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Immunotherapeutic implications
on targeting the cytokines
produced in rhinovirus-induced
immunoreactions
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2Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province,
China
Rhinovirus is a widespread virus associated with several respiratory diseases,
especially asthma exacerbation. Currently, there are no accurate therapies
for rhinovirus. Encouragingly, it is found that during rhinovirus-induced
immunoreactions the levels of certain cytokines in patients’ serum will alter.
These cytokines may have pivotal pro-inflammatory or anti-inflammatory
effects via their specific mechanisms. Thus far, studies have shown that
inhibitions of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, IL-18, IL-25, and
IL-33 may attenuate rhinovirus-induced immunoreactions, thereby relieving
rhinovirus infection. Furthermore, such therapeutics for rhinovirus infection
can be applied to viruses of other species, with certain practicability.
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Introduction

Rhinovirus (RV), an ubiquitous and widespread respiratory virus, might be

crucial in the occurrence and exacerbation of various chronic respiratory diseases,

including bronchiectasis, chronic obstructive pulmonary disease, especially asthma

exacerbation. Besides, RV is demonstrated as pivotal in wheezing of adults and
Abbreviations

RV, rhinovirus; IL, interleukin; CAP, community-acquired pneumonia; RSV, respiratory syncytial virus;
AECOPD, acute exacerbation of chronic obstructive pulmonary disease; vRNA, virus RNA; RNA-pol,
RNA polymerase; cRNA, complementary RNA; HAECs, human airway epithelial cells; HBECs, human
bronchial epithelial cells; PBECs, primary bronchial epithelial cells; BAL, bronchoalveolar lavage; LDL,
low-density lipoprotein; ICAM-1, intercellular adhesion molecule-1; CDHR3, cadherin-related family
member 3; TLR, toll-like receptor; MYD88, myeloid differentiation primary response 88; TRIF, TIR
domain-containing adapter inducing interferon β; MDA-5, melanoma differentiation-associated gene 5;
RIG-1, retinoic acid-inducible gene 1; MAVS, mitochondrial anti-viral signaling protein; IRF, interferon
regulatory transfer factor; IFN I, interferon type 1; DC, dendritic cells; ILCP, lymphoid cell precursors;
RORa, retinoic acid receptor-related orphan receptor a; TCF-1, T-cell factor 1; Th, helper T cells;
GM-CSF, granulocyte-macrophage colony-stimulating factor; IFV, influenza virus; DUSP, dual-specificity
phosphatases; NMPA, China’s Drug Administration; pDC, plasmacytoid dendritic cells; AHR, airway
hyper-responsiveness; IL-18BP, IL-18 bind protein; 25 (OH)-VitD3, 25 (OH)-Vitamin D3; IFN-β,
interferon β; TGF-β, transforming growth factor β; Tregs, regulatory T cells; FOXP3, forkhead box P3+;
RORγ, retinoic acid-related orphan receptor γ; PD-L1, programmed death ligand-1; IFNAR, IFN-α/β
receivers; JAK, janus kinase; PI3K, phosphatidylinositol-3-kinase; AKT, protein kinase B; TYK2, tyrosine
kinase 2; STAT, signal translator and activator of translation; ISGF, interferon-stimulated gene factor;
OAS, oligoadenylate synthetase; OASL, OAS-like; IL-1RA, IL-1 receptor antagonists; sIL-1RA, secreted
IL-1RA; icIL-1Ra, intracellular IL-1Ra; 1D11, anti-TGF-β.
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children. For instance, children who suffer from RV-induced

wheezing at an early age are more prone to develop

persistent asthma. Also, once asthma is established, RV

infections can constantly be a risk factor for acute wheezing

illnesses (1, 2). RV is roughly divided into three subtypes

(RV-A, B, and C), which have specific receptors, respectively.

Generally speaking, it is identified that RV infection activates

the Th2 inflammatory response while inhibiting the Th1

inflammatory response (3, 4). Such regularity may indicate

that the inhibition of Th2 inflammation can play a role in

curing RV infection.

