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Preclinical evaluation of
alternatives to oral
immunotherapy for food allergies
Brandi T. Johnson-Weaver*

Department of Pathology, Duke University Medical Center, Durham, NC, United States

The increasing food allergy incidence has led to significant interest in developing
therapies for allergic diseases. Oral allergen-specific immunotherapy (OIT) is a
recently FDA-approved therapeutic to treat peanut allergies. OIT utilizes daily
allergen dosing to reduce allergic reactions to peanuts. However, there is
diminished enthusiasm for daily OIT, potentially due to the strict regimen
required to induce desensitization and the risks of severe adverse events. Thus,
there remains a need for safe and effective food allergy treatments that are
well-received by allergic individuals. Preclinical research studies investigate
methods to induce allergen desensitization in animals and support clinical
studies that address the limitations of current food allergy OIT. Because allergic
reactions are triggered by allergen doses above an individual’s activation
threshold, immunotherapy regimens that induce allergen desensitization with
lower allergen doses or without the requirement of daily administrations may
expand the use of food allergy immunotherapy. Administering allergen
immunotherapy by alternative routes is a strategy to induce desensitization
using lower allergen doses than OIT. Several animal models have evaluated oral,
sublingual, epicutaneous, and intranasal immunotherapy routes to treat food
allergies. Each immunotherapy route may require different allergen doses,
formulations, and treatment schedules to induce desensitization. This article will
discuss scientific findings from food allergy immunotherapy animal studies that
utilize various immunotherapy routes to induce allergen desensitization to
support future clinical studies that enhance the safety and efficacy of allergen
immunotherapy to treat food allergies.
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Introduction

Allergen-specific immunotherapy is emerging as a treatment for food allergies, which are

estimated to affect 10% of the American population (1). Preclinical food allergy studies aim

to induce desensitization and sustained unresponsiveness (SU) to allergens by identifying

immunotherapy conditions that dampen immune responses that mediate allergic disease.

This mini-review will discuss findings from animal immunotherapy studies that may be

useful in developing effective immunotherapy regimens to treat human food allergies.

Preclinical immunotherapy studies have generated preliminary support for clinical trials

to evaluate the safety and efficacy of food allergy immunotherapy. This led to peanut oral

immunotherapy (OIT) being approved for human use in the United States and Europe.

Human OIT requires daily peanut dosing of up to 300 mg (2) and effectively desensitizes

79% of patients (3). Clinical allergen-desensitization modifies allergen-specific immune

responses after therapy and increases the allergen dose required to induce an allergic

reaction (4). Despite inducing desensitization, OIT can also cause adverse events (AE)
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during treatment, and SU is only achieved in 13%–50% of

individuals after discontinuing therapy (5, 6). Thus, next-

generation immunotherapy is required to reduce AEs and

enhance SU.

One strategy to enhance OIT safety and efficacy is

administering the immunotherapy formulation by an alternative

route. Clinical studies are evaluating sublingual (SLIT) and

epicutaneous (EPIT) immunotherapy as alternative therapies for

food allergies (7, 8). SLIT and EPIT utilize 4 mg (7) and 250 μg

(8, 9) of peanut, respectively, to induce desensitization, which is

lower than the 300 mg peanut dose consumed during OIT (2).

Lower allergen doses may contribute to the increased safety

profile observed in SLIT and EPIT studies compared to OIT

(10–12). Despite reducing therapy-mediated AEs, SLIT and EPIT

are less effective than OIT for inducing desensitization. 70% of

subjects who complete SLIT can tolerate at least 800 mg of

peanut (7), and 37% of EPIT-treated subjects obtained a

cumulative reactive dose of 3,444 mg (8, 9). In comparison, some

OIT studies report 93%–100% of subjects tolerating greater than

3 g of peanut (4, 13). Varying immunotherapy safety and efficacy

observed when different routes are used to administer peanut

immunotherapy suggests the immunotherapy route is essential

when developing immunotherapy regimens. However, the

contribution of the immunotherapy route to modulating

protective immunity against food allergies is not entirely

understood.

