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Development of systemic and
mucosal immune responses
against gut microbiota in early
life and implications for the onset
of allergies
Anna-Lena Pirker and Thomas Vogl*

Center for Cancer Research, Medical University of Vienna, Vienna, Austria
The early microbial colonization of human mucosal surfaces is essential for the
development of the host immune system. Already during pregnancy, the unborn
child is prepared for the postnatal influx of commensals and pathogens via
maternal antibodies, and after birth this protection is continued with
antibodies in breast milk. During this critical window of time, which extends
from pregnancy to the first year of life, each encounter with a microorganism
can influence children’s immune response and can have a lifelong impact on
their life. For example, there are numerous links between the development of
allergies and an altered gut microbiome. However, the exact mechanisms
behind microbial influences, also extending to how viruses influence host-
microbe interactions, are incompletely understood. In this review, we address
the impact of infants’ first microbial encounters, how the immune system
develops to interact with gut microbiota, and summarize how an altered
immune response could be implied in allergies.
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1 Introduction

The gut microbiome is composed of a diverse community comprising bacteria,

archaea, eukaryotes, and viruses. These microorganisms maintain intricate relationships,

not only among themselves but also with the human host, spanning from symbiotic to

parasitic interactions, thereby exerting a profound influence on the host’s immune

system (1). This crucial interplay between the human immune system and these

microbial communities begins early in life, extending influences into adulthood (2).

The preparation of the immature immune system for exposure to this vast number of

microorganisms already begins in utero. Here, IgG antibodies, which are the only antibody

class able to be transferred via the neonatal Fc receptor (FcRn), cross the placenta to the

umbilical cord, reach systemic circulation in the infant (3). After birth, primarily IgA

antibodies are transferred from the mother to the infant via breastmilk. These

antibodies support the infant in keeping the balance between protection from

pathogens by providing passive immunity and tolerance to non-threating, beneficial

commensals (4). The human gut microbiota in early life is shaped by various factors,

including the mode of delivery, feeding mode (breast milk vs. formula), antibiotics

treatments, maternal health status prior to conception, maternal body mass index and

diet, as well as the geographical region (Figure 1) (5–10). During the first years of life,
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FIGURE 1

Early life factors influencing the composition of the gut microbiome.
The microbial composition is influenced by feeding mode,
medications, maternal-, geographical- and social factors. Host-
microorganism interactions in prenatal and early postnatal life can
have permanent effects on the immune development (5–7, 9, 10).
Created with BioRender.com.
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the composition of the microbiome exhibits the highest levels of

variability and host-microorganism interactions in prenatal and

early postnatal life can have permanent effects on the immune

development. The microbiome composition ultimately stabilizes

into an adult-like configuration around the age of three (9, 11).

The most critical time period therein, is the switch from being

breastfed to the introduction to solid food at approximately six

months of age (12). This developmental period, known as the

“window of opportunity”, in which the microbial diversity is

settling, could be seen as a double-edged sword (13, 14). While it

creates a fertile ground for microbial colonization, it also leaves

infants more vulnerable to external factors that can disrupt the

delicate balance of their microbiota. These external factors

disturbing the microbiota include antibiotics and malnutrition,

which can have long-lasting adverse effects on the function of

the immune system (15, 16). Any dysbiosis could therefore result

in the development of diseases including necrotizing

enterocolitis, inflammatory bowel disease, obesity and allergy

(17–21). Interestingly, also allergic diseases have been associated

with microbial dysbiosis and over the last years, several studies

have suggested an involvement of gut microbiota in the

development of allergies and asthma (22–24). These effects have

been associated with environmental factors, such as mode of

delivery, breastfeeding and early exposure of antibiotics (25–29).

Although our understanding of the exact mechanisms of how

certain microbes provide protection is still limited, recent

research suggests that antibodies play a role in shaping the

microbiome and thus indirectly contribute to the development of
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allergies (22, 30, 31). In this review, we aim to summarize recent

work on the development of the microbiota-immune axis in

early life and its potential involvement in the onset of allergies in

early life.
2 The microbiome in early life

2.1 Development of bacterial communities

The bacterial microbiome composition in early life has a high

microbial diversity and strain heterogeneity, as well as a high

turnover, as only about 11% of bacterial colonizers persist past

the first year of life (32). Research suggests that strains of

microorganisms contributing to the infant microbiome originate

from a variety of maternal sources and include vaginal, dermal,

oral and intestinal communities (9, 33, 34). Those microbial

species are thereby mirroring the mode of delivery, which results

in a noteworthy variance in microbial gut composition post-birth

and has a distinct colonization pattern characterized by a limited

number of species (6, 9, 35, 36). Nevertheless, the influence of

the maternal microbiome decreases within a few days after birth

(37). The microbial composition is declining dramatically within

the first week after birth, followed by a recovery and gradually

increases again over the following months (37). In vaginal

deliveries, Lactobacillus is the predominant species in the infant’s

oral, cutaneous and intestinal environment, accompanied by

Senathia and Prevotella, exhibiting a similar microbiota profile to

the vaginal environment (38, 39). Conversely, the gut

microbiome in neonates delivered by cesarean section (C-section)

is associated with reduced microbial diversity, and mainly

colonization by Staphylococcus, followed by Propionibacterium

and Corynebacterium, resembling the microbial composition of

maternal skin (6, 40). In one study, infants born vaginally shared

72% (135/187) of gut microbes with their mother, whereas those

born by C-section only shared 41% (55/135) (9). Beyond

maternal transfer of microbes, the newborn undergoes a gradual

colonization by environmental microbes while also being

introduced to potential pathogens (41). While the mode of

delivery has a significant impact on the initial seeding of the gut

microbiome, soon the feeding mode rapidly becomes more

influential in shaping its composition. Breastfeeding promotes

colonizing of beneficial microorganisms, but does not seem to

fully compensate the deficiency of Bifidobacteria in infants

delivered through C-section (42, 43). However, generalizing

infants’ microbial compositions remains challenging due to the

high variability across different cohorts, considering the

differences in geographic and cultural settings (Table 1).

2.1.1 Longitudinal development of the gut
microbiota and links to diseases

A longitudinal study by Stewart et al. (36) analyzing the

bacterial gut microbiome of over 900 children from four high

income countries (Germany, Finland, Sweden and the United

States) from age three months to 46 months has shown, that the

developing gut microbiome undergoes three different waves of
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TABLE 1 Metagenomic studies investigating microbiome development in early life.