At the same time, it is notable that there are relatively specific

changes in pro-inflammatory cytokines and anti-inflammatory

cytokines released by immunocytes during RV infection.

Therefore, figuring out the relationship between cytokines and

RV infection might be helpful for the identification of pathogens.

In addition, studies showed that inflammatory response in the

host might be attenuated after blocking several pro-inflammatory

cytokines (5). Overall, viral infection is considered a self-limited

disease. It is reasonable to presume that viral infection can be

ameliorated after inhibitions of pro-inflammatory cytokines

produced in RV-induced immunoreactions.

This article focuses on the alterations of cytokines during RV-

induced immunoreactions and the outcome achieved after

inhibitions of these expressed cytokines, trying to search for

novel therapies for RV infection.
RV-related respiratory diseases

RV, a non-enveloped ssRNA virus, belongs to the family

Picornaviridae, genus Enterovirus, and is considered one of the

most common independent pathogenic factors of various

respiratory diseases.

RV causes respiratory diseases worldwide, and is prevalent all

year round, as evidenced by epidemiological investigations (6).

The detection rates in certain countries are shown as 33.2%,

50.4%, and 26%, respectively (7–9). In a study, the pathogens

in 592 children with community-acquired pneumonia (CAP)

confirmed by radiograph were detected. As a result RV was

found as an independent agent in 99 cases (29.0%) and as one

of the concurrent agents in 73 cases with two or more viruses

infected (40.7%) (10). A small sample study showed that

approximately 90% of children who had wheezing triggered by

RV when they were 3 years old would have asthma when 6

years old (11). It was found that approximately 20% to 40% of

bronchiolitis or acute wheezing in infants were caused by RV

which as a pathogen was second only to respiratory syncytial

virus (RSV), and approximately 60% of acute exacerbation of

chronic obstructive pulmonary disease (AECOPD) was also

induced by RV (12–15).

Given RV’s threat to human health, it is necessary to elucidate

the mechanisms of RV infection and find new therapeutics.
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Mechanisms in RV-induced cytokines
production

The viral life cycle of RV

Picornaviruses are small, nonenveloped, icosahedral RNA

viruses with positive-strand polarity. Even though partial

picornavirus infections remain asymptomatic, numerous

picornaviruses are crucial human and animal pathogens and may

lead to diseases which will affect various organs and systems,

such as respiratory and gastrointestinal tracts. Thus, the

conclusion for the viral life cycle of RV may help understand the

bioactivity of RV more deeply (16, 17).

The process of RV infecting airway epithelium generally

contains specific procedures. RV enters the cytoplasm through

receptor-mediated endocytosis, and virus RNA (vRNA) is

dissociative after viral uncoating. Then the vRNA is transcribed

in vesicles with the action of RNA polymerase (RNA-pol).

Subsequently, complementary RNA (cRNA) is produced and new

vRNA is formed. Ultimately, the new vRNA is translated to form

the viral core structure, assembled with the pre-generated capsid,

and finally budding and release are completed (Figure 1)