Preclinical models are beneficial to investigate food allergy

immunotherapy because the immune responses that mediate

allergies are similar in humans and mice. Like humans, mice

must also be sensitized to allergens. Allergen-hypersensitive mice

develop similar allergen-specific immune responses as allergic

humans, including allergen-specific serum IgE and IgG1

antibodies and Th2-associated cytokines, including IL-4, IL-5,

and IL-13 (14–17), and respond to an allergic challenge with

enhanced serum mast cell proteases (mmcp), acute hypothermia,

or allergic diarrhea (18–20). Mouse models of food allergy

provides an opportunity to investigate immunotherapy efficacy

without the contribution of genetic diversity and various

environmental exposures present in human populations that may

influence host responses to immunotherapy. Thus, mouse models

are valuable tools to evaluate strategies that modulate allergen-

specific immunity and optimize immunotherapy regimens to

treat food allergies. Several studies utilize food allergy mouse

models to determine the ability of allergen-specific OIT, SLIT,

EPIT, and nasal immunotherapy to reduce allergic disease

severity (15, 21–23) (Table 1). Allergen-specific immunotherapy

administered by various anatomical routes may utilize

immunotherapy formulations that include hypoallergenic

antigens, immune-modulating adjuvants, and specialized delivery

vehicles to induce desensitization (Figure 1). Although several

immunotherapy routes and formulations have been used to

desensitize allergic mice, the experimental details often vary

between studies, which complicates evaluation of experimental

immunotherapy variables, including administration route, on

food allergy outcomes across published studies. Thus,

immunotherapy route comparison studies are required to
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determine if altering the route of allergen-specific

immunotherapy is sufficient to improve the safety and efficacy of

allergen-specific immunotherapy or if modified immunotherapy

formulations are required to increase immunotherapy efficacy.

This review will discuss the experimental details, including

immunotherapy route, schedule, and formulation, reported in

mouse models of allergen-specific immunotherapy, and their

ability to induce allergen-specific immunity that correlate with

immunotherapy efficacy to identify immunological endpoints

that may be used to improve clinical allergen-specific

immunotherapy administered by various anatomical routes.
Preclinical models of food allergy OIT

Oral immunotherapy is the most effective route to induce

desensitization in humans, but AEs are a concern; therefore,

animal models of OIT are investigating strategies to improve OIT

safety. Mouse OIT is often administered by gastric gavage to

deliver the therapy into the stomach. To ensure sufficient

allergen amounts reach the intestinal immunological sites, OIT

usually delivers milligrams of allergens to hypersensitive mice as

frequently as five to seven times per week (22, 26). The duration

of mouse OIT regimens can also range from days to weeks. A

ten-day OIT regimen evaluated the feasibility of rush OIT to

induce allergen-desensitization in ovomucoid (OM)-sensitized

mice (24). Oral delivery of increasing OM doses, ranging from

0.5–5 mg, did not improve allergic disease but enhanced allergen-

sensitization responses, including total IgE, OM-specific IgG1,

and vascular permeability (24). 5 mg of allergen may be

suboptimal to induce desensitization using rush OIT, but

increasing the allergen dose to 16 mg was also ineffective (25). A

ten-day rush OIT may not allow sufficient time to induce

allergen desensitization, and a longer immunotherapy regimen

may be more effective. A three-week peanut OIT regimen that

delivered 15 mg of peanut five times a week reduces peanut-

induced hypothermia after a systemic challenge in peanut-

hypersensitive C3H mice but enhances serum mmcp1 after a

gastric peanut challenge in BALB/c mice (22). The variability in

OIT efficacy observed in BALB/c and C3H mice suggests that

genetic differences may influence host responses to

immunotherapy; however, an ideal OIT regimen would induce

protective immunity in multiple mouse strains. Nonetheless, both

BALB/c and C3H mice displayed modified allergen-specific

serum antibody responses and decreased regulatory T cell (Treg)

numbers in the spleen and mesenteric lymph nodes (MLN) after

therapy, demonstrating that a three-week OIT regimen is

sufficient to induce immune-modulation in both mouse strains

despite only protecting one mouse strain from disease (22).

Extending OIT beyond three weeks may provide additional

immune modulation that improves allergic disease. In contrast to

a three-week OIT regimen that increased peanut-specific IgE

(22), an eight-week OIT regimen observed decreased peanut-

specific IgE (26), which supports human studies that report

initial IgE increases that resolve with longer therapy (40). Short

OIT regimens may be improved by continuous allergen exposure,
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TABLE 1 Preclinical models of food allergy immunotherapy.

