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History of pollutant adjuvants in
respiratory allergy
Dennis Shusterman*

Upper Airway Biology Laboratory, Division of Occupational, Environmental and Climate Medicine,
Department of Medicine, University of California, San Francisco, CA, United States
Combinedexposures to allergens and air pollutants emerged as a topic of concern in
scientific circles by the 1980’s, when it became clear that parallel increases in
respiratory allergies and traffic-related air pollution had been occurring during the
20th century. Although historically there has been a tendency to treat exposure-
related symptoms as either allergic or toxicologic in nature, cross-interactions
have since been established between the two modalities. For example, exposure
to selected air pollutants in concert with a given allergen can increase the
likelihood that an individual will become sensitized to that allergen, strongly
suggesting that the pollutant acted as an adjuvant. Although not a review of
underlying mechanisms, the purpose of this mini-review is to highlight the
potential significance of co-exposure to adjuvant chemicals in predicting allergic
sensitization in the respiratory tract. The current discussion emphasizes the upper
airway as a model for respiratory challenge studies, the results of which may be
applicable—not only to allergic rhinitis—but also to conjunctivitis and asthma.
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1 Introduction: allergy vs. irritation

Allergy denotes an acquired (and maladaptive) physical reaction to an otherwise innocuous

foreign substance. It occurs in two phases—sensitization and challenge (i.e., “triggering”). An

acutely triggered response to an allergen to which an individual is already sensitized is

referred to as an allergic reaction, with the terms “allergy” and “allergen” normally being

reserved for [Gell-Coombs] Type I (“immediate”) hypersensitivity. A hallmark of allergic

sensitization is the presence of allergen-specific IgE in tissues, secretions, or in the circulation

(1, 2). Toxicologic irritation (e.g., of the mucous membranes or airways), on the other hand,

refers to the nociceptive and physiologic response to noxious chemicals, regardless of prior

exposure history (3). While some primary sensations (symptoms such as itching) are more

common with allergy than irritation, most secondary (“reflex”) symptoms—including nasal

congestion, rhinorrhea, chest tightness, cough and wheezing—can occur with either

phenomenon alone. When evaluating an individual case (or an aggregate population), the

clinician (or epidemiologist) aiming to attribute symptoms to a specific mechanism may—

however inadvertently—overlook interactive effects (4). In fact, the underlying mechanisms of

allergy and toxicology can—and do—affect one another. Toxicologic potentiation of allergy

is the topic of this brief review.
2 Air pollutants—definitions and categories

The term “air pollutant” refers to a range of potentially deleterious chemical substances

found in outdoor, residential, or work atmospheres due to anthropogenic or natural

emissions. Anthropogenic outdoor sources are conventionally classified as “stationary” (e.g.,
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power plants or smelters), or “mobile” (motor vehicles), with vehicular

emissions being a major concern. “Criteria Air Pollutants” (NOx, SOx,

O3, CO, Pb, and particulate matter) are mandated for regulation as

Ambient Air Quality Standards (AAQS) in the US (https://www.

epa.gov/criteria-air-pollutants), leading to the establishment of

ambient air monitoring networks in the US and elsewhere. Both

ambient and indoor air may also include so-called “Toxic Air

Contaminants” (or “TACs”), as defined in state and local standards

(https://ww2.arb.ca.gov/resources/documents/carb-identified-toxic-

air-contaminants). TACs include potential carcinogens,

reproductive, or organ system toxicants. Indoor atmospheres

can be influenced by both outdoor air and indoor sources

[e.g., combustion appliances or (formaldehyde-containing)

building materials]. Workplace air may contain any or all of the

above substances, plus a wide range of industrial chemicals

which may or may not have applicable workplace airborne

exposure standards (see: https://www.osha.gov/annotated-pels

and https://series.publisso.de/pgseries/overview/mak). Combustion

processes (e.g., tobacco or cannabis smoking and various types of

fires) can produce complex chemical mixtures. Despite this

multiplicity of potential chemical exposures, data regarding

interaction with allergens– which we summarize here—are

available for only a small subset of chemicals.
FIGURE 1

Potential mechanisms by which air pollutants may affect the response to ai
with allergen particles, alter allergen penetration through the mucos
immunoglobulin E (IgE), and/or carry out downstream effects of allergic t
PALMs, pollen-associated lipid mediators; DAMPs, damage-associated m
helper cells (5).
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3 Adjuvant effects of air pollutants

In vaccine biology, the term “adjuvant” refers to a chemical

added to a vaccine to increase its immunogenicity (hence, its

effectiveness). Since the mid-1980’s the phenomenon of

adjuvancy has also been recognized in air pollution toxicology

(in this case, chemical potentiation of allergen sensitization)

