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Sensing of protease activity as a
triggering mechanism of Th2 cell
immunity and allergic disease
Audrey Meloun and Beatriz León*

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States

CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular
parasites, like helminths. However, Th2 cells also play a pivotal role in the onset
and progression of allergic inflammatory diseases such as atopic dermatitis,
allergic rhinitis, asthma, and food allergy. This happens when allergens, which
are otherwise harmless foreign proteins, are mistakenly identified as
“pathogenic.” Consequently, the encounter with these allergens triggers the
activation of specific Th2 cell responses, leading to the development of allergic
reactions. Understanding the molecular basis of allergen sensing is vital for
comprehending how Th2 cell responses are erroneously initiated in individuals
with allergies. The presence of protease activity in allergens, such as house dust
mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant
role in triggering robust Th2 cell responses. In this review, we aim to examine
the significance of protease activity sensing in foreign proteins for the initiation
of Th2 cell responses, highlighting how evolving a host protease sensor may
contribute to detect invading helminth parasites, but conversely can also trigger
unwanted reactions to protease allergens. In this context, we will explore the
recognition receptors activated by proteolytic enzymes present in major
allergens and their contribution to Th2-mediated allergic responses.
Furthermore, we will discuss the coordinated efforts of sensory neurons and
epithelial cells in detecting protease allergens, the subsequent activation of
intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s),
and the ultimate integration of all signals by conventional dendritic cells (cDCs),
leading to the induction of Th2 cell responses. On the other hand, the review
highlights the role of monocytes in the context of protease allergen exposure
and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This
review aims to provide insights into the innate functions and cell
communications triggered by protease allergens, which can contribute to the
initiation of detrimental Th2 cell responses, but also promote mechanisms to
effectively suppress their development.
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Introduction

Allergic diseases, such as atopic dermatitis, allergic rhinitis, asthma, and food-related

allergy, result from atypical reactions to otherwise harmless foreign proteins known as

allergens. These allergens can be found in various sources, such as pollen, molds, house

dust mites (HDM), animal dander, or specific types of food. When individuals with

allergies come into contact with these allergens, their immune system responds
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abnormally, leading to the manifestation of allergic symptoms

associated with each respective condition. The majority of

allergic reactions are driven by type 2/T helper 2 (Th2) cells,

which function through the production of Th2 cell-associated

cytokines, including interleukin-4 (IL-4), IL-5, IL-13, and IL-9

(1–3). Within the lymph node, type 2 T follicular helper cells

(Tfh2) produce IL-4 and IL-13, which regulate B cell class

switching to immunoglobulin E (IgE) (1, 3–7). Specific IgE

antibodies bind to FcϵRI receptors on basophils and mast cells.

When encountering allergens, cross-linking occurs, triggering

intracellular signaling and degranulation. This leads to the release

of mediators, causing smooth muscle constriction, vascular

permeability, and inflammatory cell recruitment (8). On the

other hand, effector Th2 cells, once differentiated in the lymph

node, migrate to allergen-exposed tissues where they orchestrate

allergic inflammation. Particularly, Th2 cells recruit eosinophils

through IL-5 secretion and induce mucus production, goblet

cell metaplasia, and airway hyperresponsiveness via IL-13

production (1, 3).

The development of allergic inflammation involves a distinctive

prerequisite known as the sensitization phase. This phase occurs

during the first exposure to an allergen and typically happens

without any pathological symptoms (1–4). During this

sensitization phase, the innate immune cells in the tissue sense

the presence of the allergen and produce signals. These signals

are ultimately integrated by conventional dendritic cells (cDCs)

that, subsequently, migrate to the draining lymph node while

carrying the allergens. In the lymph nodes, cDCs play a vital role

in activating naïve CD4+ T cells and providing the necessary

signals for their differentiation into the Th2 cell pathway. Two

distinct subsets of conventional dendritic cells (cDCs) have been

identified: type-1 cDCs (cDC1s) and type-2 cDCs (cDC2s).

cDC2s play a crucial role in promoting Th2 cell polarization (2,

4, 9–17). Instead of promoting Th2 effector cells during the

initial sensitization to an allergen, cDC2s initiate a biased Tfh2

cell response that is primarily confined to the lymph nodes

(2–4, 18). As abovementioned, Tfh2 cells play a crucial role

in facilitating the switch of B cells to produce IgE antibodies

(3, 5–7). Additionally, the Tfh2 cells generated during the

sensitization phase have the capacity to persist as memory cells

within the lymph nodes (4). These memory Tfh2 cells possess a

unique capability to differentiate into Th2 effector cells upon

subsequent exposure to the allergen. These effector cells then

migrate into the affected tissues, contributing to the development

of pathological responses (4, 18).