Immunotherapy
route

Food allergy
model

Immunotherapy
schedule

Allergen dose Formulation Allergic response
outcome

Ref

Oral immunotherapy
Peanut 5x/week for 3 weeks 15 mg PBS • Decrease hypothermia in

C3H mice
• Increase mmcp1 in BALB/c

mice
• Decrease MLN IL-13 and

IL-5 in BALB/c mice

(22)

Egg (ovomucoid,
OM)

Daily for 10 days 0.5–5 mg Water • Increase vascular
permeability

• Increase serum IgG1 and IgE
• Increase ConA-stimulated

IL-4 and IL-5
• Decrease ConA-stimulated

IL-10 and IFNγ

(24)

Egg white (EW) Daily for 10 days 1–16 mg Saline • Decrease egg white-specific
IFNγ

• Increase OM-specific plasma
IgE

• Increase EW and
OM-specific IgA

(25)

Peanut Daily for 8 weeks 1–5 mg PBS • Decrease serum IgE
• Increase serum IgG2a
• Decrease peanut-specific IL-

5 and IL-13
• Increase peanut-specific IL-10
• Increase Foxp3+ T cells

(26)

Egg ovomucoid
(OM)

Continuous feeding for 4
weeks

1% OM Mouse chow containing 19%
casein + 1% OM

• Reduced allergy symptoms
after an oral challenge

• Reduced vascular
permeability

• Increase plasma OM-specific
IgA

(27)

Egg white Continuous feeding for 4
weeks

0.01%, 0.1%, or 1% EW Mouse chow containing casein • 1% EW reduced diarrhea
incidence

• Increase OM-specific IgE
and IgA after 2 weeks of
therapy but decrease IgE and
IgA at the end of the study

• Increase EW-specific IFNγ,
IL-10 and Foxp3+ T cells

(28)

Buckwheat Continuous feeding for 6
weeks

0.03% phosphorylated
or unphosphorylated
antigen in mouse feed

Mouse chow • Phosphorylated antigen
reducedallergicsymptomscore

• Decreased total and
allergen-specific serum IgE

• Increased total and allergen-
specific serum IgA

• Increased Tfh cells in Peyer’s
patches

(29)

Egg white 3x/week for 3 weeks 5 mg of digested
protein

In PBS • Induce DCs to suppress T
cell IL-5, IFNγ, and IL-17 in
coculture systems

• Induce DCs and T cell
cocultures to increase TGFβ
and Foxp3+ RORγt+ cell
populations

(30)

Egg ovomucoid Daily for 2 weeks 1–50 mg Lactobacillus casei rhamnosus
(1 × 109 CFU per day)

• Prevented allergen-induced
hypothermia

• Decreased allergy symptom
score

• Decreased serum IgE, IgA,
IgG1, and IgG2a compared
to OIT alone

• Reduced goblet cell numbers
in the small intestines

(31)

(Continued)
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TABLE 1 Continued

Immunotherapy
route

Food allergy
model

Immunotherapy
schedule

Allergen dose Formulation Allergic response
outcome

Ref

Peanut Once a week for 4 weeks 200 μg In PLGA nanoparticles +CpG
(1.8 μg)

• Reduced allergen-induced
hypothermia

• Decreased allergic symptom
scores

• Decrease plasma histamine
• Decrease serum peanut-

specific IgE and IgG1
• Increase serum peanut-

specific IgG2a
• Decrease peanut-specific

IL-4, IL-5, and IL-13
• Increase peanut-specific IFNγ

(32)

Peanut 5x/week for 3 weeks 1.5 or 15 mg OIT in PBS while continuously
feeding a diet containing 1%
short and long-chain fatty acid
fructooligosaccharide prebiotics

• High dose OIT reduces
hypothermia in the presence
and absence of prebiotics

• Low dose OIT reduces
hypothermia in the presence
of prebiotics

(33)

Cow milk 5x/week for 3 weeks 10 mg OIT in PBS supplemented with
0.6 g/kg bodyweight per day of
sodium butyrate

• Suppresses mast cell
activation and mast cell IL-
13 and IL-6 production

• Reduce allergic symptoms
after intragastric and
intradermal challenge

• Decrease allergen-specific
serum IgE

(34)