(16, 17). Simultaneously, numerous cytokines are released during

the process.
The innate immune mechanism mediated
by the toll-like receptors

When hosts have contact with RV, various cytokines will be

produced via the innate immune mechanism mediated by the

toll-like receptors. In human airway epithelial cells (HAECs),

each of the three types of RV has the distinct receptor: RV-A is

taken up by low-density lipoprotein (LDL) receptors, RV-B and

much of RV-A are received by intercellular adhesion molecule-1

(ICAM-1), and RV-C is combined by cadherin-related family

member 3 (CDHR3) (18, 19). RV enters epithelial cells by

receptor-mediated endocytosis, and the ssRNA of RV is

recognized by the toll-like receptor (TLR) 7 and 8 in the

endosome, which then activates the myeloid differentiation

primary response 88 (MYD88) and TIR domain-containing

adapter inducing interferon β (TRIF) (1, 19, 20). Besides, RV in

the cytoplasm is identified by melanoma differentiation-

associated gene 5 (MDA-5) and retinoic acid-inducible gene 1

(RIG-1), activating the mitochondrial anti-viral signaling protein

(MAVS) signaling pathway (20–22). MYD88, TRIFF, and MAVS

ultimately activate interferon regulatory transfer factor (IRF) 3, 7,

and NF-kB, leading to up-regulate the gene expression of

cytokines such as IL-1 (IL-1α and IL-1β), IL-6, IL-12, IL-18, and

type 1 interferon (INF I) (23–27). The cytokines above

subsequently recruit and activate a series of immunocytes such as

NK cells, dendritic cells (DC), and T/B cells, causing certain

lesions such as airway remodeling (Figure 2) (28–30).
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FIGURE 1

The viral life cycle of RV. By Figdraw.

FIGURE 2

Production of cytokines through the innate immune mechanism mediated by the toll-like receptor. By Figdraw.
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The acquired immune mechanism

On the other hand, acquired immunity is also indispensable in

the secretion of cytokines. Epithelial cells immediately produce
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several alarmins such as IL-25, IL-33, and TSLP when RV

invades HAECs, then recruiting innate lymphoid cell precursors

(ILCP) and leading it to differentiate into ILC2 by up-regulating

GATA3, retinoic acid receptor-related orphan receptor a (RORa),
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and T-cell factor 1 (TCF-1), etc. (31, 32). Subsequently, ILC2

produces Th2 cytokines such as IL-4, IL-5, IL-9, and IL-13. In

addition, DC is also necessary for acquired immunity. As a

professional antigen-presenting cell, DC presents antigen to naive

T cells via the MHC class II molecular pathway. With the action

of IL-4, naive T cells differentiate into helper T cells (Th) such

as Th2, Th9, and Th17, then various cytokines such as IL-9, IL-

17, and IFN are produced. In this process, certain immunocytes

such as mast cells will also secrete IL-5, IL-13, and granulocyte-

macrophage colony-stimulating factor (GM-CSF) (33). Eventually,

sequential cytokines lead to the infiltration of a series of

immunocytes and inflammatory response, which might impair

lung function ultimately (Figure 3) (26, 29, 34).

Taken together, the alterations of cytokines during RV

infection might be traceable. Therefore, searching the relationship

between alterations of cytokines and viral infection might help

identify the pathogens. For instance, RV and influenza virus

(IFV) are common viruses causing similar diseases and

symptoms. The level of IL-5 in patients’ serum during RV

infection was found to be higher than that of patients infected

with IFV. Detecting the level of IL-5 might be utilized to

distinguish between RV and IFV infection (35). In addition, a

study showed that the level of RV-induced IL-6 generally peaked

at 48 h postinfection. As compared with RSV infection, IL-8

increased more rapidly after RV-C infection. Besides, the levels

of RV-induced IL-6 and IL-8 were lower than those induced by

RSV. Another recent study also showed that the type of

immunoreactions depends on RV serotypes. For example, as

compared with RV-16, RV-1B produced higher IFN-β, IFN-λ1/3,

CXCL10, IL-6, IL-8, and IL-18 levels (36). Accordingly, partially
FIGURE 3

Production of cytokines through the acquired immune mechanism. By Figd

Frontiers in Allergy 04
identifying pathogens by comparing the cytokines’ alterations

might be feasible, which can direct empirical clinical work to

an extent (37).
Cytokines produced in RV-induced
immunoreactions

Inhibitions of pro-inflammatory cytokines

Therapies for RV infection through anti-interleukin may be

practicable. For example, IL-1 is a pivotal inflammatory cytokine

leading to neutrophil aggregation, mucus metaplasia, and

inflammatory reactions. In the study of Samuel et al, it was

found that IL-1α and IL-1β were increased in supernatant and

associated with cell death following RV infection (38). It was

found that blocking the IL-1 signaling pathway significantly

reduced the RV-induced cytokines, consistent with the

experimental results of Persson et al. (26). In their research, they

found that the main neutrophil chemotactic protein, CXCL1/KC,

was less induced at asthma exacerbation in IL-1β knockout

mouse models. At the same time, deficiency in IL-1β showed the

tendency towards reduced induction of TSLP and IL-33 gene

levels. These phenomena may be associated with the

amelioration of RV-induced exacerbation of asthma (39–41).

