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Spatiotemporal proteolytic
susceptibility of allergens:
positive or negative effects on the
allergic sensitization?
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From their expression in their respective allergenic source to their processing by
antigen presenting cells, allergens continuously encounter proteases. The ability
of allergens to resist to proteolysis by digestive enzymes or host-cell/microbial
proteases is considered as an important property that influences their
allergenic potential. However, the relationship between proteolytic stability and
allergenicity is much more complex and depends on various factors, such as
the protein structure dynamics, the exposure level, the route of sensitization,
and their respective protease susceptibility. In this review, we summarize and
discuss the current knowledge on several aspects of allergen proteolytic
stability in different environments including the allergenic sources, routes of
sensitization (skin, respiratory tract, gastrointestinal tract) and endolysosomal
compartment of antigen-presenting cells. Proteolytic stability alone cannot
represent a definitive criterion to allergenicity. The proteolytic susceptibility of
allergens in processed extracts can affect allergy diagnosis and
immunotherapy. Furthermore, the fine tuning of allergen stability during
antigen processing can be exploited for the development of novel
immunotherapeutic strategies.
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Introduction

The key question “what makes an allergen an allergen?” remains, up to now, partially

answered, rendering the distinction between allergenic and non-allergenic proteins

difficult. It is reasonable to think that allergen abundance and stability are important

factors favoring the initiation of the allergic sensitization (1). However, the relationship

between these two properties and allergenicity is far from straightforward. As allergens

are proteins, they are susceptible to meet proteolytic enzymes during their lifetime,

from their expression to their processing, mainly by dendritic cells, for their

presentation to T cells. Consequently, when exposed to endogen or environmental

proteases from the skin, airways, gastrointestinal tract, a certain level of proteolytic

stability of allergens is at least required to ensure their survival in order to maintain

their antigenic properties. Several factors can affect the proteolytic susceptibility of

allergens including environmental pH, structure dynamics, the presence of bound

ligands and post-translational modifications (2–5). In addition, the proteolytic stability

of allergens is also relevant to the diagnosis and treatment of allergy. Indeed, the

presence of proteases in the extracts alters the allergen composition over time, affecting
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the accuracy of skin prick tests, specific IgE assays, oral food

challenges, and immunotherapy. Here, we review and discuss

several aspects of proteolytic stability of allergens, in their natural

environment, during the skin, airway, gastrointestinal exposures

and finally, in the course of their endolysosomal processing by

antigen-presenting cells. The different effects of proteases on

some specific allergens are summarized in Table 1.
Protease susceptibility of allergens in
allergen extracts or recombinant
allergen preparations

Since proteases are ubiquitous and have important

physiological tasks in all living organisms (animals, plants,

microorganisms), any allergenic source contains a large variety of

proteolytic enzymes. Some of them are even classified as protease
TABLE 1 Impacts of proteolytic susceptibility of allergens.

Allergen Proteolysis effect
Natural Bet v 1 in pollen extracts Bet v 1 fragmentation

Bla g 1/Bla g 2, Amb a 1, Der p 1/
Der p 2 in respective allergen
extracts

Degradation upon storage at room temperature
or 37 °C

Recombinant Der p 5 and 13 Proteolysis by trypsin

Der p 23 Cleavage by Der p 1

ProDer p 3, 6, and 9 Proteolytic maturation by Der p 1

ProDer p 1 Autocatalytic maturation under acidic conditions

Der p 1 and 3 Autolysis

Amb a 11 Autocatalytic maturation under acidic conditions

Hev b 6.01 Post-translational cleavages

Vicilin family (Jug r 2, Cor a 11,
Pis v 3 or Ana o 1)