Sublingual immunotherapy
Peach Once a week for 8 weeks 1 nmol With CpG (50 μg) in PBS • Decrease hypothermia

• Decrease serum IgG1 and
IgE

• Increase Tregs
• Decrease CD4+IL-4+ cells
• Increase CD4+IFNγ+ and

CD4+IL-10+ cells

(23)

Peanut Once a week for 8 weeks 100 μg 1.2% carboxymethylcellulose • Decrease serum IgE
• Increase serum IgG2a
• Decrease peanut-specific

IL-5 and IL-13
• Increase peanut-specific IL-10
• Increase Foxp3+ T cells

(26)

Cow milk Twice a week for 8 weeks 10 pg–10 ng Omp16 (50 μg) • Reduced allergy clinical
symptom score and foot pad
inflammation compared to
SLIT alone

• Increase antigen-specific
IgG2a

• Decrease serum IgG1:IgG2a
ratio

• Decrease antigen-specific
IL-5 and IL-13

• Increase antigen-specific
IFNγ

• Increase IFNγ+ cells in both
CD4+ and CD8+ cells that
transfer protection to other
hypersensitive mice

(35)

Peach Once a week for 8 weeks 1, 2, or 5 nmol PBS • 2 nmol dose prevented
allergen-induced
hypothermia 1 and 5-weeks
post-therapy

• Decrease CD4+IL-4+ cells
• Increase CD4+IFNγ+ cells
• Increase in Tregs and CD4

+IL-10+ cells

(36)

(Continued)
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TABLE 1 Continued

Immunotherapy
route

Food allergy
model

Immunotherapy
schedule

Allergen dose Formulation Allergic response
outcome

Ref

Epicutaneous immunotherapy
Cashew 48-h patch every week

for 8, 12, or 16 weeks
50 μg Phosphate buffer • Decrease allergy symptoms

and hypothermia after
16-week therapy

• Reduce mmcp1 after 8-week
therapy

• Reduce IgE and IgG1 after
16-week therapy

• Increase IgG2a

(21)

Peanut 48-h patch every week
for 8 weeks

• Decrease serum IgE
• Increase serum IgG2a
• Decrease peanut-specific

IL-5 and IL-13
• Increase Foxp3+ T cells
• Increase Foxp3+ T cells

from naïve population
• Maintain enhanced Treg

population 8 weeks post-
therapy

(26)

Peanut Weekly for 5 weeks ∼11.3 μg for
microneedles 100 μg
for EPIT patch

Microneedles with a 5-min
exposure time EPIT patch with
24-h exposure time

• Microneedles reduced
allergy symptom score and
serum mmcp1 levels

• Microneedles prevented
allergen-induced
hypothermia

• Microneedles decreased
antigen-specific IL-4, IL-5
and IL-21 in the spleen and
MLN

• Microneedles increased
antigen-specific IFNγ in the
spleen and MLN

• Microneedles increased
antigen-specific IL-10 in the
MLN. Microneedles enhance
serum IgG2a and IgG2b and
decrease serum IgE
compared to EPIT

(37)

Nasal Immunotherapy
Peanut 3x/week for 4 weeks 40 μg CpG (20 μg) in saline • Decreased allergic

symptoms and hypothermia,
Decrease IL-5 and IL-13

• Increase IL-10 and IFNγ
• Increase serum IgG2c and

mucosal IgA

(15)

Cow milk Every 4 weeks for 16
weeks

20 μg 20% Nanoemulsion • Reduced allergen-induced
hypothermia, clinical
symptom scores and serum
mmcp1 4 and 16 weeks
post-therapy

• Decreased IL-4 and IL-13
and increased IFNγ,IL-10,
IL-17, and IL-22 4-weeks
after therapy.