(Figure 1). Air contaminants containing polycyclic aromatic

hydrocarbons (PAHs, products of incomplete combustion of

carbonaceous materials)—initially diesel exhaust particles

(DEP)—were the first to be studied for their apparent adjuvant

activity. In fact, the earliest published in vivo studies (in laboratory

animals) came from Japan, where rapid industrialization and the

proliferation of diesel-powered vehicles in the mid-20th century

coincided with a significant uptick in observed respiratory allergies

to aeroallergens—particularly to Japanese Cedar (6). Subsequent

studies have built on this foundation.
3.1 Diesel exhaust particles

Beginning this area of experimental study, Muranaka and

colleagues examined the effect of diesel exhaust particles (DEP)
rborne allergens. Air pollutants can interact physically and/or chemically
a, interact with immune processes that elaborate allergen-specific
riggering. PM, particulate matter; O3, NOx, ozone and nitrogen oxides;
olecular patterns; PRR, pattern recognition receptors; Th2, type 2 T
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on immunologic sensitization to an allergen in female BDF1 mice.

Using both ovalbumin (OVA) and Japanese Cedar Pollen as

allergens of interest, aluminum hydroxide—Al (OH)3—as the

positive control adjuvant, and intraperitoneal injection (IP) as

the exposure system, the group showed that DEP was effective in

boosting the specific IgE antibody response to allergen (7). The

same group subsequently published a follow-up study showing

an adjuvant effect of DEP on OVA sensitization when the two

were co-presented to mice via the intranasal route (8).

Inspired by the above work, air pollutant adjuvants began to be

examined in vivo using human volunteers by researchers in several

countries. At the University of California (Los Angeles), Diaz-

Sanchez and colleagues initially studied a mixed group of non-

atopics and seasonal allergic rhinitics (studied outside of their

relevant pollen season). They first found that direct application

of DEP alone to the nasal mucosa elicited an increase in total

IgE-secreting cells in nasal lavage (NL) fluid (9). Studying a

similar volunteer group, the investigators later found that nasal

DEP administration alone enhanced pro-inflammatory cytokine

expression in NL fluid (10). The same group subsequently

documented both DEP-induced augmentation of ragweed-specific

IgE after allergen challenge of sensitized individuals (11) and IgE

isotype-switching in vivo (12).

Against this backdrop, a major breakthrough was achieved in

1999 by researchers pairing DEP exposure with exposure to an

antigenic substance to which casual contact is unlikely in the

general population—keyhole limpet hemocyanin or “KLH”—a

substance found in the endolymph of a marine mollusk (13).

Using KLH as the allergen, researchers studied seasonal allergic

rhinitics by applying the substance topically in the nose with and

without DEP pre-treatment (14). Among the 10 subjects exposed

to the allergen alone, none had detectable anti-KLH IgE in NL

fluid post-exposure. Among the subjects treated with both KLH

and DEP, on the other hand, 9 of 15 showed detectable levels of

KLH-specific IgE (14). Following this dramatic finding,

respiratory adjuvant studies gained further momentum.

Investigators in Japan, for example, using cultured human nasal

epithelial cells, documented that DEP alone (unpaired with

allergen) upregulates messenger RNA for histamine receptors, as

well as increasing histamine-induced IL-8 production (15). Back

at the University of California, the Diaz-Sanchez group studied

basophils from allergic rhinitic and control subjects in vitro,

showing that DEPs alone (without allergen) could release IL-4

and histamine from these cells regardless of the allergy status of

their donors (16).

At this point another research thread developed, regarding the

constituents of DEP (itself a complex mixture of ingredients). In

2000, the Diaz-Sanchez group pre-treated dust mite (Der p 1)—

sensitive allergic rhinitics with either DEP or carbon black (pure

carbon particles) and found that DEP—but not carbon black—

augmented their symptoms, lowered their threshold for response,

and increased IL-4 and histamine after allergen triggering (17).