Maturation by asparaginyl endopeptidase

Act d 5 Post-translational cleavages by cysteine protease Act d

Ara h 2, 3 and 6 Post-translational cleavages by endogenous peanut
proteases

Bos d 5 Degradation by pepsin

Bos d 4 Degradation by Pepsin

Bos d 4 and 5 in pasteurized and
dried skim milk

Higher resistance to gastric enzymes

Gal d 1 and 2 Digestion by pepsin

Ara h 1 and 3 Digestion by pepsin

Shrimp tropomyosin Digestable at pH <2.5,
Resistant to pepsin at pH >4

Pru p 3 Gastrointestinal proteolysis
Bile salts amplify the proteolysis

Ara h 8 in roasted peanuts Higher resistance to pepsin treatment

Ara h 1 and Sin a 2 Higher gastric proteolytic resistance by binding
phosphatidyl glycerol acid

Bos d 4 and 5 Higher gastroduodenal proteolytic resistance by
binding phosphatidyl choline

Fold stabilized Bet v 1 mutants Proteolysis by lysosomal proteases reduced

Holo forms of Bet v 1 Change in proteolytic resistance to lysosomal
proteases, cathepsin S or legumain

Nitrated Bet v 1 Unknown

Oxidized Bet v 2 Resistance to cathepsin S degradation increased

Fold stabilized Phl p 6 mutant No change in endolysosomal protease susceptibility
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allergens which can have critical roles in the initiation and

regulation of the allergic inflammation (38). The presence of

allergenic and non-allergenic proteases in allergenic sources can

deeply influence the allergen stability, affecting the longevity of

allergens as intact and functional proteins (39, 40). For instance,

a proteomic profiling of birch pollen extracts revealed the

presence of truncated forms of Bet v 1 (6). Despite the presence

of endogenous and microbial proteases in birch pollen extracts

(40), no investigation so far has been done to measure the

impact of these proteases on the allergenic composition of these

extracts. While the temporal fate of the expressed allergens from

any source remains poorly elucidated, it is reasonable to suggest

that proteolytic activities of non-allergenic proteases or protease

allergens could drastically affect the concentration as well as the

composition of the extracts, leading to issues in standardization

of extracts for the diagnosis and treatment by allergen

immunotherapy. Several reports supported this hypothesis.
Outcome/potential impact References
Impact on IgE assay for the diagnosis of allergic sensitization (6)

Impact on IgE assay for the diagnosis of allergic sensitization (7–9)

Absence of Der p 5 and Der p 13 in HDM allergen extracts
following proteolysis by trypsin-like protease Der p 3

(10, 11)

Intact Der p 23 concentration in HDM allergen extracts affected (12)

Increase in serine protease activity in HDM allergen extracts (13)

Allergenicity enhanced (14, 15)

Allergenicity decreased
Impact on IgE assay for the diagnosis of allergic sensitization

(14)

Allergenicity enhanced (16)

Allergen fragmentation into N-terminal hevein (Hev b 6.02) and
C-terminal Hev b 6.03

(17, 18)

IgE reactivity enhanced (19–21)

1 Allergen fragmentation into an N-terminal domain kissper and
C-terminal domain KiTH

(22)

Maturation of allergen Allergenicity enhanced? (23, 24) (25)

Allergenicity decreased (26)

Allergenicity decreased (27)

Allergenicity enhanced (28)

Allergenicity decreased (29, 30)

Allergenicity decreased (31)

Allergenicity increase
Allergenicity enhanced

(32)

Allergenicity decreased (33)

Allergenicity increased (34)

Proteolytic stability increased by lipid-allergen interaction (35)

Proteolytic stability increased by lipid-allergen interaction (26, 27)

Allergenicity increased (3)

Proteolytic stability dependent on lipid-allergen interaction (4)

MHC Bet v 1-derived peptide presentation increased (36)

Unknown (37)