• Further enhanced immune
responses compared to nasal
therapy with antigen alone
16 weeks post-therapy

• Decreased serum IgE and
IgG1 and increased serum
IgG2a

(38)

(Continued)
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TABLE 1 Continued

Immunotherapy
route

Food allergy
model

Immunotherapy
schedule

Allergen dose Formulation Allergic response
outcome

Ref

Peanut Every 4 weeks for 12
weeks

20 μg 20% Nanoemulsion • Decrease antigen-specific
serum IgE and IgG1

• Increase antigen-specific
serum IgG2a and IgG2b,
mucosal IgA

• Decrease antigen-specific IL-
4 and IL-13

• Increase antigen-specific
IFNγ, IL-17, IL-10, and IL-2

• Reduce allergic symptom
score and antigen-induced
serum mmcp1

(39)
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as demonstrated by reduced allergic disease and vascular

permeability in OM-hypersensitive mice that consumed allergen-

supplemented feed for four weeks (27). Continuous allergen

feeding increases allergen-specific IgA but does not change

allergen-specific IgG. Protection against allergic disease depends

on the allergen dose, as only animal feed containing 1% but not
FIGURE 1

Immunotherapy routes for food allergy. Oral, sublingual, epicutaneous, a
immunotherapy in mouse models of food allergies. Although the experim
allergen-specific immunotherapy demonstrate a reduction in allergic dis
immunological changes observed in mouse models of allergen-specific im
cytokines, mast cell activation, and systemic anaphylaxis. Food allergy imm
production of IFNγ and IL-10, and regulatory T cells. Strategies that e
immunotherapy may be useful to improve allergy immunotherapy for human
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0.1 or 0.01% of the allergen improved allergic disease severity

(28). Continuous feeding is more effective for inducing oral

tolerance to food antigens than gastric gavage (41); however,

continuous allergen feeding may not be practical for human

therapy. Thus, alternative strategies beyond expanding allergen

exposures are required to improve OIT for human use.
nd nasal routes have been evaluated to administer allergen-specific
ental details vary between immunotherapy routes, mouse models of
ease severity and an increase in allergen desensitization. Common
munotherapy include a decrease in allergen-specific IgE and IgG1, Th2
unotherapy also increases allergen-specific IgG2a/c antibodies, T cell
nhance desensitization responses in mouse models of food allergy
use. This figure was created with BioRender.com.
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OIT with hypoallergenic antigens may induce desensitization

without adverse reactions to improve OIT safety. Adding post-

translational modifications to allergens is one mechanism to

generate hypoallergenic proteins. A mouse model of buckwheat

allergy demonstrated reduced allergic symptoms with OIT

performed by continuous exposure to animal feed containing

0.03% phosphorylated allergens (29). Phosphorylated allergens

increased local T follicular helper (Tfh) cells and IL-6-producing

dendritic cells (DCs) and decreased IL-4 in the Peyer’s patches

(29), which may support the decreased IgE and enhanced IgA

responses also observed after OIT. Fragmenting allergens into

peptides can remove IgE epitopes but maintain other immune-

modulatory epitopes that induce protective immunity. Pepsin-

digested ovalbumin (OP) decreases Th2 cells and increases Treg

cells in the lamina propria and MLN in a mouse model of egg

white OIT (30). Modulation of local T cells may suppress

inflammatory responses in the GI tract. Interestingly, OP OIT

also decreases intestinal epithelial lymphoid cell IL-33 production

(30), thereby dampening an innate inflammatory response that

contributes to allergen sensitization (42). Hence, including

hypoallergenic antigens in OIT formulations may reduce AEs

while inducing desensitizing immunity.

Exogenous adjuvants can enhance, modulate, or accelerate

allergen-specific immune responses to enhance protective

immunity when included in immunotherapy formulations (43).

Probiotics are healthy bacteria that may reduce local

inflammation while providing immune-stimulatory activities that

lead to allergen desensitization. OM-OIT performed in the

presence of Lactobacillus rhamnosus probiotics further prevents

allergen-induced hypothermia achieved by OIT with OM alone

in OM-hypersensitive mice (31). Probiotics provide adjuvant

activity that reduces OM-specific IgA, IgG1, IgG2a, and IgE

compared to allergen-alone OIT, which suggests adjuvant-

induced immuno-suppression. Immunotherapy adjuvants can

also modulate allergen-specific immunity. An OIT formulation

containing peanut (200 μg) and CpG (1.8 μg) encapsulated in

poly(lactic-co-glycolic acid) (PLGA) nanoparticles that reduces

allergic disease also decreases peanut-specific IgE and IgG1 and

increases peanut-specific IgG2a (32), demonstrating a shift in

serum antibody responses. Increased peanut-specific IgG2a may

be due to CpG-enhancing Th1-associated immunity, further

supported by the decrease in peanut-specific Th2 cytokines and

the increase in peanut-specific IFNγ observed after CpG-

adjuvanted OIT (32). Instead of suppressing allergen-specific

immunity, CpG-adjuvanted OIT may reduce allergic disease

severity by enhancing blocking antibodies that decrease IgE-

mediated allergic disease severity, as allergen-specific IgG

antibodies are reported to block mast cell-mediated disease (44).