In 2002, researchers at the Pasteur Institute in Paris compared

the adjuvant effect of traffic particulate matter (TPM) with that

of pure carbon core particles, and found that only TPM boosted

levels of birch pollen-specific IgE and eosinophils (18). The
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following year researchers in the Netherlands published a

wide-ranging study in which both mice and rats were sensitized

(to timothy grass and OVA, respectively), and five different

particulate matter sources were used. The mouse / OVA system

had a lower threshold for response and was able the rank the

different PM sources by potency (19). In 2007 group in Germany

incubated basophils from birch pollen-allergic donors in the

presence of two different PAH compounds—benzo[a]pyrene

(BaP) and phenanthrene (Phe)—then stimulated the cells with

birch allergen (rBet v 1). They found that combining either of

these DEP constituents with allergen significantly increased

basophil activation over that of allergen alone (20).
3.2 Second-hand [tobacco] smoke

Coincident with the above work, a parallel line of inquiry

emerged concerning a different product of incomplete

combustion—so-called “second-hand smoke” (“SHS”). Like DEP,

SHS contains PAHs (i.e., known adjuvants). A link between

childhood SHS exposure and persistent wheeze / asthma had

been documented by the late 1980’s, but differentiating between

irritant and adjuvant effects remained ambiguous (21–23). It was

only once biomarkers of both SHS exposure (cotinine) and

allergic sensitization (specific IgE) were asayed from the same

individuals that the likely role of SHS as an adjuvant was

established (24, 25).

In 1997, Seymour and colleagues, from the University of

California (Davis), sensitized mice to OVA by intraperitoneal

injection (with and without pre-exposure to SHS), with

subsequent OVA aerosol exposure. The mice who were pre-

exposed to SHS displayed an augmented biochemical response to

allergen provocation, including higher total IgE and OVA-specific

IgG1 (26). In 2001, SHS was employed experimentally by the

UCLA group to exhibit an OVA-specific IgE adjuvant effect via

airborne exposure—along with OVA—in two strains of mice

(27), a finding replicated in Belgium some 5 years later (28).

2006 would also see the publication of the first human study

involving combined SHS + allergen exposures. Diaz-Sanchez and

colleagues nasally challenged 19 nonsmoking, ragweed-sensitized

allergic rhinitics with either ragweed pollen extract (containing

Amb a 1) or placebo. These challenges occurred immediately

after the subjects had spent 2 h in a chamber with either clean

air (mean particulate concentration 46 μg/m3) or SHS (mean

particulate concentration, 310 μg/m3). Significantly, the combined

SHS-allergen exposure yielded a ∼16-fold greater increase in

ragweed-specific IgE in NL fluid (compared to the clean air-

allergen exposure) when subjects were sampled 4 days later. In

addition, IL-4, IL-5 and IL-13 (all Th2-cytokines) and histamine

were increased after SHS-allergen exposure, and IFN-γ (a Th1

cytokine) was suppressed (29).

In 2008 Samuelsen et al. in Norway, combining subdermal

injection of OVA in Balb/cA mice with selected particles,

compared the IgE-related adjuvant activity of particles from

woodsmoke and road traffic with that of DEP. They found that

woodsmoke and road traffic particles were roughly equipotent,
frontiersin.org
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although still less effective than DEP (30). A 2009 mouse study

conducted at UCLA revealed that ultrafine PM (<0.15 μm) was a

more potent adjuvant than was fine PM (<2.5 μm) (31). More

recently, Castaneda and colleagues (2018) studied the adjuvant

properties of atmospheric fine particulate matter (<2.5 μm)

collected near a major highway in an asthma-prevalent area of

California, finding that pairing house dust mite (HDM)

inoculation with PM in a murine model substantially enhanced

both pulmonary IgE elaboration and inflammation relative to

HDM exposure alone (32). Most recently in Shanghai, a 2023

study characterized pulmonary lymph nodes in mice sensitized

to HDM found that co-exposure to PM2.5 increased both IgE

production and associated cellular inflammation (33).
3.3 Inter-individual variability in the
adjuvant response

As noted above in the discussion of DEP adjuvancy, de novo

sensitization of atopic human subjects to KLH in the presence of

DEP was not a universal outcome, given that 6 of 15 subjects

receiving both allergen and adjuvant failed to show sensitization.

The UCLA group revisited this anomaly initially in 2003 by

comparing 18 ragweed-allergic volunteer subjects’ responses to

either DEP +Amb a 1 or Placebo +Amb a 1 in a randomized,

counter-balanced, replicate provocation study. Examining

[allergen-specific] IgE, IL-4 and IFN-γ in NL fluid, they found

that the net response to allergen challenge was both highly

variable between—and highly reproducible within—subjects.

They concluded that susceptibility to the adjuvant effect of DEP

was and “intrinsic trait” rather than a random phenomenon (34).

The following year the same group followed-up with another

comparison of DEP vs. Placebo pre-treated [ragweed-sensitized]

subjects, adding both histamine as an analyte and an assay for

possible variants in their glutathione-S-transferase enzymes (i.e,

GSTM1, GSTP1, and GSTT1 genotypes). They found that

subjects that were GSTM1 null, as well as those homozygous for

the GSTP1 I105 (wildtype) genotype, displayed a more robust

IgE response (and greater histamine production) than their

genetic counterparts. The authors concluded that the inter-

individual differences previously documented in DEP adjuvant

studies were—in large part—mediated by differences in

enzymatic reduction of “reactive oxygen species,” with the more

effective glutathione-S-transferase genotypes conferring a

protective effect against DEP (35). Similar results were obtained

when SHS was substituted for DEP in an equivalent study (36).