Besides, studies showed that dual-specificity phosphatases

(DUSP) derived from primary bronchial epithelial cells inhibited

IL-1β-mediated inflammatory response, showing the feasibility of

therapies for RV infection targeting IL-1. The idea was also

confirmed in patients with IFV infection (5, 42, 43). Nowadays,
raw.
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there have been several IL-1β-neutralising biologicals such as

anakinra and canakinumab, and their effects in therapies for RV

infection still need further clarification.

IL-4 and IL-13 are generally produced in the inflammatory

reactions with ILC2 as the core (39). Previous research

demonstrated that IL-4 produced by non-T cells was crucial for

the aggregation of Th2 cells (33). Another study showed that IL-

4 and IL-13 produced remarkable dose-dependent inhibition of

RV-induced IFN-β mRNA expression and IFN-β protein release

at 8 h after infection, which may partially explain why IL-4/IL-13

promotes the RV infection (44). Meanwhile, a study found that

the tight junctions of lung epithelium were destroyed, and

immunoreactions against RV were weakened by long-term

exposure to IL-13. What’s worse, lung function can be damaged

(45). Fortunately, targeting IL-4 and IL-13 in therapies for RV

infection is highly likely achievable. For instance, blocking IL-13

might alleviate RV-induced diseases in children (46). And the

hospitalization rate of asthmatics was reduced after

administrating the IL-4 antagonist (dupilumab) and IL-13

antagonist (lebrikizumab or tralokinumab). It is reasonable to

assume that L-4 and IL-13 blockade decreases the Th2 response

so that they relieve RV-related diseases, which may be verified in

the research of David et al. They found that anti-IL-4, anti-IL-13,

and anti-IL-4/13 reduced airway inflammation. Besides, it might

be more significant to administrate with anti-IL-4/13 concurrently.

The mice treated with combined anti-IL-4/13 were more

manifestly protected from arteriolar hypertrophy and fibrosis,

whereas mice treated with anti-IL-4 less suffered from fibrosis and

still had evidence of arteriolar hypertrophy (47). Yet, in the

meanwhile, it was shown that IL-4 and 13 antagonists may

increase the risk of adverse events as compared with patients

utilizing IL-5 and IgE antagonists, needing further study (48).

IL-5 is mainly secreted by Th2 immunocytes, and related to

severe asthma. There is a higher level of IL-5 in asthmatics’

serum after RV infection (23, 49). Currently, several monoclonal

antibodies against IL-5 show positive effects. For instance,

mepolizumab and reslizumab show the ability to inhibit the

binding of IL-5 and IL-5R, while benralizumab directly inhibits

IL-5Rα (50). The medicine above reduces the eosinophils in

patients’ peripheral blood, which might relieve RV-induced

asthma. In November 2021, mepolizumab was licensed by

China’s Drug Administration (NMPA) for utilization to treat

adult eosinophilic granulomatous polyangiitis. Similarly, it is

believable that treatments for RV infection via anti-interleukin

might also have feasibility. In addition, a study showed that after

asthmatics utilized IL-5 antagonists, there were more IFN-α

secreted by plasmacytoid dendritic cells (pDC) in patients’

serum, inspiring that anti-IL-5 can be effective for curing RV-

related diseases such as asthma (51).

Neutrophils-mediated epithelial airway damage and airway

hyper-responsiveness (AHR), induced by RV, might be triggered

by IL-6 and IL-8 (37). IL-6 is produced by several immunocytes

such as macrophages and DC. And it has two types of receptors

(IL-6R): membrane-bound IL-6R and soluble IL-6R, cooperating

with TGF-β to boost the differentiation of Th17 cells (52–54).

Regarding IL-6 antagonists, Tocilizumab has been routinely
Frontiers in Allergy 05
utilized to treat rheumatic immune diseases, showing great

effectiveness. Besides, other available IL-6 inhibitors such as

sirukumab, olokizumab, and siltuximab are limited to utilization

due to their high cost, invasive delivery techniques, and high

immunogenicity. Therefore, novel IL-6 inhibitors are required.