Despite extensive evidence demonstrating that cDCs,

specifically cDC2s, are necessary and sufficient for inducing Th2

cell responses (2, 4, 9–17), the full array of signals they provide

for this purpose remains unclear. IL-2-driven activation of

STAT5 is crucial for Th2 cell differentiation in vitro and in vivo

(19, 20). Mechanistically, the activation of STAT5 by IL-2

induces IL-4Rα expression (21) and early IL-4 release (20, 21) by

antigen-activated CD4+ T cells. These events mark the initiation

of an IL-4-dependent signaling cascade, which involves STAT6

activation. This activation loop leads to the induction of the

expression of GATA3, a transcription factor essential for full
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commitment of cells to the Th2 cell differentiation pathway (22,

23). Thus, IL-2-induced sustained STAT5 activation acts as a

pivotal step in promoting Th2 cell differentiation by initiating an

IL-4-dependent STAT6 activation cycle and facilitating GATA3

expression for the full commitment of CD4+ T cells to the Th2

lineage (22). Subsequently, IL-4 induces upregulation of integrin

αvβ3, which promotes homotypic T-cell interactions via Thy1-

αvβ3 contacts to promote FAK–mTOR signaling, IL-13/IL-5

production, and repression of Th1 cytokines. This step is

dispensable for the differentiation of IL-4+ Tfh2 cells but is

essential for development of effector IL-13/IL-5+ Th2 cells that

migrate to peripheral sites (24).

On the contrary, the signaling through receptors for polarizing

cytokines, such as IL-12, IFNγ, IL-6, and TGFβ, employs distinct

mechanisms to inhibit the Th2 cell differentiation pathway

[reviewed in (22)]. Specifically, IL-12 and IFNγ induce T-bet

expression in T cells, which effectively suppresses GATA3

expression and function (25–29). Meanwhile, IL-6 signaling

triggers the expression of SOCS3, which subsequently hinders

sustained IL-2-driven activation by inhibiting IL-2-JAK1-STAT5

signaling pathway during the early activation of T cells,

consequently impeding Th2 priming (19). Moreover, TGFβ

signaling restricts Th2 cell polarization through a mechanism

reliant on the formation of SMAD2/3, STAT3 and ERBIN

complexes (30, 31). Thus, Th2 differentiation requires signals

that support sustained autocrine IL-2 signaling in the absence of

polarizing cytokines [reviewed in (22)]. cDCs provide both MHC

class II-restricted antigen presentation and co-stimulation to

CD4+ T cells, which synergistically induce IL-2 production and

the expression of high-affinity IL-2 receptors for efficient binding

and signaling of IL-2. In addition, cDC2s with an acquired pro-

Th2 function actively suppress the secretion of polarizing

cytokines (22). Thus, it has been proposed that cDC2s may

promote Th2 responses by suppressing the production of

polarizing cytokines that guide the differentiation of other T

helper cell lineages while still providing antigen and

costimulatory signals that support efficient IL-2 signaling in

responding T cells (22). Besides, cDC2s may also provide

additional specific signals for inducing Th2 cell differentiation;

however, these signals have yet to be identified. Notably, cDC2s

efficiently prime Th2 cell responses in specific sub-anatomic

regions of secondary lymphoid tissues, namely the T-B border

(the border of B-cell follicles and T-cell zone) and the

perifollicular region (the area between B-cell follicles), rather

than in the T-cell zone (3, 4, 9, 32–34). This localization is

proposed to favor Th2 cell differentiation in vivo by optimizing

cDC-T cell interactions, thereby promoting the sustained IL-2

and IL-4 signaling crucial for Th2 commitment (24, 34), and by

reducing signals from polarizing cytokines such as IL-12, which

are concentrated in the T-cell area (3, 33, 35, 36). Hence, T cell-

cDC interactions in particular lymph node microenvironments

promote Th2 cell differentiation by creating a supportive

microenvironment devoid of inhibitory signals.

Allergens have the ability to initiate unwanted Th2 cell

responses, but there is limited understanding of how allergens

are recognized as “pathogenic” and the underlying triggering
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mechanisms that ultimately lead to the induction of Th2 cell

polarization. Allergens encompass a broad range of structural

and biochemical components, making the question of uniform

recognition difficult (37). In certain cases, the activation of

pattern recognition receptors (PRRs), specifically Toll-like

receptor 4 (TLR4), can induce the differentiation of Th2 cells.