Publication n Timepoints Duration
of study

Mother/
child

Method Info

Bäckhed
et al. (9)

Dynamics and stabilization
of the human gut
microbiome during the first
year of life, cell host &
microbe (2015)

98 full-term infants +
mothers

Mother: 2 days
after birth; Child:
birth-4 months–12
months

12 months Yes/Yes Shotgun
metagenomic
sequencing

How the gut microbiota
develops during the first year
of life after a normal term
pregnancy

Barker-
Tejeda et al.

Comparative
characterization of the infant
gut microbiome and their
maternal lineage by a multi-
omics approach, nature
communications (2024)

16S S rRNA: Infants (0–12
months old) n = 69,
mothers n = 67,
grandmothers n = 64
Shotgun metagenomics:
40 Infants, 45 Mothers, 43
Grandmothers (n = 128)

Once Once Yes/Yes 16S rRNA/
shotgun
metagenomics

Characterization of the fecal
microbiome and
metabolome of infants, their
mothers, and grandmothers

Bergström
et al. (35)

Establishment of intestinal
microbiota during early life:
a longitudinal, explorative
study of a large cohort of
Danish infants, applied and
environmental microbiology
(2014)

300 full-term infants 9, 18, and 36
months

3 years No/Yes 16S rRNA The formation of gut
microbiota during the first 3
years of life. Goal was to
identify correlations with
dietary habits and
physiological parameters.
Focus on the development of
body weight

Davis-
Richardson
et al.

Bacteroides dorei dominates
gut microbiome prior to
autoimmunity in Finnish
children at high risk for type
1 diabetes, frontiers of
microbiology (2014)

76 full-term infants 4–6 months until
2.2 years of age, in
monthly intervals

2 years No/Yes 16S rRNA Early changes in the
microbiome may be useful
for predicting type 1 diabetes
in genetically susceptible
infants

Garmaeva
et al. (33)

Cransmission and dynamics
of mother-infant gut viruses
during pregnancy and early
life, nature communications
(2024)

32 infants/30 mothers Gestational weeks
12 and 28, at birth,
and months 1, 2, 3,
6, 9 and 12 after
birth

12 M Yes/Yes Shotgun
metagenomic
sequencing

Infant gut virome is dynamic
in the first year of life and is
influenced by feeding mode
and place of delivery

Hoskinson
et al.

Delayed gut microbiota
maturation in the first year
of life is a hallmark of
pediatric allergic disease,
Nature communications
(2023)

1,115 infants After 3 months/1
year

5 years No/Yes Shotgun
metagenomic
sequencing

The maturation of
microbiota is associated with
the infant gut metabolome
and subsequent allergy
development

Liang et al.
(55)

Step-wise assembly of the
neonatal virome modulated
by breastfeeding, Nature
(2020)

20 mother infant pairs After birth (0–4
days), 1 and 4
months

4 months Yes/Yes 16S rRNA Assembly of the viral
community in neonates
takes place in distinct steps

Lou et al.
(32)

Infant gut strain persistence
is associated with maternal
origin, phylogeny, and traits
including surface adhesion
and iron acquisition, Cell
reports medicine (2021)

42 infants + 29 mothers
(23 full-term and 19
preterm infants)

0–4, 8, and 12
months

1 year Yes/Yes Shotgun
metagenomic
sequencing

Approximately 11% of early
microbial colonizers, persist
during the first year of life

Roswall et al. Developmental trajectory of
the healthy human gut
microbiota during the first 5
years of life, cell host
microbe (2021)

471 infants 4 and 12 months
and at 3 and 5 years
of age

5 years Yes/Yes 16S rRNA Gut microbiota mature
along similar trajectories but
at different speeds and gut
microbiota has not yet
reached adult complexity in
5 years old children

Stewart et al.
(36)

Temporal development of
the gut microbiome in early
childhood from the TEDDY
study, nature (2018)

903 infants Months 3 to 46 of
age

3.8 years No/Yes 16S rRNA/
shotgun
metagenomics

Developing gut microbiome
undergoes three distinct
phases of microbiome
progression

Stokholm
et al. (25)

Maturation of the gut
microbiome and risk of
asthma in childhood, Nature
communication (2018)

690 infants 1 week, 1, 3, 6, 12,
18, 24, 30, and 36
months, and yearly
thereafter

<5 years No/Yes 16S rRNA One year old children from
asthmatic mothers with
altered microbiome had
increased risk of asthma at 5
years of age.

(Continued)
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TABLE 1 Continued

Publication n Timepoints Duration
of study

Mother/
child

Method Info

Wernroth
et al. (46)

Development of gut
microbiota during the first 2
years of life, nature scientific
reports (2022)

83 mother infant pairs Birth, 6, 12, 24
months; gestational
week 26–28, and 6
months post-
partum

2 years Yes/Yes 16S rRNA Gut microbiota in infants is
low in diversity with
differences across
individuals with regards to
composition. Perinatal
factors attenuate with age

Yatsunenko
et al. (11)

Human gut microbiome
viewed across age and
geography, nature (2012)

326 individuals aged 0–17
years (83 Malawian, 65
Amerindian and 178
residents of the USA)

Once Once Yes/Yes 16S rRNA Differences in bacterial
compositions and functional
gene repertoires between
infants from different
countries

Zeng et al. A compendium of 32,277
metagenome assembled
genomes and over 80 million
genes from the early-life
human gut microbiome,
nature communications
(2022)

6,122 infants >3 years of life Once No/Yes Shotgun
metagenomic
sequencing

Early-Life Gut Genomes
(ELGG) catalog with 32,277
genomes representing 2,172
species from 6,122 fecal
metagenomes
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development. The first wave is called developmental phase (month

3–14), followed by a transitional phase (month 15–30) and a stable

phase (months 31–46). The birth mode has a significant association

with the gut microbiota composition in the developmental phase,

clearly indicated by the higher levels of Bacteroides spp. in

infants born vaginally (36). Overall, the first gut colonizers are

aerobic and facultative anaerobic bacteria (Enterobacter,

Enterococcus and Escherichia) as well as Firmicutes (Streptococcus

and Staphylococcus). As mentioned before, breastfeeding is the

most significant factor influencing the gut microbiota

composition and is associated with high levels of obligate

anaerobe Actinobacteria such as Bifidobacterium species. In the

developmental phase of the gut microbiome, the infants’ gut is

colonized with primary Bifidobacteria which are responsible for

human milk oligosaccharides (HMOs) catabolism and have genes

involved in plant polysaccharide metabolism (44). These high

levels of Bifidobacteria in this phase of development protect

against allergy (45). Overall, an increased alpha diversity

(describing the diversity of species within an individual), and a

reduced beta diversity (defined as the diversity between different

individuals), can be observed in the growing infant, with the

microbiota becoming more complex over time (9, 11, 46, 47).