It is important to note that the protective effects of CpG-

adjuvanted OIT persisted for 16 weeks post-therapy, which

supports OIT-induced SU. Adjuvants that increase OIT efficacy

with low doses may improve OIT safety. Fructo-oligosaccharide

prebiotics allow peanut OIT to prevent hypothermia using a

suboptimal allergen dose that requires 10-fold more allergen to

protect against anaphylaxis alone (33). Prebiotic-adjuvanted OIT

induces local Tregs that suppress mast cell activation (34) and
Frontiers in Allergy 07
may influence gastrointestinal inflammation to enhance OIT

efficacy. Therefore, adjuvanted-OIT may be an effective strategy

to maintain OIT efficacy while decreasing AEs.
Preclinical models of food allergy SLIT

Preclinical food allergy SLIT models demonstrate the

sublingual route is an effective route to induce allergen

desensitization. SLIT is performed by administering the allergen

under the tongue of anesthetized animals to allow sufficient

contact time with the sublingual mucosa. SLIT regimens often

require at least eight weeks to induce desensitization, as a four-

week immunotherapy regimen did not prevent anaphylaxis in

milk-hypersensitive mice (35). However, extending

immunotherapy for four more weeks significantly decreased the

severity of allergic reactions (35). Notably, the allergen dose

increased 1,000-fold during the last four weeks, which may have

contributed to SLIT-induced protection. Some SLIT models

administer immunotherapy once a week (23, 36), while other

studies deliver two doses a week (35), but different

immunotherapy formulations complicate comparing the effect of

one vs. two doses per week on SLIT efficacy. However, SLIT

conditions that induce desensitization with minimal allergen

doses may be more desirable.

SLIT can induce desensitization with lower allergen doses than

OIT, which may reduce the AEs observed during OIT. SLIT

containing 10 pg–10 ng of milk allergen induces desensitization

in hypersensitive mice (35), which is 1,000,000-fold less allergen

than milk OIT studies that administer 10 mg (34). Low-dose

SLIT reduced allergic symptom scores and decreased allergen-

specific IgE and IL-13 (35), demonstrating the ability of low

allergen doses to modulate immune responses to protect against

allergic disease. SLIT performed with peptide antigens can

protect against food allergies without the risk of IgE-mediated

AEs. T cell epitopes from the peach allergen Prup3 were used to

develop glycodendropeptide antigens that contained mannose

dendrons in a SLIT formulation (36). Glycodendropeptides

enhance allergen uptake through interactions between the

mannose molecules on the allergen and DC C-type lectin

receptor (45), which may allow lower allergen doses to modulate

host immune responses. SLIT containing 2 nmol of

glycodendropeptides prevented allergen-mediated anaphylaxis

that was maintained for at least five weeks post-immunotherapy

(36), suggesting effective SLIT may also induce SU. Tregs are

potential SU mediators, as increased CD4+CD25+Foxp3+ and

CD4+IL-10+ cells are observed after therapy (36). Different Treg

methylation patterns have been observed in Prup3-hypersensitive

mice that remained sensitized or achieved desensitization or SU

(46), supporting the idea that SLIT influences Tregs in allergic

disease outcomes.

Incorporating adjuvants with SLIT can enhance allergen-

protective immunity. Brucella abortus outer membrane protein

16 (Omp16)-adjuvanted milk SLIT reduced allergic disease

compared to SLIT with milk alone in hypersensitive mice (35).

Although milk SLIT decreases serum IgE and splenic IL-5 and
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IL-13 and increases serum IgG2a and splenic IFNγ, OMP16-

adjuvanted SLIT further enhances the shift from allergen-specific

Th2 immunity towards Th1. An increase in IFNγ-producing

CD4+ and CD8+ T cells, observed after OMP-16-adjuvanted

SLIT, transferred protection to milk-sensitized mice, while only

CD4+IFNγ+ cells from milk-treated mice were protective (35).