TLR4 has long been recognized as the receptor responsible for

detecting gram-negative lipopolysaccharide (LPS) and typically

promote the production of polarizing cytokines by cDCs, such as

IL-12 and IL-6, which effectively inhibit Th2 cell polarization

(3, 19, 29, 38). However, in certain models, low levels of LPS

coupled with low immunogenic antigens (39, 40), genetic

backgrounds with defective LPS response (38), impaired LPS

response during infancy (3, 29), or alternative non-inflammatory

TLR4 ligands (41–43) can promote type 2 immunity. This topic

has been extensively reviewed (3) and will not be the main focus

of this article. Importantly, allergens that possess a strong

capability to induce Th2 cell responses, such as HDM, pollen,

fungi, or cockroaches, commonly contain proteases (37, 44–47).

Furthermore, proteolytic enzymes derived from these allergens

have the ability to trigger robust Th2 cell responses (18, 48–52).

Hence, the presence of protease activity in allergens is believed to

play a significant role in initiating Th2 cell responses. This

review aims to explore the proteolytic constituents present in

major allergens and investigate the various recognition receptors

that are activated upon exposure to allergen proteases, ultimately

contributing to the development of Th2-mediated allergic

responses. Additionally, we will delve into the intricate

communication pathways among sensory neurons, epithelial cells,

mast cells, type 2 innate lymphoid cells (ILC2s), and cDC2s,

highlighting their coordinated efforts in inducing Th2 cell

responses. Furthermore, we will explore the intriguing concept

that while protease activity can serve as an inducer of allergic

responses, it can also trigger mechanistic pathways that suppress

these responses. In this context, we will emphasize the crucial

role played by monocytes and cDC2s in communication

networks that effectively attenuate undesired Th2 cell responses.
Proteolytic components of major
allergens

Numerous major allergens, including HDM, pollen,

cockroaches, fungi, and some fruits, contain protease activity

(37, 44–47). Detailed lists of protease allergens and their protease

domain classifications have been published (37, 53). However, it

should be noted that protease allergens represent a minority

within the larger allergen database (37, 53). Nevertheless, their

prevalence in key airborne allergens suggests a significant

contribution to respiratory allergies. HDM are the most

important triggers of indoor allergic reactions, constituting about

50% of all allergic patients (54). Two species, Dermatophagoides

pteronyssinus, and Dermatophagoides farinae, are prevalent in

temperate climates. Der p 1 (D. pteronyssinus) [or Der f 1 (D.

farinae)] is the predominant allergen in HDM. In fact, over

80%–90% of patients who are sensitized to HDM show
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sensitivity specifically to Der p 1 [or Der f 1] (54). Der p 1 and

Der f 1 have cysteine protease activity, which selectively

contributes to promoting Th2 immunity in in vivo animal

models (49, 50, 55). In addition, two cysteine proteases with

robust proteolytic activity, namely papain, and bromelain, have

been extensively employed to induce potent Th2-driven allergic

responses in mice. Papain is derived from the papaya fruit, while

bromelain is derived from pineapple. The presence of cysteine

protease activity in these enzymes has been shown to be required

to promote Th2 cell responses (56). Besides, in co-immunization

experiments, these cysteine proteases have the ability to

transform non-allergenic proteins into allergenic ones (38, 57).

Thus, cysteine protease activity not only gives an allergen its

adjuvant properties to promote Th2 cell immunity but also

serves as an external adjuvant for other inert or non-allergenic

proteins. This suggests that protease components in allergens

have the potential to enhance the allergenic activity of other co-

inhaled proteins. Serine protease activity is another proteolytic

activity commonly found in allergens, specifically in HDM (44),

fungi (47), pollen (45), and cockroaches (46). Studies have

indicated that purified serine proteases obtained from these

sources possess the ability to elicit type 2 immune responses and

induce allergic inflammation (51, 52). Overall, accumulating

pieces of evidence have clearly established that the immune

system can detect and respond to the presence of protease

activity in foreign proteins, resulting in the specific development

of strong Th2 cell responses.

The relevance of developing a host protease sensor to

specifically trigger Th2 cell immunity to foreign proteins remains

elusive. However, it is intriguing to note that several serine and

cysteine proteases have been identified in helminth parasites (58).

These proteases not only play roles in parasite biology but also

contribute significantly to the invasion of host tissues during

infection (58). This observation raises the possibility that the host

immune system has evolved a sensor mechanism to detect

abnormal and harmful protease activity in tissues, which aids in

identifying the presence of invading extracellular parasites and

initiating protective Th2 cell immunity against them. However,

this sensor mechanism can also be mistakenly activated by

protease activity in harmless allergens, leading to undesired Th2

cell immune responses and pathogenicity. In the next sections of

this review, we will delve into the interconnected mechanisms

through which the immune system can detect serine and cysteine

protease activity, leading to the initiation of Th2 responses.