Cessation of breastfeeding can be linked to a faster maturation of

the gut microbiome, marked by the phyla of Firmicutes

(Lachnospiraceae and Ruminococcaceae) and Bacteroidetes

(Bacteroidaceae) (11, 36, 44). The introduction to solid food is

marked by an increase in alpha diversity, mainly Actinobacteria,

Bacteroides, Firmicutes, Proteobacteria and Verrucomicrobiota

(36). The transitional phase (months 15–30) is characterized by a

decrease of Proteobacteria and a strong increase in Bacteroidetes

that proceeds to the stable phase (months 31–46), which, as the

name would suggest, is characterized by unchanged alpha

diversity and composition (36). These observations are in line

with other metagenomic studies (9, 32, 46). Overall, the infant

microbiome is subject to constant fluctuations and gradually
Frontiers in Allergy 04
approaches the adult microbiome at around 2–3 years of age

(Figure 2) (48).

The composition of the bacterial gut microbiome in early life

is linked to various diseases and, presumably, the starting point of

immunological imprinting of allergies, highlighted by various

studies with Bifidobacterium spp (22, 30). Isolation of

Bifidobacterium breve and Bifidobacterium longum subsp.

infantis from human feces stimulated T-regulatory (Treg) cell

accumulation and thereby protected against allergy in mice.

Moreover, B. longum subsp. infantis supplementation resulted in

elevated levels of indole-3-lactic acid (ILA), which has the ability

to dampen T-helper 17 (Th17) and T-helper 2 (Th2) cell

responses (49). Furthermore, B. longum subsp. infantis not only

has the ability to increase the number of Tregs, but has also

been shown to have protective effects against asthma by

mitigating the effect antibiotics in early life (45, 49).

Furthermore, within the first year of life, Bifidobacterium breve

colonization is linked to a reduced risk of atopic dermatitis,

whereas Bifidobacterium catenulatum is associated with an

increase (50). Interestingly, several studies observed that having

a furry pet living in the household was associated with a lower

relative abundance of the genus Bifidobacterium (36, 46, 51).

Moreover, an immature microbial composition in the gut has

been linked to an increased risk of asthma at age five, with

lower abundances of the genera Firmicutes families like

Lachnospiraceae and Ruminococcaceae (25, 52).
2.2 The virome in early life

In addition to bacteria, the human gut contains an enormous

number of viruses, including eukaryotic viruses as well as

bacteriophages (viruses infecting bacteria) (18, 19, 33). The

complex interplay between the vast array of intestinal viruses

(termed the “virome”) and the immunological maturation of
frontiersin.org
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FIGURE 2

Predominant bacterial genera in the first year of life. Bacterial composition is subject to constant fluctuations, mostly influenced by delivery- and
feeding mode in the first months of life. It gradually approaches the adult state starting with the introduction to solid food (9, 36, 46). Created
with BioRender.com.
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children during their first years of life is an increasing area of

research (18, 33, 53–57). Despite the overwhelming prevalence of

viral entities, especially when compared to the bacteriome, our

understanding of their role is limited. The maternal virome is

stable in its composition, at least in the time from late pregnancy

and after birth (33, 53). As more and more research focuses on

influences of the intestinal virome in early life development, it

has been observed that virus composition underlies strong

fluctuations depending on various environmental factors such as

age at gestation, older siblings, type of birth, feeding pattern, and

geographical location or being born during summer (33, 58–61).

As soon as the infant is born, the varying impact of different

factors becomes apparent. At birth the delivery mode has the

highest impact on the predominance of the gut virome (infants

born vaginally showed higher diversity compared to infants born

by C-section). After one and three months after birth, the largest

effect was the gestational age at birth (preterm vs. term) (57).

Overall, this first phase of viral colonization is characterized by

the induction of prophages from pioneering bacteria followed by

the colonization of viruses infecting human cells, which is

regulated by breastfeeding (55). Breastfed infants showed lower

numbers of viral operational taxonomic units (vOTUs) based on

bulk metagenomes, compared to partially or exclusively formula-

fed infants. Formula-fed infants also show a higher alpha

diversity in their virome (33, 57). The feeding mode had a

comparable effect size to the delivery method at month three but
Frontiers in Allergy 05
overtakes in the following months in breastfed infants. The

geographical region becomes relevant from month six onward,

with influences manifesting through the introduction of solid

food to the infants’ diet (57). While the transmission of

eukaryotic viruses such as cytomegalovirus, herpes simplex and

rubella virus is known, transmission of bacteriophages from

mothers to their offspring has still rarely been systematically

addressed (62).

Bacteriophages constitute the main source of viruses in the gut

(63). They demonstrate remarkable diversity within the gut milieu,

mirroring the prevailing composition of gut bacteria and being key

players of the modulation of the bacterial gut microbiome (56).

Following birth and extending through the first two years of life,

bacteriophage composition undergoes significant changes and a

rapid expansion linked to the increase of bacterial communities

in the infants gut (54, 57). However, this expansion is followed

by a notable reduction shortly thereafter, resembling an adult like

state by two to three years of age, accompanied by a decrease in

diversity being inversely correlated with the bacterial diversity

(33, 64, 65). While the maternal virome predominantly

comprises bacteriophages and exogenous viruses from the

environment and diet, the neonatal counterpart is composed of a

unique set of bacteriophages (53). Intriguingly, depending on the

study cohort, only 15%–32.3% of this virome diversity is likely to

be maternally derived, for instance during vaginal delivery and

breastfeeding (7, 33, 58, 66). Some distinct bacteriophages, for
frontiersin.org
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example, those that infect Bifidobacteria, can be transmitted from

mother to child (67). Nevertheless, environmental transmission

seems to be the major route in transmission (53). They most

likely originate from maternal skin, infectious exposures as well

as contaminated surfaces (53, 58, 68). Overall, each infant’s

virome exhibits a distinct signature, although monozygotic twins

manifest a higher interspecies similarity compared to unrelated

infants (58, 65, 69).