Successful interruption of DEP-mediated adjuvancy via

administration of exogenous antioxidants has also lent credibility

to the “oxidative stress” model of adjuvant action. Whitekus et al.

screened six candidate antioxidants—two botanicals (silibinin and

luteolin), two vitamins (C and E), and two sulfur-donors

(Bucillamine [or BUC] and N-acetylcystine [or NAC])—for their

ability to interrupt DEP-induced adjuvancy when co-administered

with OVA (37). The last two (both sulfur-donors) were highly

efficacious in that role. As an alternative to exogenous

supplementation, induction of phase II metabolic enzymes has
Frontiers in Allergy 04
since been shown to exert an equivalent antioxidant role. For

example, in 2007, Ritz et al. added sulforaphane (a natural

compound derived from cruciferous vegetables) to cultured

bronchial epithelial cells and observed inhibition of DEP-

stimulated production of the proinflammatory cytokines IL-8,

GMCSF, and IL-1β (38). In vivo, this effect was later replicated in

a nutrition study in which broccoli sprout extract was

administered to human subjects in mango juice on a daily basis (39).
3.4 Adjuvant assays of other chemicals

In addition to PAH-containing combustion products (DEP,

SHS and woodsmoke), other commonly encountered chemical

compounds have been assayed with respect to their potential role

as adjuvants. These include formaldehyde (a common indoor air

pollutant), phthalates (found in plastics), the industrial chemicals

styrene, chloroform, and 1,1-dichloroethylene, and the reaction

products of ozone and limonene (an unsaturated terpene used in

some cleaning products).

3.4.1 Formaldehyde
Studies of the potential effect of formaldehyde (CH2O) vapor

on allergic sensitization date back at least to the mid-1990s.

Riedel and colleagues pre-exposed Dunkin-Hartley guinea pigs to

clean air, 0.13 ppm, or 0.25 ppm CH2O vapor on a daily basis

for 5 days, followed by aerosolized OVA after pre-exposure and

2 weeks later. After another week’s time the animals underwent

venipuncture and bronchoprovocation with OVA. In the

0.25 ppm pre-exposed group 10/12 animals (vs. 3/12 in the

control group) exhibited a positive provocation reaction to OVA.

The median OVA-specific IgG1 level was also elevated in the

0.25 ppm group compared to the controls (specific IgE was,

however, not assayed). The 0.13 ppm exposure group showed

intermediate reactivity to OA on pulmonary function and also an

intermediate distribution of IgG1 antibody titers (40).

Two additional studies on formaldehyde were published during

the period 2009–2011 using CH2O exposures comparing two

different Chinese workplace exposure standards (which had

recently been reduced∼6-fold from 2,500 to 400 ppb). Qiao and

colleagues found that CH2O at the higher concentration

increased bronchial reactivity in rats, both alone (a possible

irritant effect) and even more so with OVA sensitization (i.e., as

an adjavant) (41). Similarly, Liu et al. found that co-exposure of

mice to CH2O at the higher standard in concert with OVA

sensitization greatly amplified bronchial reactivity vs. clean air or

CH2O at the lower standard (42).

3.4.2 Phthalates
Similar to DEP, potential exposures to phthalate plasticizers

increased dramatically in the 2nd half of the 20th century, with

increased use of plastics in consumer products coinciding with

the observed increase in the prevalence of airway allergies. As a

result, this class of chemicals was also suspected to be an

adjuvant for allergic sensitization. Since most phthalates have

very limited volatility, the majority of the early phthalate assays
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involved either parenteral administration or gavage. Of these

studies, some did indicate that phthalates could facilitate allergic

sensitization (including elaboration of allergen-specific IgE) (43,

44). In a later set of studies, phthalates were co-administered

with a test allergen (OVA) via the inhalation route. Two such

studies looked at di-ethylhexyl phthalate (DEHP) and its chief

metabolite, mon-ethylhexyl phthalate (MEHP), utilizing OVA as

the allergen. Both phthalates boosted allergen-specific IgG1, but

neither significantly affected allergen-specific IgE levels (45, 46).