Shift from Th2 to Th1/Th17 polarization (5)
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Stability studies of allergen extracts showed extensive to complete

deprivations of Bla g 1/Bla g 2, Amb a 1, Der p 1/Der p 2 (from

cockroach, ragweed, house dust mite respectively) when extracts

are stored at room temperature or 37 °C (7–9). The addition of

protease inhibitors extends the shelf life of P. americana

(cockroach) extract, demonstrating that the allergen degradation

was protease dependent (7). It is worth noting that recombinant

forms of HDM allergen Der p 5 and Der p 13 can be completely

digested by trypsin within an hour (10, 11). Consequently, the

trypsin-like activity of Der p 3, an abundant protease in HDM

extracts (41), may potentially affect the concentration of Der p 5,

Der p 13 or other susceptible mite allergens. In addition,

recombinant Der p 23 was also shown to be truncated by Der p

1 but not trypsin, indicating a specific proteolytic event (12). We

also observed that recombinant Der p 7 is cleaved by Der p 1,

whereas recombinant Der p 21 is completely degraded by

Trypsin (unpublished data).
Protease effects on allergen maturation

One of the best examples showing the role of proteases in the

maturation of allergens is the orchestration of Der p 3, Der p 6, Der

p 9 (trypsin-, chymotrypsin-, and collagenolytic-like proteases

respectively) serine protease processing by cysteine protease

HDM allergen Der p 1 (13). Once the autocatalytic maturation

of ProDer p 1 into active Der p 1 occurs under acidic conditions

in the mite midgut, Der p 1 subsequently converts the zymogens

ProDer p 3, ProDer p 6 and ProDer p 9 into active forms in the

hindgut at pH 6. It must be pointed out that the removal of the

prosequence increases the Der p 1 and Der p 3 allergenicity by

exposing IgE binding epitopes (14, 15). However, contrary to Der

p 1, Der p 3 can be degraded by autolysis (14). The cysteine

protease allergen Amb a 11 from ragweed pollen can be

autocatalytically matured in vitro at pH 5 (16). The rubber latex

allergen Hev b 6.01 (prohevein), following post-translational

cleavages, is converted into two allergenic fragments: the

N-terminal hevein (Hev b 6.02) and the C-terminal Hev b 6.03

(17, 18). Vicilin is a family of cysteine-rich seed storage proteins

found in many allergenic food sources such as peanuts, legumes,

fruits, and grains. The vicilin allergens such as Jug r 2, Cor a 11,

Pis v 3 or Ana o 1 are expressed with an N-terminal leader

sequence, which contains a variable number of IgE reactive

vicilin-buried peptides derived from the parent vicilin during the

maturation process mediated by asparaginyl endopeptidase (19–

21). The kiwi fruit allergen Act d 5 is a kiwellin that can be

converted by the cysteine protease Act d 1 (actinidin) into two

IgE binding domains: an N-terminal domain called kissper

(a pore forming peptide) and a larger C-terminal domain called

KiTH (22). The major peanut allergens Ara h 2 and Ara h 6 are

members of the 2S albumin protein family. Both allergens

undergo a proteolytic processing by endogenous peanut proteases

leading to the C-terminal removal of a dipeptide for Ara h 2, the

formation of N- and C-terminal subunits for Ara h 6 (23, 24).

Full-length Ara h 3 protein is cleaved to create acidic and basic

subunits linked by an intermolecular disulfide bridge (25).
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Food allergen stability and
gastroduodenal digestion

Since food allergens reach the gastrointestinal tract during

sensitization, we generally assume that these proteins must be

highly abundant and resistant to proteolytic degradation in order

to initiate the allergic response. Linear IgE binding epitopes are

supposed to play an important role in food allergy as the

probability is high for the loss of conformational epitopes during

the food heating and/or the passage through the gastrointestinal

tract. The food allergen digestion takes place first in the stomach

by pepsin under highly acidic pH. These acidic conditions can

also facilitate the unfolding of allergens. When the food bole

enters the intestine, the proteolytic processing of food allergens is

achieved by the activity of pancreatic secreted trypsin,

chymotrypsin, carboxypeptidase A and B, enteropeptidases

and elastase.