Recent research showed, that the infant gut virome is

dominated by a rich temperate phage community, which is able

to integrate their genomes into the chromosomes of their

bacterial host. Deficiencies in certain temperate phage families

could increase the risk of asthma development by one year of

age, independent of their bacterial hosts (70, 71). The constant

changes in the composition of the gut virome during early life

significantly shape the gut bacterial microbiome, a factor known

to influence the development of allergies. Despite this potential

link, our understanding of the specific role of the gut virome in

the development of allergies is still limited. However, there are

correlative hints. Leal Rodríguez et al. have reported, that an

exposure to cats, not dogs, in early life was associated with an

asthma virome fingerprint, along with a negative correlation with

being born in summer and having older siblings (61).
3 Pre- and postnatal factors in early life
immune development

3.1 Prenatal factors of immune
development

During pregnancy, rejection of the semi-allogeneic fetus is

avoided by an immune privileged status of the placental

trophoblast, a vascular separation from the mother and various

maternal tolerance mechanisms (72, 73). Thus, the success of

human pregnancy depends on maintaining a subtle balance

between two conflicting aspects of the immune system. The fetus

must acquire the ability to accept both its own and maternal

antigens, while building protective immunity in anticipation of

birth (74, 75).

Therefore, the placenta plays an essential role in the

development of the fetus. The existence of a placental

microbiome still remains a debated topic within the scientific

community and it is currently rather believed that the infant

encounters the first microorganisms during delivery (76–78). In

the womb, the fetus is assumed to live in a largely sterile

environment and is protected from infection by the maternal

immune system (79). Chorionic villi, forming at the end of the

first trimester of pregnancy, create a maternal-fetal interface.

These villous structures, resulting in a hemochorial placenta,

allow maternal blood to directly come into contact with the fetus

via its fetal derived placenta. These structures not only provide

the developing child with nutrients and oxygen, but they also

facilitate the transfer of antibodies from maternal blood flow

across the syncytiotrophoblast layer of the chorion into the inner

layer of cytotrophoblast precursor cells (80, 81). From there,
Frontiers in Allergy 06
antibodies can travel via the FcRn into the fetal capillaries

providing a layer of defense against pathogens (82).

In addition, microbial antigens and metabolites are

transferred across the placenta, and thereby able to prime the

fetal immune system (83, 84). Transferred metabolites are

currently getting attention for their role in atopy protection

(85). They have been demonstrated to affect transcription of the

target gene Foxp3 in the lung, which has been associated with

asthma development (86). The fetal innate immune system is

being prepared for the subsequent influx of microbes that will

later colonize the infants’ intestine and thereby influence the

leukocyte development (87–89).
3.2 Adaptive immune response in early life—
how the mother prepares the unborn child
for a life with microbes

During the final trimester of pregnancy, a significant increase

in maternally transferred IgG levels can be observed (90).

Maternal antibodies, spanning all subclasses of IgG, are then

transported across the placenta to the developing fetus. This

transfer is facilitated by the FcRn ensuring the efficient passage

of antibodies from maternal circulation to the fetus (91–93).

Although the FcRn binds to the CH3 domain of the Fc fragment

of IgG antibodies, previous studies reported a hierarchical

transfer of different IgG subclasses independent of their

specificity in with IgG1 is preferentially transferred across the

placenta (IgG1 > IgG4 > IgG3 > IgG2) (94, 95).

More recent studies suggest a preferential transfer depending

on Fc-glycosylations to the fetus, and thereby the transfer of

more functionally enhanced antibodies (96–99). Thus,

glycosylations could mediate the binding of IgG to certain

placental Fc receptors, including FcγRI, FcγRII, and FcγRIII,

allowing a more efficient transfer (99, 100). One indication of

this can be seen in premature infants, which, despite having an

overall limited number of total maternal IgG, possess similar

anti-viral and neutralizing antibodies mirroring a robust transfer

of broadly reactive and functional relevant antibodies (101). This

finding suggests that the transfer of the most functional

antibodies occurs very early in pregnancy, although the exact

mechanisms of selection are not yet known. However, it appears,

that the placenta preferentially transfers antibodies eliciting

innate immune effector functions activating natural killer cells in

the earliest days of life after birth (98).

Recently, Dolatshahi et al. (82) conducted a longitudinal study

investigating the humoral immune response against vaccine or

pathogen derived antigens in 12 full-term (FT, gestational age

37–40 weeks) and 11 preterm infants (PT, gestational age 24–29

weeks). Among mothers of both groups, they observed significant

heterogeneity in IgG, IgM, and IgA levels, as well as Fc receptor

binding antibodies. IgG subclasses were detectable in cord blood

but declined in the following weeks, consistent with expectations.

Comparing mother-baby dyads, differences in transfer of

antigen-specific antibodies from the mothers to the children

across different gestational ages could be observed. Cord blood of
frontiersin.org
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FT babies showed an enrichment of certain antibody populations,

with enhanced levels of total IgG against norovirus, the tetanus

toxin, Streptococcus pneumoniae, poliovirus, hepatitis A, the

mumps toxin and the allergens Ara h 2 (peanut allergen) and

Bet v 1 (birch pollen allergen). The predominant allergen-specific

antibodies in preterm babies, were specific against Bos d 8

(bovine milk allergen). Notably, one week after birth, the only

significantly enriched antibodies were specific for cow milk in PT

compared to FT, setting a potential link for antibodies as a

surrogate of food allergy (82). Furthermore, these findings

suggest the presence of antigen-specific differences in transfer

rates across the umbilical cord, possibly selected not only by the

Fc but in collaboration with the Fab domain (82, 102, 103).