Omp16 may improve immunotherapy efficacy by activating

additional cellular populations to suppress allergic responses.

CpG is another adjuvant used in SLIT. CpG-adjuvanted Prup3

SLIT prevents allergen-induced hypothermia and decreases

allergen-specific serum IgE, IgG1, and T cell proliferation (23).

Enhanced T cell-specific IFNγ and IL-10 were observed in

Prup3-hypersensitive mice that obtained desensitization and may

suppress antigen-induced T cell proliferation. CpG-adjuvanted

SLIT utilized 50 μg of CpG, which is 20-fold more than OIT

studies (32); however, SLIT utilized 1 nmol of allergen while OIT

required 200 μg of allergen to induce desensitization. Therefore,

adjuvanted-SLIT may be an effective strategy to generate allergy-

suppressing immunity using a lower allergen dose that maintains

an enhanced safety profile compared to OIT.
Preclinical models of food allergy EPIT

Skin exposure is hypothesized as a natural method of food

allergen-sensitization in humans (47); therefore, allergen-

immunotherapy administered via the skin may be an effective

strategy to reverse food allergies. Animal EPIT models administer

allergen-coated patches to mouse skin for hours, allowing the

allergen to absorb across the stratum corneum to antigen-presenting

cells in the underlying epidermis (48). Cashew EPIT that applied

50 μg of allergen to shaved mouse skin for 48 h every week reduces

serum mmcp after eight weeks of therapy but requires 16 weeks of

treatment to prevent cashew-induced anaphylaxis (21), suggesting

immunotherapy duration influences EPIT efficacy.

Mechanical adjuvants accelerate desensitization induced by

cutaneous immunotherapy. Allergen-coated microneedles

penetrate the dermis and may enhance antigen trafficking to

lymphoid tissues (37). Peanut-coated microneedles administered

for five minutes delivered ∼11.3 μg of peanut to peanut-

hypersensitive and reduced hypothermia and serum mmcp1

compared to 100 μg of peanut in EPIT patches after a 24-h

exposure (37). Peanut-EPIT, performed for five weeks, was less

effective than cashew-EPIT that was performed for 16 weeks

(21), and the immunotherapy duration may account for the

decreased efficacy of peanut-EPIT (37). The authors note that

longer peanut-EPIT regimens suppress peanut allergies; however,

microneedle immunotherapy accelerated desensitization to induce

allergy suppression in three weeks (37). Increased Th1 and Treg-

associated responses were observed after cutaneous microneedle

immunotherapy (37), and several studies also demonstrated

increased Treg responses immediately and eight weeks post-EPIT,

suggesting SU (26, 49). EPIT-induced Tregs display a

hypomethylation pattern that may mediate SU (50), and in the

absence of Tregs, EPIT fails to reduce allergen-specific Th2

cytokines, IgE, and mediate allergy protection (49). Thus,
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microneedle EPIT may be a mechanism to induce SU in humans

and increase the attractiveness of EPIT as an alternative to OIT.
Preclinical models of food allergy nasal
immunotherapy

Nasal antigen exposure can lead to immunological tolerance

(51); however, concerns about severe respiratory or central

nervous system reactions (52, 53) may reduce the enthusiasm for

allergen-specific nasal immunotherapy. Nasal immunotherapy

formulations must be carefully designed to induce desensitization

without AEs. Nasal immunotherapy administers low allergen

doses through the animal’s nostrils in small volumes, reducing

the risk of allergen exposure in the lower respiratory tract.

Formulating allergens for nasal delivery in mucoadhesive vehicles

may also maintain the allergen in the nasal cavity (54).

Specialized formulations such as nanoparticles may encapsulate

allergens and promote rapid cellular uptake (55), bypassing

antibody-coated granulocytes that contribute to inflammatory

responses to ensure the safety of nasal allergen immunotherapy.