A large body of evidence has undermined the dogma of

digestive stability (42, 43). The correlation between stability to

proteolytic digestion and allergenicity has not been verified: food

allergens and non-allergenic proteins do not necessarily differ in

terms of proteolytic resistance. However, the assessment of

allergenicity remains to be evaluated in in vitro gastric (and

duodenal) digestion assays, which simulate gastrointestinal

digestion (44). The results of these studies are largely dependent

on the allergen/protease molar ratio (level of exposure), pH,

incubation time (timing of exposure), and food processing,

leading to potential misinterpretation. Moreover, food allergens

are not consumed alone but are commonly associated with

protein-food matrices which could influence the digestibility of

the allergens, further affecting the assessment (45). Despite these

issues, such assays continue to be used by official agencies such

as the EFSA (European Food Safety Agency) for the safety

assessment of new food proteins and notwithstanding the lack of

correlation between in vivo human digestion of proteins and

their allergenicity. The situation is even more complex, as

epicutaneous exposure to food allergens has been shown to be

critical for the initiation of allergic sensitisation (46). Gastric and

duodenal digestion assays represent then only one piece of the

puzzle to qualify food proteins as allergens.

The major milk allergen, Bos d 5 (β-lactoglobulin), is a dimeric

lipocalin capable of transporting a wide range of lipid cargos and it

is considered as the most resistant allergen to proteolysis in raw

milk. Actually, whereas Bos d 5 remained stable following a 2 h

treatment with pepsin, a 15 min simulated duodenal digestion

triggers allergen degradation into peptides (26). Whey allergens

Bos d 4 (α-lactalbumin) incubated with pepsin for 15 min is fully

converted into <6 kDa peptides (27). The stability of milk

allergens to gastric digestion was at least dependent on the milk

processing methods. Bos d 4 and Bos d 5 display a reduced

allergenicity with heat treatment at temperatures above 85 °C

whereas caseins are thermostable. Bos d 4 and Bos d 5 in

pasteurized and dried skim milk showed a higher resistance to

gastric enzymes compared to the same proteins found in ultra-

heat-treated milk (28). For egg allergens, pepsin-digested

ovalbumin (OVA; Gal d 2) and ovomucoid (OVM; Gal d 1)
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reportedly had lower IgE-binding activities than the intact proteins

(29, 30). According to the size of the identified peptides (Maximal

Mw: <1.5 kD, 15 amino acids), these data could suggest that

ingested Gal d 1 and Gal d 2 cannot trigger allergenic

sensitization. For IgE-cross linking, to induce mast cell

degranulation, the peptides need to be larger than 3 kDa or a

minimum length of 30 amino acids (47). Peanut allergens Ara h

2 and Ara h 6, two 2S albumin, are quite resistant to gastric

digestion (48). Digestion with pepsin and endocytosis-mediated

transport through intestinal epithelium reduced the capacity of

Ara h 1 and 3, but not of Ara h 2 and 6 to activate mast cells

(31). The digestibility of shrimp tropomyosin is highly pH-

dependent: Tropomyosin can be digested at pH lower than 2.5

whereas this allergen is resistant to pepsin at pH values higher

than 4 (32).
Influence of lipid binding on allergen
stability

It is well established that the allergenicity of proteins displaying

lipid/fatty acid binding capacity results from the adjuvanticity

properties of their lipid cargos (49). Furthermore, these lipid

ligands can reduce the proteolytic sensitivity of these categories of

allergens. This is particularly evident for Bla g 1 (major cockroach

allergen) and Bet v 1 (major birch pollen allergen), where binding

of lipids affected their conformation dynamics, resulting in

differential proteolytic susceptibility to lysosomal proteases (2, 4).

We will further discuss the effect of stability during lysosomal

processing in the next section of this review.

Non-specific Lipid Transport proteins (nsLTPs) are pan-

allergens largely present in plant foods. These allergens which

can bind multiple lipid ligands are particularly resistant to gastric

digestion (50). This suggested that sufficient amount of intact

LTPs could be transported through the intestinal epithelium to

initiate the allergic sensitization (51). Grape or sunflower LTP

showed higher resistance to gastric digestion when the assay was

performed in the presence of phosphatidyl choline (52). Upon

linoleic acid lipid binding, the susceptibility of Pru p 3 (peach

LTP) to duodenal digestion remained unchanged whereas the

wheat LTP digestibility was increased (53). Of note, the

gastrointestinal proteolysis of Pru p 3 was increased in the

presence of bile salts (33), suggesting that the nature of the lipid

ligands influences the allergen stability to proteases.