Although the antibody profile across infants began to normalize

after three months, the antibody profiles of FT and PT infants

still differed. Few but potentially important antibody specificities

were observed in FT vs. PT infants. These were the persistence of

S. pneumoniae-and peanut-specific antibodies, as well as

antibodies against adenovirus, cytomegalovirus and polio. This

observation may suggest an explanation for the enhanced

susceptibility to infections in PT infants. Maternally derived

antibodies decreased to very low levels by three months of age,

with a more pronounced decline in PT infants. However, the

decline in transferred functional antibodies was similar in FT

and PT infants. The FcRn-binding antibodies against the bovine

milk allergen increased slightly in both infant groups by that

time, along with an increase in IgM and IgA1 concentrations

(82). It can thereby be concluded that elevated risks of viral

infections in premature infants cannot be attributed to the lack

of maternal antibodies, but rather to the weaker mucosal barriers

and contact to disease-associated environmental exposures, e.g.,

due to longer stays in the hospitals, especially in intensive care

units (101). Despite an adjustment of the adaptive immune

response comparing PT and FT, very PT (<31 weeks) seem to

have a more elevated risk in asthma (approximately 3.6 times

higher than FT) (104). Overall, any observed differences in the

composition of the microbiome, disappear after six months when

the infant is getting introduced to a more complex diet (9).
3.3 Lactation

3.3.1 Breastmilk
Breastmilk is a vital factor in shaping the composition of

the gut microbiota and thereby influencing the development

of the immune system in infants (36, 105). Milk produced

during the first days after infant birth is called colostrum and is

characterized by its notably higher protein content and reduced

levels of carbohydrates and fat compared to more mature milk,

indicating a primary immunological role rather than a nutritional

one. After four to five days, the content ratios start to change, by

lower concentrations of immunoglobulins and proteins, however,

the overall composition remains similar. Human milk is

characterized by the presence of essential components altering

cellular differentiation and gene expression such as lactoferrin,

and short-chain fatty acids, thereby directly influencing immune
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cells to a more tolerogenic-like response via transforming growth

factor β (TGF-ß) and interleukin 10 (IL-10) (106, 107).

Moreover, breastmilk contains leukocytes and vital

immunoglobulins, including IgA and IgM, as well as IgG. Soluble

IgA (sIgA) stands as the predominant immunoglobulin in

human milk, constituting over 90% of the total amount. It is

followed by IgM and IgG, whose concentrations increase in more

mature milk (108–111). As reviewed by Rio-Aige et al. (111),

concentrations of sIgA are in a wide range from around 7.5 g/L

in colostrum and 1.6–2 g/L in more mature milk. It is generated

by plasma cells that migrate from the mesenteric lymph nodes to

the mammary glands during the later stages of pregnancy and

throughout the lactation period. Common in all mucosal

secretions, it has the ability to neutralize pathogens before they

come in contact with epithelial cells, thus preventing

inflammation and damage to tissues (112). IgA antibodies have

been shown to anchor beneficial bacteria in the mucus layer of

the intestine, thereby promoting the colonization of the child’s

gut with a diverse set of microbiota (113).

Nonetheless, human breastmilk is highly personalized as its

composition varies highly between mothers. The microbial

composition of breastmilk is reflected by differences dependent

on the mode of breast milk feeding, nursing directly from the

breast vs. using pumps or by bottle-feeding (114). The precise

origins of milk microbiota are currently subject to debate,

although evidence suggests that the entero-mammary pathway or

retrograde translocation may serve as significant routes for

microbial colonization (115).

The HMOs found in breast milk not only serve as an optimal

source for bacteria, but also have other important functions. Some

HMOs provide support in maintaining structure and function of

mucosal gut tissues, as well as, together with sIgA, preventing

necrotizing enterocolitis (NEC), an acute inflammatory bowel

necrosis, affecting the colon in neonates, especially in PT

children (116, 117). Bifidobacteria, the most extensively studied

among HMO-fermenters, are closely linked to breastfeeding.

These microorganisms have the unique capability to convert

aromatic amino acids like tryptophan, tyrosine, and

phenylalanine into their respective lactic acid derivatives using

aromatic lactate dehydrogenase (ALDH). Indoleacetic acid

derived from tryptophan has been demonstrated to activate the

aryl hydrocarbon receptor (AhR), which plays a pivotal role in

regulating intestinal homeostasis and immune responses. In

addition, it drives the upregulation of immunoregulatory

molecules in CD4+ T-cells, which reduces the differentiation of

Th2 and Th17 cells (45, 118). Moreover, depletion of

Bifidobacteria was shown to be a marker of systemic and

intestinal inflammation and increased the risk of developing

autoimmune diseases and atopic wheeze (45, 119, 120).

3.3.2 The introduction of solid food and the
weaning reaction

The first major immune response to colonizing microbiota

after birth begins at the time of weaning and the introduction of

solid food (121). It is resulting in a notable augmentation in both

the quantity and diversity of bacterial taxa in the gastrointestinal
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tract. Notably, murine studies have demonstrated that throughout

the weaning period, when levels of the epidermal growth factor

(EGF) in breastmilk start to decline, goblet cells exhibit an

enhanced capacity for the translocation of antigens from the

intestinal lumen into the lamina propria (122). In response to

this influx of luminal antigens, the neonatal immune system

orchestrates a robust production of cytokines and T-cells lean

towards an immunoregulatory phenotype, thereby helping to

establish long-term tolerance to commensal microorganisms

(121, 122). Increased food diversity is negatively correlated with

the development of asthma and food allergy up to year six.

Furthermore, increased isotype switching to IgE and a reduced

expression of Foxp3, which is associated with Treg expression

and moreover associated with a low food diversity score (123). In

addition, certain dietary vitamins appear to be of great

importance in the prevention of pathological imprinting in early

life. Dietary vitamin A-derived retinoic acid holds a protective

effect by inducing RORγt+ Tregs during the weaning response, as

well as riboflavin metabolites during the neonatal period by

generating mucosal-associated invariant T (MAIT) cells (121,

124). This immunological response can be modulated through

temporary antibiotic intervention or excessive caloric intake, as

has been shown in mice. These disturbances lead to a higher

susceptibility to inflammatory pathology characterized by high

release of cytokines (121, 125).
4 Postnatal immunity

In the waves of fetal hematopoiesis, from the yolk sac

(126, 127) (in humans at four weeks, in mice at embryonic day

seven to nine) to the fetal liver (127, 128) (in humans at six

weeks, in mice at embryonic day twelve) and to the bone

marrow (128) (in humans at 10 weeks, in mice at embryonic

day 7–15), specific immune cells develop that are important for

early life tolerance against microbiota. Neonatal B and T-cells

show more innate-like functions, as they have the ability to

respond to antigens more quickly than the adult version.