Generally, there are three types of IL-6 inhibitors, namely IL-6

production inhibitors, IL-6 expression inhibitors, and IL-6

signaling pathway inhibitors. Encouragingly, several novel

IL-6 antagonists have been found. For example, phenyl ring

might reduce the level of LPS-induced IL-6, steroids from marine

organisms might inhibit the IL-6 mRNA expression,

epoxyresibufogenin-3-formates might have the pharmacological

effect to antagonize IL-6R, and thiophene derivatives might be

IL-6-induced STAT3 inhibitors (54). However, even though new

IL-6 antagonists emerge endlessly, their clinical application in

RV-related diseases lacks enough research.

IL-11, belongs to the IL-6 family, with pro-inflammatory and

anti-inflammatory effects concurrently (55, 56). During RV

infection, IL-11 is also released (23, 24). IL-11 and α-IL-11R

form a compound with glycoprotein 130, activating the

downstream. signal pathway, and finally exerting biological

effects (57, 58). It is believed that IL-11 is redundant in adults,

and may lead to idiopathic pulmonary fibrosis and asthma (59–

62). In addition, treatments for RV infection targeting IL-11

show possibilities due to the combination between IL-11 and its

receptor is likely to be blocked (61, 63). For instance, a study

showed that recombinant mouse IL-11Rα Fc chimeric protein, an

IL-11 antagonist, inhibited Th17 cell-mediated neuroinflammatory

response (64). However, there is insufficient research on the

relationship between IL-11 and RV infection.

IL-15, containing a series of cytokines, is produced by certain

antigen-presenting cells such as DC, monocytes, and

macrophages during RV infection. The productions of natural

kill cells, CD8+ T cells, and IFN-γ are stimulated after IL-15

binds to its receptor, thus attenuating viral infection (65, 66).

A study showed that IL-15 isoform suppressed the effect of IL-15

in several inflammatory diseases (67). Yet, the compound of

IL-15 and its receptor (sIL-15Rα) had no positive impact on the

lung function of asthmatic mice (68).

Previous research showed that after RV infection, the level of

IL-17 secreted by various immunocytes including mast cells and

macrophages would increase, leading to neutrophil recruitment

and AHR, even damaging lung function (69, 70). Currently, the

monoclonal antibodies against IL-17 such as secukinumab,

lxekizumab, and brodalumab are utilized to cure diseases such as

psoriasis, among which secukinumab has been approved by the

FDA. Additionally, neutralizing IL-13 and IL-17 simultaneously

may positively affect asthmatics from eosinophilia, mucus

hyperplasia, and airway hyperreactivity and abolish the

neutrophilic inflammation, indicating the potential of blocking

IL-13 and IL-17 for therapies for RV infection (47).

IL-18, as an IFN-γ inducible factor related to RV, is produced

by inflammasome, and might enhance epithelial cell differentiation

(25, 71). The Th2 inflammatory and allergic reactions might be

promoted after IL-18 combines with its receptor (IL-18R)

(72, 73). And it was found that IL-18 increased in severe
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asthmatic sputum and serum (74). In addition, the IL-18 axis also

exists in severe asthma as proved by machine learning. Also, an

endogenous antagonist against IL-18, IL-18 binding protein (IL-

18BP), might neutralize IL-18 and IL-18R to inhibit the

biological effects (75). Accordingly, blocking IL-18 to ameliorate

RV infection can be practicable.

Thus far, research shows that HAECs from asthmatics release

IL-25 during RV infection, enhancing Th2 inflammation and

closely related to severe asthma (76, 77). Regarding IL-25

antagonists, LNR125 was confirmed. to relieve viral infection by

up-regulating type I&III interferon genes and down-regulating

type II inflammatory genes such as CCL26, IL1RL1, and IL-25

receptor, verifying that the therapies for RV infection in the basis

of anti-IL-25 might be feasible (78).