The peanut allergen Ara h 8, a member of Bet v 1-like family, was

shown to be more resistant to pepsin treatment when peanuts were

roasted (34). This food processing might induce a lipid-allergen

complex improving the allergen stability. We can also speculate that

the association of Soy Allergens (cysteine protease Gly m Bd 30K,

7S Globulin Gly m 5, 11 S globulin Gly m 6) with oil bodies in the

plant might influence their proteolytic susceptibility (54). The

binding of phosphatidyl glycerol acid into the hydrophobic pocket of

peanut Ara h 1 (7S Globulin) and mustard Sin a 2 (11S globulin)

conferred gastric protease resistance (35). Addition of phosphatidyl

choline greatly increased Bos d 4 and Bos d 5 resistance to gastric

and gastroduodenal conditions respectively (26, 27).
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Proteolytic susceptibility of allergens
during antigen processing

Antigen processing and presentation pathways by antigen-

presenting cells (mainly dendritic cells) are essential for the

initiation and regulation of adaptive immune responses. They

involve the uptake and degradation of antigens, and display of

the resulting antigenic peptides by major histocompatibility

complex (MHC) molecules to T cells. The antigen processing

and presentation pathways were extensively reviewed by

Pishesha, et al. (55). As allergens are exogenous antigens, the

captured allergens are compartmentalized into endolysosomes

which gradually undergo acidification. This pH change initiates

the allergen processing by lysosomal proteases, e.g., cathepsin S,

B, L, and legumain (56). The resulting peptides can then be

loaded onto MHC-II and present to CD4+ T-helper cells (55).

Endolysosomal protease susceptibility of allergens drastically

influences epitope presentation and the subsequent T-cell

responses. Studies have shown that an increase in protein

stability or slow proteolytic degradation can have either

enhancement (57–59) or detrimental (60–62) effect on antigen

processing and presentation, thereby affecting the allergenicity of

allergens. In birch pollen, multiple isoforms of the major allergen

Bet v 1 were identified and their sequence identity was higher

than 95%. The most abundant isoform Bet v 1.0101 (Bet v 1a) is

considered as hyperallergenic because birch pollen allergic

patients are predominantly sensitized to this variant (63). Bet v

1.0101 was shown to be more resistant to cathepsin S digestion

than Bet v 1.0102 (Bet v 1d), an isoform displaying reduced IgE

reactivity (64). The difference in protease susceptibility is

explained by a higher exposure of Bet v 1.0102 amide backbone

to solvent, leading to a more extended degradation by cathepsin

S (64, 65). However, it is unclear how the difference in

degradability by lysosomal proteases can affect the derivation of

Bet v 1-specific peptides available for MHC-II presentation. The

importance of structural fold stability in the Bet v 1a

immunogenicity was further investigated using several Bet v 1a

mutants designed from in silico prediction and characterized

experimentally through thermal stability assay and structural

determination by x-ray crystallography. The fold stabilized

mutants had a reduction in proteolytic degradation by lysosomal

proteases in vitro and were more immunogenic in mice (by

inducing higher level of IgG1, IgE and IL-4 secreting

splenocytes) as compared with wildtype Bet v 1a (3).