Unconventional B- and T- cell subsets have been shown to be

particularly responsive by early life microbial exposure and

metabolites, whereas the exposure to pathogens in early life can

have a strong influences on the development and the

functionality of the immune system (129).
4.1 Immune interactions by gut microbiota,
infectious diseases and metabolic effects

Once the infant is getting colonized with microbiota, the

adaptive and innate immune system must adjust to tolerate this

intricate interaction. In order to recognize bacteria, the innate

immune system uses various receptors, including pattern

recognition receptors (PRR) like Toll like receptors (TLRs) and

nucleotide-binding oligomerization domain/caspase recruitment

domain (NOD/CARD) isoforms. These receptors are expressed

by surface enterocytes and dendritic cells and are crucial for
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bacteria- host communication (130). Thus, PRRs can detect

conserved microbe-associated molecular patterns (MAMPs), such

as components of the bacterial cell wall, like lipopolysaccharides

(LPS), peptidoglycan and flagellin. By binding TLRs, the

microbiota can suppress inflammatory responses and promote

immunological tolerance (131, 132). This sensor function of

TLR’s as well as downstream signaling molecules are fully

developed in newborns (133). Following initial exposure to LPS

shortly after birth, intestinal epithelial cells exhibit a reduced

response to subsequent TLR stimulation, thereby favoring

microbial colonization and maintaining host-microbe

homeostasis (134). Following stimulation by TLRs, a spectrum of

cytokines is synthesized that regulate both the adaptive and

innate immune systems during ontogeny (135). In PT infants,

the predominant cytokine profile is biased toward the production

of anti-inflammatory mediators, particularly IL-10. In contrast,

the predominant cytokine in term infants tends to promote T-

helper 17 (Th17) cells, characterized by elevated levels of

interleukin-6 (IL-6) and interleukin-23 (IL-23) (136–138). IL-

12p70 is one of the final cytokines to reach adult levels following

TLR stimulation as it is promoting the development of Th1 cell

immune responses (138).

Regarding adaptive immunity, a reduced diversity in the gut

microbiota has been linked to the development of allergy

(139, 140). This reduction can be provoked by treatments with

antibiotics, but the exact mechanisms are not yet known

(15, 141). One possibility could be that microbes induce the T-

helper 1 (Th1) pathway as well as Tregs, thereby counteracting

the Th2 cell responses associated with allergy (142, 143). For

example, endotoxin, produced by gut bacteria in early life is

linked with Th1 maturation and prevents from Th2-mediated

responses in a mouse model of asthma (31).

Exposure to pathogens in early life can have a great influence

on the development and the functionality of the immune system.

Certain infections can lead to life-long pathologies affecting all

organs and influence the onset of various diseases (144). For

instance, early life infection with Listeria monocytogenes can

cause long term-organ specific alterations in both the innate and

adaptive immune system (145). Similarly, some infections by

enteroviruses contribute to the onset of autoimmune diseases,

such as diabetes (146–148), while others, like Respiratory

syncytial virus (RSV) (149, 150), Streptococcus pneumoniae (151)

and Rhinovirus (152, 153) show a strong association with

increased allergic airway diseases in adulthood.

In addition to the immune system, also metabolites play an

important role in early life microbiota-host interaction. Alongside

to the aforementioned HMOs (see previous section “Breastmilk”),

SCFAs (short chain fatty acids) produced by gut microbiota

(including acetate, propionate and butyrate), are key metabolites

linked to gut colonization and immune maturation. SCFAs are

produced by anaerobic bacteria that ferment complex

carbohydrates originating from diet and colonic mucus (154).

Reduced levels of SCFA-producing bacteria (such as

Ruminococcus bromii and Faecalibacterium prausnitzii) have

been shown to be associated with an increased risk of allergic

diseases in infants, as they promote anti-inflammatory and
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tolerogenic immune responses (20, 155). Additionally, they are

involved in Treg differentiation, as demonstrated in both murine

(156–158) and human cells (159).
4.2 Environmental influences and the
hygiene hypothesis

Several epidemiological studies have demonstrated a link

between growing up in specific agricultural environments and

being protected from allergies in childhood. This protective effect

has been attributed to respiratory exposure to certain

environmental microbes (160–163). The hygiene hypothesis, first

postulated by Strachan (164) more than 30 years ago, gives an

explanation for this connection. According to this hypothesis, a

decreased frequency of infections directly contributes to the

increase in allergic and autoimmune diseases (165). Repeated low

grade acute immune responses triggered by infectious and even

harmless microbes in early life are associated with lower

prevalence of chronic inflammatory disorders in adulthood (160,

166). Prenatal exposure to household pets, especially dogs, has

been shown to lower the risk for asthma and atopic dermatitis

until 2 years of age (167). As it was shown by Panzer et al.

(168), prenatal, as well as early life dog exposure is associated

with an altered gut microbiome during infancy, supporting a

potential link between dog-keeping and a decreased allergy risk.

Several farm derived bacteria have been reported to contribute

to the protection against asthma, including Lactococcus lactis (169),

Staphylococcus sciuri (170), Bacillus licheniformis (171) or

Acinetobacter lwoffii (172–174). Acinetobacter lwoffii has been

suggested to induce pro-inflammatory responses in airways by

increasing IL-6 (172). Epigenetic modifications in CD4+ T cells

then result in IL-10 induction. The combined activity of IL-6 and

IL-10 influences the gastrointestinal microbiome, with specific

taxa being significantly associated with either disease activity or

protection (172).

Furthermore, certain biochemical modifications of the genetic

information carrying chromatin, called epigenetic modifications,

have been associated with the increase of allergic diseases. They

are not changing the nucleotide sequence of the genome, but are

best known for changing the accessibility of genes, thereby

regulate the gene expression (14, 175). Those modifications can

be induced by several extrinsic factors interacting with the

genetic background (14). In particular, dietary components in

breast milk and bovine milk, exposure to microbial components,

house dust, as well as the production of SCFA by gut microbiota

are associated with several epigenetic modifications in the gene

expression (153, 176). Moreover, maternal exposures during

pregnancy have been shown to influence the immune

development in utero by epigenetic mechanisms and thereby

affecting the onset of allergy (177–179). The differentiation of Th

cell populations is strictly controlled by epigenetic mechanisms,

which control the differentiation into the with allergy associated

Th cell populations (14, 180). Allergy is specifically associated

with changes in DNA methylation patterns in the Th2, Th1,

Th17 and Treg subsets (180).
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In the next chapters, we highlight lymphoid immune cells

which contribute to an establishment of mucosal immune-

microbiota homeostasis such as B-1 cells, RORγt+ Tregs, MAIT

cells and invariant natural killer T (iNKT) cells (181).
4.3 B-cells in early life

Mature fetal B-cells develop in the fetal liver from post

conception week nine and later in the bone marrow (127, 182).