Several studies show that IL-33 might have the capability of

increasing the production of Th2 cytokines such as IL-4, IL-5,

and IL-13, and promote RV-induced inflammation (79). For

example, IL-33 boosts the release of IL-5 and IL-13 and the

virus-specific Th2 inflammation via the IL-33/ST2 (IL-33R)

signaling axis in allergic asthmatics (80, 81). Also, IL-33 was

detected in the supernatant of HAECs from RV-infected patients,

while the phenomenon was entirely repressed after blocking IL-

33, indicating that anti-IL-33 might be utilized in treatments for

RV infection (39). The results are consistent with the previous

conclusion concerning anti-IL-33 (itepekimab) (82). Besides, 25

(OH)-Vitamin D3 [25 (OH)-VitD3] has also been proven to

have the effect of antagonizing ST2 (83, 84). In addition, in

asthmatic children with RV infection, soluble ST2 which may

neutralize IL-33 is significantly reduced by low serum levels of 25

(OH)-VitD3. The low level of 25 (OH)-VitD3 might reduce the

production of interferon β (IFN-β) (85). Thus, 25 (OH)-VitD3

can be applied to therapies for RV infection in the future.

Currently, studies show that RV infection might activate

peripheral transforming growth factor β (TGF-β), which might

subsequently recruit neutrophils and monocytes, and induce

Th17 cells and regulatory T cells (Tregs) through downstream.

forkhead box P3+ (FOXP3) and retinoic acid-related orphan
TABLE 1 Pro-inflammatory cytokines.

Cytokines Changes Representative antagonists
IL-1 ↑ DUSP, anakinra, canakinumab

IL-4 ↑ Dupilumab

IL-5 ↑ Mepolizumab, reslizumab, benralizumab

IL-6 ↑ Sirukumab, olokizumab, siltuximab, phenyl ring, epoxyresi

IL-11 ↑ Recombinant mouse IL-11Rα Fc chimeric protein

IL-12 ↑ Ustekinumab

IL-13 ↑ Lebrikizumab, tralokinumab

IL-15 ↑ IL-15 isoform

IL-17 ↑ Secukinumab, lxekizumab, brodalumab

IL-18 ↑ IL-18BP

IL-25 ↑ LNR125

IL-33 ↑ Itepekimab

TGF-β ↑ 1D11

PD-L1 ↓ Pembrolizumab, nivolumab

IL, interleukin; DUSP, dual-specificity phosphatases; IL-18BP, IL-18 bind protein; TGF-β,
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receptor γ (RORγ), ultimately causing airway remodeling and

inflammation. After RV infection, the combination of TGF-β and

its receptor on the cell surfaces increases, promoting viral

replication and the severity of asthma (52). Besides, it was found

that the inflammation was alleviated after the TGF-β pathway

was antagonized (86). Therefore, it might be feasible to block

TGF-β for therapies for RV infection.

The IFN-β/programmed death ligand-1 (PD-L1) axis also

affects asthmatic children with RV infection. A short cohort

study showed that in the control group, the IFN released by

PBMC was related to the production of PD-L1. Yet, the study

also showed that higher IFN-β levels were associated with the

lower level of PD-L1 and better lung function (87). To

summarize, PD-L1 might be a pro-inflammatory cytokine in RV-

related asthmatics. Currently, PD-L1 has been widely utilized in

anti-tumor immunotherapies, but whether it can be utilized in

therapies for RV infection requires further research (Table 1).
Utilizations of anti-inflammatory
cytokines

Several anti-inflammatory cytokines are pivotal in

immunoreactions against RV. It is quite necessary to figure out

their alterations and effects due to their potentials for curing

RV infection.