3.4.3 Industrial chemicals
Ban and colleagues studied the effect of co-exposure to three

commonly used industrial chemicals:—1,1-dichloroethylene (DCE),

chloroform (CF), and styrene (S)—during OVA sensitization in

mice. The endpoints studied were all biochemical in nature,

including OVA-specific IgE in blood, and cytokine production in
FIGURE 2

Activation (“triggering”) of a sensitized mast cell in the nasal mucosa, a prer
kinetics are delineated, “early” (minutes) and “late” (>4–6 h), with distinct biol
outcomes between otherwise similar studies may result from sampling time
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lung-draining lymph nodes. The authors found that of the three,

only chloroform and styrene co-exposures reliably potentiated the

generation of allergen-specific IgE. Further, of these two, only

styrene produced an expected boost in Th2 cytokine production (47).

3.4.4 Reaction products of ozone and limonene
Hansen et al. compared OVA-specific Ab’s in BALB/cJ mice

exposed to OVA alone (negative control), OVA with Al(OH)3
(positive control), OVA with O3, OVA with limonene (a cyclic

terpene), and OVA with reaction products of O3 + limonene.

Besides the positive control, only the combination of OVA with

reaction products of O3 + limonene boosted allergen-specific IgE

compared with the negative control. Of note, the authors stopped

short of labeling this an “adjuvant effect,” since airway

inflammation was not evident when bronchoalveolar lavage fluid

was obtained from the animals’ lungs ex vivo (48) Figure 2.
equisite for which is the presence of allergen-specific IgE. Two reaction
ogical markers associated with each. Differences in cellular / biochemical
differences (49).
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4 Discussion

Over the last three decades, considerable attention has been

devoted to studying the effects of air pollutants on respiratory

allergies (particularly adjuvant effects). Candidate adjuvants have

mostly been identified based on epidemiologic correlations.

Specifically, in the 20th century an increasing prevalence of

respiratory allergies was observed coincident with increases in:

(1) traffic-related air pollutants (e.g., DEP), (2) exposure to

“second-hand” tobacco smoke, (3) use of formaldehyde-releasing

resins in building materials, and (4) use of phthalates in

consumer products. For the first three examples (DEP, SHS and

CH2O), combined inhalation exposures confirmed adjuvancy. For

the fourth, effective adjuvant doses would require ingestion of

the phthalate in concert with allergen inhalation.

Approaches to studying adjuvant effects have included in vitro

(cell culture) and in vivo (animal and human) studies. The most

impressive of these featured atopic human volunteers who were

successfully sensitized to what at the time was termed a

“neoallergen” (KLH). At the opposite end of the spectrum,

a number of ostensible “adjuvant” studies have dealt with

biochemical endpoints without allergen-specific IgE determination.

These diverse results can be challenging to fit into a single

mechanistic model, and after more than three decades of study,

we are still struggling to put the “puzzle pieces” together.
4.1 Future directions in adjuvant research

In terms of completed studies, some methodologic issues are

readily apparent (albeit not conspicuously highlighted in the

published literature). Foremost among these is the fact that a subset

of authors hold that—in addition to a candidate adjuvant chemical

needing to facilitate formation of allergen-specific IgE—it would also

need to produce elevated biochemical markers of tissue inflammation

post-triggering. Since this criterion is inconsistently applied,

establishing guidelines regarding this requirement would hopefully

reduce the level of ambiguity in interpreting future study findings.

Another potential contemporaneous theme in adjuvant research

would take its inspiration from early work in which the effects of

DEP (vs. pure black carbon particles) were compared, finding that

adjuvancy (increased elaboration of anti-OVA IgE + IgG) was

confined to the former (17). Surprisingly, Granum and colleagues

subsequently demonstrated an adjuvant effect when pairing

allergen exposures with other pure “model” particles (composed of

a variety of materials including polystyrene, amorphous silica,

titanium dioxide, and tetrafluoroethylene or Teflon). Granum also

highlighted the fact that “ROFA” (residual oil fly ash), which is

produced under similar conditions as DEP, only exhibits
Frontiers in Allergy 06
adjuvancy when selected metals (i.e., nickel or vanadium—but not

iron) are adsorbed thereto (50). Implicit in these findings is the

fact that—mechanistically—the physical chemistry of a candidate

adjuvant must be taken into account and reconciled with the

prevailing model emphasizing oxidative stress as a common factor.

Numerous review articles deal with pollutant adjuvants,

although in most cases in a wider context of chemically induced

inflammation (5, 49, 51–55). Research into pollutant adjuvant

effects would benefit from a more stringent definition of the

phenomenon, as well as clearer boundaries with respect to

related—but distinct—studies of xenobiotic-induced inflammation.

Once the term “adjuvant” stands out as a distinct entity with

well-defined borders, further progress will likely follow.
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