These B-cells achieve their repertoire in early stages, which is

defined by somatic recombination of immunoglobulin genes and

Ig heavy chain class-switching, although the formation of

germinal centers and the accompanied somatic hypermutation

starts by antigen exposure after birth (183–185). In early

gestation, innate-like B-1 cells prevail, being the most abundant

B-cell population in the peritoneal and pleural cavities. B-1 cells

are thought to recognize surface epitopes of common pathogens

and self-antigens and most importantly, are thought to represent

the only B-cells in adult repertoires shaped by early life antigen

exposures (186–189). Furthermore, B-1 cells have an pre-

activated phenotype that is also conserved under germ free

conditions, making them prepared for antibody secretion (190).

B-1 cells can spontaneously differentiate into plasma cells and

are believed to be the major source of secreted IgM in

unchallenged mice (189). New et al. (186) showed, that neonatal

immunization with group A Streptococcus recruits unique B-1

memory cells, which cannot be found when mice were

immunized in adulthood. This result was confirmed by Vergani

et al. (190), who showed that mice orally infected with a murine

rotavirus as five-day-old-neonates- in contrast to those infected

as adults- exclusively generated IgA plasma cells originating from

early life origin (ELO)-B-cells nine weeks after infection. These

plasma cells arose from the same hematopoietic progenitor cells

as B-1a cells, suggesting that neonatal exposure to antigens

uniquely primes immune responses later in life and ELO-B-cells

harbor the memory of neonatal antigen exposure in the gut (190).

4.3.1 Mucosal IgA serves as the first line of defense
against invaders

IgA serves as the first immune protection against invading

pathogens and represents the predominant antibody isotype in

mammals at mucosal surfaces, while IgG dominates systemically

in blood. It is secreted across mucosal surfaces and the intestinal

epithelium, especially in the small intestines. Polymeric IgA is

transcytosed through epithelial cells from the basolateral surface

by the polymeric immunoglobulin receptor (pIgR) (191). As

early as 1996, it has been shown that a significant portion of

bacteria found in feces is bound by IgA, showing a continuous

presence of IgA antibodies in response to the persistent resident

microbial population (192). This type of antibody coats and

agglutinates microbiota and antigens coming from components

of the lumen as well as toxins of the intestine to prevent direct

interaction with the host (193, 194). Moreover, it has the ability

to preferentially coat colitogenic bacteria, and thereby prevents

inflammation and maintain intestinal health. Impairment of IgA
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secretion is associated with increased susceptibility to various

diseases of the gut, e.g., enterocolitis (195). IgA assumes a crucial

role in the regulation of bacterial gene transcription, ultimately

influencing the composition, invasiveness, and immunometabolic

functions of bacterial communities within the gut (196–198).

Conversely, commensal bacteria have the capacity to stimulate

the production of IgA antibodies (199). These IgA antibodies

play a crucial role in boosting the humoral mucosal immune

defense system. Notably, they are significantly decreased in germ-

free (GF) animal models, which can be reversed by initiation of

microbial colonization (200).

IgA can be produced via two distinct pathways. The first, the T-

cell-dependent pathway, yields high-affinity antibodies that are

predominantly directed against specific protein antigens,

particularly from pathogens. These responses occur in germinal

centers in gut-associated lymphoid tissues, e.g., Peyer’s patches

and mesenteric lymph nodes. The second, termed as the T-cell-

independent pathway, operates primarily through specialized

B-cells in the small intestine. These B-cells in both, organized

lymphoid tissues and non-lymphoid tissues, are utilizing innate

immune receptors, for example TLRs (201–203). The T-cell-

independent pathway generates lower-affinity antibodies that

recognize a wider variety of microbial antigens. IgAs yielded

from both pathways are directed against commensals, but to

different strains and species (204).

Infants initiate the production the of IgA between two and four

weeks of age (205). However, it appears that the T-cell independent

pathway holds greater significance in children until they develop an

adult-like microbiome and establish germinal center-dependent

IgA production (206). Moreover, experiments in mice have

demonstrated that the production of neonatal IgA in pre-

weaning immunocompetent pups is notably increased when they

are fed with milk of immunodeficient mothers. Furthermore,

enrichment of special maternal derived microbiota will induce

early enhanced IgA production in the intestines, as it has been

specifically observed with Limosilactobacillus reuteri (207).

L.reuteri is known for its antimicrobial activity as it produces a

variety of substances against gram-positive and gram-negative

bacteria, fungi and parasites. This finding demonstrates that

certain bacteria have the ability to influence immune responses

against potentially hazardous microbiota in infants by both,

direct and indirect ways (208). Beyond that, IgA has the ability

to interact and thereby neutralize harmless food antigens by

preventing their penetration of the gut epithelium (209). As such,

it plays an important role in creating tolerance, thereby

preventing allergic sensitization (210).
4.4 T-cells

Within the intestinal tract, T-cells play a key role in balancing

the immune responses to commensal microbes by inhibiting

inflammatory responses targeted against them while at the same

time also preventing them to break mucosal barriers. It has been

shown in mouse experiments that intestinal microorganisms are

transported from the intestines to the thymus by CX3CR1+
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dendritic cells, which present microbially-derived antigens to T-

cells and thereby initiate their expansion (211). As fetal T-cells

are hyperresponsive to foreign antigens, it is believed that those

components are priming fetal memory T-cell differentiation

(212, 213). Compared to adult T-cells, neonatal ones seem to be

more sensitive upon antigen exposure, having distinct gene

expression profiles and, being capable of shifting quickly from a

pro-tolerant state to self- and non-self-antigens, while being able to

mount rapid effector function in case of injury or infection (214, 215).

4.4.1 Regulatory T- cells
The timing of antigen exposure is important. In general, fetal

and neonate T-cells tend towards a more tolerogenic phenotype

with more innate-like cytokine production than proinflammatory

responses (212). Fetus-derived CD4+ T-cells preferentially

produce Th2 cytokines when stimulated with low amounts of

antigen (216, 217). Antigenic encounters in the phase before

weaning (the window of opportunity) have the ability to induce

the differentiation of neonatal CD8+ T-cells to RORγt+ Tregs

(218, 219). Upon re-exposure to the same antigen later in life,

the infant is more likely to elicit a more tolerant immune

reactivity (220). T-cell responses to gut commensal bacteria may

be dominated by a relatively small number of microorganisms

and the induction of colonic Tregs depends on various

commensal bacteria with different properties, including

Bacteroides fragilis and the Clostridium clusters IV and XIVa. B.

fragilis has the ability to produce polysaccharide A, thereby

inducing Treg cell development via the TLR 2 (132, 221, 222).