Nasal immunotherapy induces desensitization in food allergen-

hypersensitive mice with fewer allergen doses than other

immunotherapy routes. Nasal immunotherapy administered three

times a week for four weeks reduced the severity of peanut-

induced anaphylaxis in peanut-hypersensitive mice (15), while

some OIT, EPIT, and SLIT studies required eight weeks to

induce desensitization (21, 26, 35). Although shorter OIT animal

studies are reported, these studies often administer up to five

doses per week for three weeks (22), which increases the total

number of allergen exposures. Nasal milk immunotherapy

administered every four weeks for four administrations has also

been reported to reduce systemic anaphylaxis four and 16 weeks

post-immunotherapy, demonstrating SU (38). It is possible that

the milk-hypersensitive mice naturally lost sensitization because

acquired tolerance to milk is reported in humans (56); however,

control animals demonstrated sensitization was maintained.

Thus, immunotherapy that utilizes a four-week interval to reduce

allergies is an improvement upon OIT that requires daily

administrations (57) and may improve patient quality of life.

Food allergy nasal immunotherapy often contains vaccine

adjuvants to alter sensitization-induced immune responses.

Peanut-hypersensitive mice nasally exposed to 40 μg of peanut

develop enhanced peanut-specific serum IgG and mucosal IgA;

however, the addition of CpG (20 μg) further increases peanut-

specific serum IgG2c and mucosal IgA compared to peanut alone

(15) confirming the adjuvant activity of CpG observed in SLIT

and OIT (23, 32). CpG-adjuvanted peanut nasal immunotherapy

reduced the severity of systemic anaphylaxis and decreased Th2

cytokines while increasing IFNγ and IL-10 (15). A shift from

peanut-induced Th2 immunity towards Th1 and Treg immunity

was observed after nasal immunotherapy with a nanoemulsion-

adjuvanted immunotherapy formulation containing 20 μg of

peanut in a 20% nanoemulsion mixture (39). The shift in T cell

responses may occur by Th2 cells acquiring a new phenotype or

enhancing a new population of T cells that may suppress the
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Th2 immunity induced by sensitization. Increased IFNγ in T cells

that previously produced IL-13 and increased IL-10 in cells that

never made IL-13 were observed in peanut-desensitized mice

(15). The increase in IL-10-producing T cells suggests nasal

immunotherapy increases Tregs, and IL-10 may be a key regulator

of allergies as allergic disease severity rises in the absence of IL-10

(58). Adjuvanted allergen-specific nasal immunotherapy can also

modulate immune responses in distal mucosal sites by decreasing

jejunum mast cells after repeated oral challenge (38) and down-

regulating intestinal ILC2 responses in animals with

hypersensitivity to multiple food allergens (59), which may allow

allergen-specific nasal immunotherapy to suppress immunity to

bystander allergens (59). Thus, adequately formulated nasal

immunotherapy effectively reduce allergic disease in mice and may

be an effective immunotherapy strategy in humans.
Concluding remarks

Allergen-specific immunotherapy administered by several

anatomical routes has been evaluated to treat human food

allergies; however, immunotherapy safety and efficacy remain a

concern. Preclinical models of food allergy have identified

strategies to improve the limitations of allergen-specific

immunotherapy, including hypoallergenic antigens, alternative

delivery vehicles, and vaccine adjuvants. Future clinical studies

should evaluate strategies that improve immunotherapy efficacy in

preclinical models to determine if alternative immunotherapy

formulations enhance the safety and effectiveness of OIT, SLIT,

EPIT, and nasal immunotherapy. The results from animal allergen

immunotherapy studies may identify biomarkers that indicate

immunotherapy outcomes. Preclinical food allergy immunotherapy

studies have identified modifications in allergen-specific immune

responses in mice with reduced allergic disease severity, including

enhanced mucosal IgA, a shift in T cell responses, and decreased

mast cell activation. The immune responses observed in

desensitized animals that complete immunotherapy may be

potential checkpoints in clinical studies to monitor

immunotherapy efficacy. Lastly, the variability in allergen-specific

immunotherapy efficacy observed in animals that receive the same

treatment (15, 21, 32, 35) provides an opportunity to study

immunotherapy responders and non-responders, which may
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elucidate immune targets in humans that can be modified to

improve the effectiveness of allergen-specific immunotherapy. The

information gained from preclinical food allergy immunotherapy

studies will be instrumental in developing more effective allergen-

specific immunotherapy regimens in humans.
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