The level of GM-CSF is affected by diversified factors. For

instance, GM-CSF is produced by epithelial cells, fibroblasts, and

mast cells stimulated by RV (88–90). And the production can be

inhibited by certain cytokines such as IFN-γ, IL-1β, IL-4, and IL-

10 (91–93). GM-CSF activates the downstream, Janus kinase

(JAK) 2, STAT5, and the phosphatidylinositol-3-kinase (PI3K)

pathway after binding to its receptor, then leading to the

recruitment and activation of several inflammatory cells such as

monocyte macrophages and DC (94–96). A study showed that

inhaled sargramostim (yeast-derived recombinant human GM-

CSF) might significantly improve oxygenation in hospitalized
Effects or potentials References
√ (5, 26, 38, 42, 43)

√ (44, 45)

√ (23, 49, 51)

bufogenin-3-formates √ (37, 52, 53)

/ (55, 56, 64)

/ (23–27)

√ (46, 48)

/ (65, 66, 68)

/ (47, 69, 70)

√ (25, 71, 75)

√ (76–78)

√ (39, 79)

√ (52, 86)

/ (87)

transforming growth factor β; 1D11, anti-TGF-β; PD-L1, programmed death ligand-1.
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TABLE 2 Anti-inflammatory cytokines.

Cytokines Changes Effects or potentials References
GM-CSF ↑ √ (88–90, 97, 98)

IFN I ↓ √ (103, 104, 106)

IL-10 ↑ √ (116–118)

IL-1RA ↑ √ (119)

GM-CSF, granular macrophage colony-stimulating factor; IL, interleukin; IL-1RA,

IL-1 receptor antagonists; IFN I, interferon type 1.

Sang et al. 10.3389/falgy.2024.1427762
COVID-19 patients with hypoxic respiratory failure, and

subcutaneous injection of sargramostim might shorten

mechanical ventilation of patients with severe sepsis (97, 98). By

analogy, GM-CSF probably has the potential for treatments for

RV infection.

IFN can also be produced by pDC in RV-induced

immunoreactions (99). It appears that IFN-α and IFN-β couple

to the same receptor, which is different from the receptor for

IFN-λ. Type I IFN (IFN-α and IFN-β) receptors (IFNAR), are

coupled to the JAK1 and the Tyrosine kinase 2 (TYK2). After

Type I IFN binds to IFNAR, JAK1 and TYK2 are activated,

which then phosphorate signal translator and activator of

translation (STAT) 1 and 2. The compound of STAT

homodimers and interferon-stimulated gene factor (ISGF) 3

forms, eventually inducing ISG transcription in the nucleus

(100–102). The process above has the effects against viral

infection. Type I IFN also recruits immunocytes such as NK cells

and DC, exerting immunifaction (103, 104). In addition, Type

I IFN signaling induces the production of the 2′-5′-
oligoadenylate synthetase (OAS) family, which includes OAS1,

OAS2, OAS3 and OAS-like (OASL) proteins. It was identified

that OASL is manifestly induced upon viral infection through the

involvement of the RNA sensor, to promote the anti-viral type

I IFN response (105). In several studies, deficiency of various

IFN has been verified utilizing cultured human bronchial

epithelial cells (HBECs) from asthmatics after RV infection in

vitro, which leads to the deficiency of IFN-β and IFN-λ in

primary bronchial epithelial cells (PBECs) and deficiency of IFNs

(γ, α, β and λ) and IL-15 in bronchoalveolar lavage (BAL) cells

(23). This result is accorded with that of Lin et al, showing the

feasibility of utilizing IFN for alleviating RV infection (106).