These mechanisms exhibit substantial overlap and will be

explored together.
Receptors of protease activity

The proteolytic activation of protease-activated receptors

(PARs) and mas-related G-protein-coupled receptors (Mrgprs)

have emerged as critical mechanisms involved in the innate

immune recognition of protease allergens (Figure 1). PARs are a

well described family of G coupled protein receptors that are

activated by exogenous and endogenous proteases (59). PARs are
frontiersin.org
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FIGURE 1

Innate immune recognition of protease allergens by PAR2 and Mrgpr family members. (A) PARs are a family of G-protein-coupled receptors activated by
exogenous and endogenous proteases. While Mrgprs primarily function as sensors in mast cells and sensory neurons, mediating nociceptive sensations
like pain and itch, PAR2 and specific Mrgpr family members have been implicated in initiating allergen-specific Th2 cell responses. The activation of PAR2
occurs when serine proteases specifically cleave its N-terminal region, exposing the tethered ligand SLIGKV (in humans) or SLIGRL (in mice). However,
cysteine proteases, such as Der p 1 and papain, can also activate PAR2 through a non-canonical mechanism, leading to the generation of the hexapeptide
RSLIGK. Additionally, cysteine proteases activate specific Mrgprs expressed in sensory neurons, including the human receptor MRGPRX1 and the mouse
receptors MrgprC11 and MrgprA3. Moreover, the canonical tethered ligand of PAR2 can also activate similar Mrgprs. Upon exposure to cysteine protease
allergens, sensory neurons become activated and trigger the release of substance P. Substance P then acts on the mast cell receptor MrgprB2/MRGPRX2,
leading to mast cell activation and degranulation. (B) Protease allergens initiate a positive feedback loop involving crosstalk between PAR2-expressing
cells (such as epithelial and endothelial cells, sensory neurons, and macrophages) and Mrgpr-expressing cells (including sensory neurons and mast
cells). This loop includes intermediary molecules, such as PAR2 tethered ligands, substance P, and tryptase. These molecules act to amplify the
cellular response to protease allergens. Figure was created with BioRender.com.
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activated following specific cleavage of their N-terminal region,

which expose tethered ligand sequences that then bind to

conserved regions on the extracellular loop 2 of the receptor to

trigger intracellular signaling (59). There are four members of

the PAR family (PAR1-4) with distinct protease specificities.

Activation of PAR2 has been linked to the initiation of Th2 cell-

mediated inflammation (60–65). PAR2 can be activated by

several serine proteases, with trypsin being a major protease

responsible for initiating inflammatory signaling (66). The

canonical mechanism of PAR2 activation by trypsin involves the

unmasking of the tethered ligand SLIGKV (human) or SLIGRL

(mouse). Similar effects are triggered by synthetic ligands-

mimicking peptides (67). Mast cell tryptase can also activate

PAR2 through this canonical mechanism (66). Furthermore,

serine protease allergens from HDM, cockroaches, and molds

have demonstrated direct targeting of PAR2 (68–71).

Additionally, it has been reported that the major HDM allergen

Der p 1 and the fruit-derived proteases bromelain and papain,

which all hold cysteine protease activity, can directly activate

PAR2 (72–75) and that protease activity was necessary for

receptor activation (72). However, conflicting reports suggested

that PAR2 cleavage by Der p 1 may not lead to canonical
Frontiers in Allergy 04
functional activation of PAR2 (76). Therefore, it has been

questioned if cysteine proteases can directly activate PAR2 or if

they do so but in a non-canonical manner. Recent studies have

shed light on this question, showing that Der p 1 cleave of the N

terminus of PAR2 did not generate the canonical ligand SLIGKV

(the human ortholog of the mouse hexapeptide SLIGRL), but

synthetized the hexapeptide RSLIGK. RSLIGK activated PAR2

akin to the canonical peptide SLIGKV (72). In summary, the

activation of PAR2 upon protease allergen exposure can occur

either through direct activation by protease activity in allergens or

indirectly through mast cell activation, degranulation and

subsequent release of mast cell tryptase. PAR2 is expressed in

various cells and tissues, including structural and hematopoietic

cells. As we will delve into later, PAR2-mediated activation

induces pro-inflammatory and pronociceptive actions of proteases,

primarily by targeting epithelial cells and sensory neurons.

