutionary pressure.

The most studied of the human PLUNC proteins is BPI fold-

containing family A, member 1 (BPIFA1), a protein expressed in

upper airways and involved in innate immunity (116, 117). Two

experimental findings support the notion human PLUNC proteins

participate in anti-acarian defense. Firstly, levels of BPIFA1 are

markedly diminished in the airways of asthmatics (118). Secondly,

BPIFA1 is cleaved and inactivated by Der p 1, an allergenic

cysteine protease of the dust mite, Dermatophagoides pteronyssinus

(119). Given the similarities of the epithelial secretions of diverse

lineages of mammalian species and the proposed role of human

epithelial secretions in anti-acarian defense, it appears the Acari

significantly influenced mammalian evolution, particularly that

having to do with epithelial surfaces.
9 Closing

By means of direct recognition and subsequent opsonization,

some acarian immune effectors that operate in the acarian

digestive tract neutralize pathogenic/toxic materials. According to

The Acari Hypothesis, those effectors have interspecies

operability and are involved in initiation of the adaptive IgE

response of humans. If this is true, then it stands to reason non-

acarian materials targeted by IgE must be pathogenic/toxic to

acarians. Such reasoning is certainly valid for the allergens

reviewed in this report: defensins, cystatins, peroxidases,

chitinases, and PR-10 proteins.

As proposed and elaborated elsewhere, following a near

extinction event suffered by our ancestral catarrhine primates,

sweating evolved and displaced IgE as dominant anti-acarian

defense (8). Because sweating has, in recent times, been

abrogated by human hygiene, IgE has returned to the forefront

as an operational anti-acarian defense. However, having evolved

long ago to engage the parasitic predecessors of contemporary

synanthropic mites, the IgE response is now largely

anachronistic. As an example, Dermatophagoides, a genera of

contemporary dust mites whose diet is exceptionally diverse and

includes bacteria and fungi (120, 121), is a member of the

family, Pyroglyphidae (122). Pyroglyphidae descended from

Psoroptidia, a parvorder of acarians that parasitizes birds and

mammals (123). Pyroglyphidae followed an exceedingly unusual

evolutionary pathway, having evolved from parasites to free-

living scavengers (124).

Because: (1) allergenicity depends upon the dietary choices of

parasitizing acarians, and (2) the ancestors of synanthropic

acarians that now cause allergy were carnivorous, our

mammalian ancestors might have been at risk for IgE-mediated
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red meat allergy had they not themselves expressed galactose-α-

1,3-galactose (α-gal) (125). It was only after catarrhine primates

stopped expressing α-gal that the possibility of allergy to the

disaccharide could exist. Then, only after parasitic mites became

polyphagous did allergies beyond red meat become possible. In

short, allergies suffered by humans today are consequences of

modern-day hygiene and modern-day diversification of the diets

of domestic Pyroglyphidae.

The Acari Hypothesis is yet unproven. It assumes a role for

FRePs in the development of mammalian Th2 immunity. Further,

it attributes to mammals the ability to utilize acarian FRePs to

direct the IgE arm of the Th2 response. Extensive testing is

required to determine whether either of these is valid. If both are

valid, however, then elucidation of how IgE is elicited yields

information relevant to more than just allergy. Perhaps most

importantly, it facilitates the identification of all manner of

molecules and mechanisms used by lifeforms in defense against

acarians. Although this report focuses on endogenous defensive

molecules of plants and animals, the defenses of plants and

animals likely also include materials expressed by constituents of

their respective microbiomes. As demonstrated by the

pathophysiology of atopic dermatitis, IgE targets an extensive array

of molecules expressed by Malassezia spp., indicating this genus

must be problematic to acarians (126, 127).

Amongst fungal species, Malassezia is unusual in that members of

the genus lack a gene for fatty acid synthase (128). Absent this enzyme,

Malassezia cannot generate fatty acids essential for survival.

Consequently, the fungus has an absolute requirement for exogenous

fatty acids. Human sebum is composed primarily of triglycerides and

free fatty acids (129). Given the nutrient requirements of Malassezia,

it comes as no surprise secretion of sebum onto mammalian

epidermis yields an environment especially conducive to malassezial

growth. Indeed, Malassezia is the dominant eukaryote of the

epidermal microbiome of adult humans (130).

The apparent anti-acarian activity of Malassezia as well as the

eminent suitability of mammalian skin for malassezial growth

makes it likely the relationship between mammals and Malassezia

is one of mutualism, wherein mammals supply Malassezia with

essential lipids and the fungus defends humans from acarians. A

role for sebaceous glands in human anti-acarian defense is

supported by the epidemiology of allergy, the incidence of which

is highest during childhood (131–133) and lowest following

puberty, when sebaceous gland output and Malassezia colonization
Frontiers in Allergy 06
rise precipitously (134–137). The impact of the mutualism of

humans and Malassezia on the epidemiology of allergy is

elaborated in the next installment of this series (ACR, submitted).
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