IL-10 was identified over two decades ago and the most studied

suppressive molecule of the immune system so far. IL-10, found to

be secreted by Th2 cells, plays a critical role in anti-inflammatory

and autoimmune pathologies by limiting immunoreactions to

pathogens (107). Thus far, several studies show that IL-10 is

likely to be produced by various cells (108, 109). As an essential

anti-inflammatory cytokine family released in RV-induced

immunifaction, it includes IL-9, IL-20, IL-22, IL-24, IL-26,

IL-28A, IL-28B, and IL-29 (110, 111). The IL-10/IL-10R axis

exerts effects through the downstream. mechanism similar to that

of Type I IFN (112–114). The IL-10/IL-10R axis triggers a series

of signaling cascades mediated by the JAK signal transducer and

activator of the transcription (STAT) pathway, especially by

STAT3. signaling through the IL-10/IL-10R axis regulates several

steps of the immune response, from decreasing cytokine gene

expression to inhibiting the antigen-presenting ability of

monocytes via down-regulating the MHC class II molecules

(115). Besides, IL-10 has been found to have the capability of

preventing apoptosis by enhancing the PI3K/Protein Kinase B

(AKT) cascade and promoting the expression of anti-apoptotic

factors as Bcl-2 and Bcl-xl, while weakening that of caspase-3

(109). In the meantime, IL-10 attenuates the toxicity of

pathogens, and reduces the cytokines released by macrophages

and DC, thus producing anti-inflammatory effects (116–118).
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Generally, IL-10 is considered crucial in anti-inflammation.

Its clinical application in treating RV infection is worthy of

further study.

It was found that under the action of several pro-inflammatory

cytokines, HAECs will secrete several IL-1 receptor antagonists

(IL-1RA) such as secreted IL-1RA (sIL-1RA) and intracellular

IL-1Ra (icIL-1Ra). Among them, Levine et al. proposed that

icIL-1Ra type I release from HAEC may modulate IL-1 bioactivity

in the airway microenvironment, weakening inflammation

subsequently (119). The phenomenon indicates whether there are

more endogenous antagonists of pro-inflammatory cytokines in

the host, requiring more exploration (Table 2).
Conclusion

The threat from respiratory viruses is nonnegligible due to their

capacity to cause various diseases. RV, as a common respiratory

virus, is closely related to chronic respiratory diseases, especially

asthma exacerbation. Currently, several experiments show that

during RV-induced immunoreactions the levels of several

cytokines in the hosts’ serum will alter, indicating whether it is

achievable to identify pathogens according to such alterations. In

general, viral infection is known as a self-limited disease, which

may drive us to assume viral infection can be ameliorated after

the virus-induced immunoreactions are inhibited. Fortunately,

researchers find that inflammatory response is inhibited after

blocking several pro-inflammatory cytokines such as IL-1, IL-4,

IL-5, IL-6, IL-25, and IL-33, showing the feasibility of therapies

for RV infection targeting RV-induced cytokines. Several

endogenous cytokines such as IL-10, Type I IFN, and IL-1RA

might inhibit RV-induced inflammatory response, with

practicability in treatments for RV infection.
Future perspective

RV is crucial in respiratory diseases, and also positively

associated with asthma severity. However, therapeutics targeting

RV are deficient, and it is difficult to identify the similar

respiratory pathogens. Searching for novel and accurate methods

of pathogenic diagnosis is necessary, which may guide empirical

therapies in clinical work. In numerous experiments, researchers

have found that the levels of cytokines in patients’ serum after
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RV infection will change. What’s more, these cytokines may be

antagonized or directly utilized to attenuate RV infection. It is

worthy of summarizing such cytokines’ changes and searching

for therapies for RV infection.

Currently, research shows that several antagonists of pro-

inflammatory cytokines have manifest potentials for anti-

inflammation. For example, mepolizumab, the IL-5 antagonist,

has been widely utilized to treat eosinophilic granuloma. In the

future, it might be applied to cure RV-related diseases. Besides,

additional statistics concerning RV-induced cytokine alterations

are required to further clarify the relationship between cytokines

and RV infection.

In general, the pro-inflammatory cytokines mentioned in the

article boost inflammation during RV infection. Yet, the opposite

conclusion was reached after administrating IL-1β inhibitors such

as NLRP3 KO in immature mice, that RV-induced type II

immunoreactions were aggravated (120). It indicated that

whether several cytokines such as IL-1 were indispensable in

establishing immunity in immature individuals, is worthy of

more research.

Even though RV is prevalent widely, its virulence is relatively

weak. While RV induces relatively specific alterations of

cytokines, different viruses may induce similar immune reactions

to an extent. Therefore, it is reasonable to propose that therapies

for RV infection targeting cytokines can also be applied to other

more threatening viruses. For instance, tocilizumab has been

approved to treat COVID-19 by the FDA and NMPA, similarly

verifying the practicability of such therapies for RV infection.
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