Moreover, early life mouse models have shown that these

particular clostridial species are able to induce Treg accumulation

in the colon following oral inoculation by inducing the release of

TGF-ß and other Treg inducing factors from intestinal epithelial

cells (221, 222). Furthermore, these spore forming bacteria are

able to protect from colitis and elevated systemic IgE levels in

adult mice (221). In humans similar effects can be observed, as

children who lack Tregs in early life develop severe

inflammations of the skin and the intestines following microbial

colonization (223). By the time of weaning, certain dietary

components, such as the vitamin A-derived retinoic acid and

SCFA are linked to gut colonization and subsequent immune

maturation, as they skew Tregs towards expressing RORγt+ and

are associated with the development of asthma in later life

(Figure 3) (121).

4.4.2 Mucosal-associated invariant T (MAIT) cells
and invariant natural killer T (iNKT) cells

The mucosal homeostasis is additionally maintained by the

innate like MAIT cells and iNKT cells, both responding to

glycolipids derived from early life microbial colonization. These

distinct cells bridge the randomly generated T- and B-cell

receptors within the adaptive immune system with the innate

germline-encoded immune receptors (224). Moreover, they

acquire tissue tropism, such as lung tropism, and the ability to

release cytokines as part of their developmental process in the

thymus before exiting the latter and accumulating in the tissue

ahead of the arrival of conventional effector cells (225, 226).
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FIGURE 3

Bacterial composition has long lasting effects on early life immune development. Tregs, T regulatory cells; Th2, T-helper 2 cells; Th 17, T-helper 17 cells;
SCFA, shorth chain fatty acids; TGF-ß, transforming growth factor β; ILA, indole-3-lactic acid (49, 122, 132, 221, 222). Created with BioRender.com.
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iNKT cells are a rare subset of T-cells, having the ability to

recognize self and microbial lipid antigens presented by CD1d

molecules (227). They are important in influencing the outcomes

of infectious and autoimmune diseases, as well as in neoplastic

disorders and have been implicated in several mouse models of

allergic asthma (228–231). In the first weeks of life, they migrate

from the thymus to the colon and lung. Their development and

residency is controlled by embryonic macrophages during a

specific early life window (232, 233). The colonization by

microbiota can prevent this iNKT cell migration (230). iNKT

cells were shown to be the dominant CD4+ T-cell subset in

airways of both, non-allergic and allergic patients with severe

asthma, while not being present in the healthy population (233).

An increased number of iNKT cells have been shown to

being associated with asthma, possibly due to similar functions

as Th2 cells (234).

MAIT cells can recognize small microbial molecules as

riboflavin (vitamin B2 precursor derivates (5-(2-

oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU)) presented

by major histocompatibility complex class 1b (MHC-Ib)
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molecule MR1 (235). As the human body cannot synthesize

vitamin B2, it serves as a marker for “non-self” and has been

implicated in various diseases together with bacterial dysbiosis

(236–238). MAIT cells respond to various strains of bacteria

and yeasts, but not to viruses (239, 240). MHC-Ib molecules

have the capacity to present antigens characterized by specific

amino acid sequences or chemical motifs originating from a

wide range of microbiota. This highlights the potential of MAIT

cells as ideal candidates for regulating communication between

the microbiota and the immune system in early life (241).

MAIT cells are enriched in the mucosal tissues in the intestinal

tract and in the lungs, as well as in the blood and in the

periphery (242–245). Although a number of immature MAIT

cells can be detected in GF mice, those were not able to fully

mature and expand in the periphery. Microbial colonization

(and peripheral B-cells) seem to be required for the maturation

and expansion, but not for the initial selection of MAIT cells

(225, 246). Increased levels of MAIT cells in one-year-old

children were associated with a reduced risk of asthma by year

seven and a potent Th1 immune response (247).
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5 Concluding remarks on the interplay
between the microbiota and allergy

The rising prevalence of allergies has been striking over the last

few decades. Several theories have been proposed to give an

explanation, one of which points to higher rates of caesarean

birth, formula feeding, misuse of antibiotics and general dietary

changes as contributing factors. All these factors can be linked to

a dysbiosis of the gut microbiome (15, 248–250).

The first potential links between allergy and microbiota appear

already during pregnancy, as maternal carriage of Prevotella copri is

associated with a decreased risk of food allergy in infants. The

association is related to maternal diet, which is high in fat and

fiber, the absence of antibiotics and an increased house hold size

(251). Additionally, caesarean birth increases the risk of

developing asthma at the age of six if the microbiota still has a

C-section signature by the age of one year. However, children

whose microbiota showed a non-C-section signature by one year

of age, appeared to be comparable to those who were born

vaginally (252). Furthermore, in the first one to three months

after birth, an absence of certain bacterial taxa can be linked to

an increased risk of atopy and is associated with the absence of

polyunsaturated fatty acids (253, 254).

Antibiotics are one of the most commonly prescribed drugs

given to children in the Western world (255). Even short

administrations can cause microbial dysbiosis in the gut, which,

when administered in early life, may lead to long term

immunological consequences (256, 257). For instance,

Vancomycin administration in early life murine models induces

increased IgE levels, reduced Tregs and an overall increased risk

of developing allergic asthma (258).

Legumes, such as soy, peanuts and sesame, show a significant

effect on the microbiota at 12 months of age, suggesting that

potential allergenic sources may contribute to allergy protective

effects (259, 260). Furthermore, children with IgE mediated food

hypersensitivity have a significant reduced gut microbiota

diversity and richness compared to healthy children. This

dysbiosis is characterized by high abundances of the phylum

Firmicutes and low abundance of Bacteroidetes within a cohort

of children between the age of 18–36 months. Moreover, certain

enrichments of the bacterial families Clostridiaceae,

Ruminococcaceae, Lachnospiraceae, or Erysipelotrichaceae were
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associated with milk, egg white and peanut hypersensitivities in

those children (261). Taken together, there is substantial evidence

that gut microbiota in early life influence the development of the

immune system and dysbiosis may be involved in the onset of

allergies. Future studies, both in human cohorts as well as mouse

models, may shed light on the underlying mechanisms and help

to establish causation.
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