Bet v 1 displays a hydrophobic cavity that can harbor various

type of pollen-derived hydrophobic cargos such as flavonoids,

phytohormones, and microbe-derived compounds (4, 66). The

presence of different ligand in Bet v 1 resulted in different degree

of proteolytic resistance to lysosomal proteases, cathepsin S or

legumain (4). Most of the ligands have a stabilizing effect to Bet

v 1. In addition, mass spectrometry analysis of the

aforementioned digestion assays also revealed a remarkably

change in the dynamic of peptides repertoire generation. Taken

together, these data evidenced that the binding of ligands

influences Bet v 1 structural stability, thereby changing the

susceptibility to proteases. Surprisingly, a pollen-derived Bet v 1
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ligand, E1 phytoprostane, was found not only to enhance Bet v 1

proteolytic stability to lysosomal proteases but also exerted an

inhibition effect to cathepsin S, leading to a reduction in the

presentation of a known Bet v 1 T-cell epitope (4). Of note, the

binding of lipid cargo to major cockroach allergen Bla g 1

similarly led to a higher resistance to cathepsin S, thus, resulted

in poor T-cell epitope generation (2). Collectively, these studies

revealed that extrinsic factors (ligand binding and/or biological

activity of ligand) play a role in modulating allergen stability

during antigen processing and potentially influence the

allergenicity and immunogenicity of allergens.

Besides, post-translational modifications (PTMs) are

contributing factors of the allergen proteolytic stability during

antigen processing. The antigen processing of a chemically

induced nitrated Bet v 1.0101 (a PTM mimicking the effect of

nitrogen dioxide and ozone on Bet v 1 in polluted environments)

was also found to increase the presentation of Bet v 1-derived

peptides (36). Another birch pollen allergen, Bet v 2 (profilin),

was found to exist in both oxidized (with an intra-disulfide bond)

and reduced form (without disulfide bond). The oxidized form is

more resistant to cathepsin S degradation albeit both forms share

similar IgE reactivity and basophil activation capacity (37).

However, whether the proteolytic resistance of oxidized Bet v 2

leads to higher MHC-II presentation remains to be investigated.

Structural rigidification through point mutations of the grass

pollen allergen Phl p 6, resulted in a shift in immune

polarization from Th2 to Th1/Th17 in mice. Importantly,

stabilization/destabilization did not change the repertoire of

presented peptides both in vivo and in vitro. However, the

presentation of an immunodominant epitope from a destabilized

Phl p 6 mutant was more efficient than the one from highly

stable mutant or wild-type form (5).

Collectively, given that the allergen structural stability during

proteolysis could tune T-cell polarization, these findings pave the

way to design an interesting vaccine strategy to desensitize

allergic patients. Indeed, engineered fold destabilized variants of

Bet v 1 (BM4) (67, 68) and Der p 2 (S47W) (69) were found to

promote immune tolerance in preclinical studies (70).
Perspectives

The spatiotemporal proteolytic stability of an allergen involves a

complex interplay between the allergen’s fold stability and the

proteases present in its environment, i.e., proteases in the allergenic

source and host proteases (Figure 1). It is generally accepted that an

allergen requires stability against proteases to survive the entire

journey to sensitization. Additionally, some allergens require

proteases to assist in their maturation leading to their functionality.

It has been shown that allergens are generally more intrinsically

stable than non-allergens. External factors such as the redox

environment, the availability of lipid ligands, and the presence of

microbial proteases can influence the allergen proteolytic stability,

thereby affecting its allergenicity. Investigating the antigen

processing mediated by antigen-presenting cells provides another
Frontiers in Allergy 05
interesting aspect of proteolytic stability. How efficient is the

allergen processing by lysosomal proteases can lead to changes at

the immunological synapse between the antigen presenting cell and

the T cell. Therefore, knowledges on the proteolytic stability

required to drive the desired T cell polarization (Th2 or Th1/Th17)

could be used for the development of new allergy therapeutics.

Several important questions about the proteolytic stability of

allergens remain unanswered and require further investigations.

Inflamed skin with a damaged barrier integrity is a potential site

for food allergen sensitization. Skin barrier dysfunction is also a

cardinal feature in the development of atopic dermatitis. Healthy

skin harbors commensal bacteria such as Staphylococcus

epidermidis and Corynebacterium species. As skin permeability

increases, opportunistic pathogens such as Staphylococcus aureus

dominate the microbial community and can colonize the skin

(72). The effect of skin proteases, or proteases released by skin

commensal or opportunistic pathogens, on allergens remains

completely unexplored to date. We could speculate that in

healthy skin with an intact barrier, allergens could be degraded

by proteases secreted by keratinocytes or commensal bacteria.

When the disruption of the epithelial barrier integrity is

amplified by Staphylococcus aureus proteases, the rapid transit of

allergens through the skin impairs their degradation.

The intestinal microbiota is rich in lactic acid bacteria, which

express extracellular and membrane-bound proteases to gain

access to amino acids, essential components for their cellular

metabolism. It is well established that milk allergens can be

degraded into polypeptides and amino acids by lactic acid

bacterial proteases during milk fermentation. This food

processing technique considerably reduces the milk allergenicity

(73). Surprisingly, the effects of lactic acid bacterial proteases in

the gut on the food allergens remain unknown and deserve

in-depth investigations.

The airways contain a large variety of secreted (trypsin,

chymotrypsin, elastase) and membrane-bound proteases from the

airway epithelium [type II transmembrane serine proteases-TTSPs

such as TMPRSS2, human airway trypsin-like protease (HAT) or

matriptase] (74, 75). The proteolytic degradation of airborne

allergens by these airway proteases is, to our knowledge, fully

ignored. We cannot exclude that an allergen maturation mechanism

is mediated by membrane-bound proteases, as observed for the

proteolytic activation of SARS-Cov2 spike protein by TMPRSS2,

which represents a key step for the viral entry into cells (76).

Activated mast cells were shown to release large amounts of

tryptase. in vitro assays using physiological tryptase/allergen

molar ratio showed complete degradation of pollen allergens Phl

p 1, Phl p 6, and Bet v 2 (77). Under the same experimental

conditions, pollen allergens Phl p 5 and Bet v 1 were fragmented.

These cleavages/degradations allow the termination of the

allergen-induced degranulation (77). It remains to be determined

whether tryptase can cleave other allergens from other sources.

Moreover, as other proteases are released by immune cells

(elastase, cathepsin G released by neutrophils, granzyme B by

basophils, chymase by mast cells), there is an urgent need for

investigating the sensitivity of allergens to these proteases.
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FIGURE 1

Effects of proteases on the fate of allergens. In their respective allergenic source (e.g., pollen, mite feces, food), allergens, once produced, can remain
intact, are degraded or matured. Such events are mediated by non-allergenic proteases, protease allergens, or microbial proteases present in the
allergenic sources. Upon entering into the sensitization route, intact allergens released from the allergenic sources can be cleaved by
environmental (commensal and pathogenic microbes) or host cell proteases. (Left panel). Interactions between healthy epithelial barrier and
commensal bacteria together with a fine-tuned protease/anti-protease system maintain epithelial integrity. Therefore, the allergens can be
disarmed and fewer allergens/allergenic peptides can cross the epithelium resulting in the absence of sensitization. (Right panel) Conversely,
epithelial barrier dysfunction, alarmins and tissue inflammation can be caused by opportunistic pathogens and result in the entry of allergens and
allergenic peptides. The allergens or allergen-derived proteases can be taken up by antigen-presenting cells (e.g., dendritic cells) and presented to
T helper cells, leading to Th2 polarization thanks to a pro- Th2 cytokine environment. (Bottom panel) Prior to presentation of allergenic T-cell
epitopes, the allergens must be processed by lysosomal proteases from antigen presenting cells. Several factors are known to influence the
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proteolytic processing of allergens by lysosomal proteases. These include the structural fold stability of allergens, the presence of ligands (e.g., small
lipids, metabolites) that bind to allergens or interact with lysosomal proteases. Consequently, these parameters alter the proteolytic processing
dynamics, which then affect the quality and quantity of the peptide repertoire available for MHC-II presentation to T-cells. The influence of
protein fold stability and epitope availability has been reviewed in details by Scheiblhofer et al. (72).
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