Endogenous and exogenous proteases activate not only PARs

but also members of Mrgpr family (72, 77). Mrgprs are

predominantly expressed in mast cells and sensory neurons,

where they function as sensors that mediate nociceptive

sensations such as pain and itch (78). However, there is

increasing evidence indicating that the activation of Mrgprs may
frontiersin.org
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also play a role in initiating allergen-specific Th2 cell responses.

Mrgpr family has more than 50 members in rodents and

humans. Human family members include eight subfamilies,

MRGPRX 1–4, and MRGPR D–G, whereas mouse family

members include 7 subfamilies, Mrgpr A–G. Although serine

proteases are conventional activators of PARs, they do not

activate Mrgprs (77, 79). However, cysteine proteases can activate

select Mrgprs (72, 77). Particularly, cysteine proteases Der p 1

and papain can directly activate human receptor MRGPRX1 and

the mouse receptors MrgprC11 and MrgprA3 (72, 77). These

receptors are mainly expressed in the peripheral axons of sensory

neurons from dorsal root ganglia and evoke itch and pain

sensation upon Mrgpr-dependent activation and sending the

signals to the spinal cord via their central axons (80–82). Mrgprs

can be activated by various peptide ligands. However, the

activation mechanism of Mrgprs by the cysteine proteases does

not appear to rely on the generation of a peptide or tethered

ligand as seen in PAR2 activation (72, 77). Still, the proteolytic

activity of Der p 1 is crucial for the activation of Mrgprs,

specifically by cleaving specific sites on the receptor N-terminal

region (72). These cleavage events are believed to induce

conformational changes in the receptor structure, leading to

Mrgpr activation. Additionally, agonist peptides mimicking the

tethered ligand of PAR2 also activate Mrgprs, particularly

MrgprC11 in mice and MRGPRX2 in humans (79). Thus,

specific Mrgprs observed to be specifically expressed in sensory

neurons can be directly activated by cysteine protease allergens

or indirectly by peptides resulted from N-terminal proteolytic

cleavage of PAR2. When sensory neurons are activated upon

exposure to cysteine protease allergens, they trigger the release of

substance P. Substance P acts on the mast cell receptor MrgprB2/

MRGPRX2, resulting in the activation and degranulation of mast

cells, which contributes to initiation of type 2 inflammation (55,

83). Overall, the activation of PAR2 and Mrgprs, due to exposure

to protease allergens, can initiate a positive feedback loop. This

process involves a crosstalk between Mrgprs-expressing sensory

neurons and mast cells, as well as PAR2-expressing epithelial

cells and other cells. Together, these interactions contribute to

the amplification of the feedback loop (Figure 1). In the

subsequent sections, we will explore the specific actions of

protease-dependent-PAR2/Mrgprs activation within various cell

types, with a special focus on crosstalk between cDCs and

epithelial cells, ILC2s, sensory neurons and mast cells and their

involvement in the initiation of Th2 cell-driven allergic responses.
Nociceptor sensory neurons in sensing
protease activity in the skin

Recent studies have emphasized the crucial role of sensory

neurons in detecting protease allergens in the skin. It has been

demonstrated that protease allergens, particularly those with

cysteine-like proteolytic activity, can activate skin sensory

nociceptor neurons (55, 84). Specifically, nociceptive sensory

neurons expressing TRPV1 ion channels are implicated in this

process. Stimulation of nociceptor peripheral terminals results in
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calcium-mediated vesicular release of neuropeptides, like

substance P (55, 84), calcitonin gene-related peptide (CGRP)

(85), neuromedin U (NMU) (86), and vasoactive intestinal

peptide (VIP) (85). These neuropeptides have been implicated in

modulating subsequent type 2 immune responses. Release of

substance P from skin TRPV1+ nociceptive sensory neurons

following the detection of cysteine protease activity is required

for the full development of hallmarks of Th2-driven responses,

including IgE secretion, production of Th2-derived cytokines

such as IL-4, IL-5, and IL-13, and eosinophilia (55). Substance P

can directly promote the migration of skin cDCs, but this

process does not lead to Th2 cell differentiation (84). Thus,

substance P should activate additional mechanisms for the

induction of Th2 cell responses. Substance P triggers mast cell

degranulation through the activation of the receptor Mrgprb2/X2.

This activation of Mrgprb2/X2 in mast cells is crucial for the

development of Th2-cell driven skin inflammation in response to

cysteine protease allergens (55). Thus, a nociceptor-mast cell axis

plays a crucial role in sensing cysteine protease activity and

initiating Th2 cell-driven responses in the skin. However, the

specific receptors in TRPV1+ sensory neurons that are activated

by protease allergens remain to be fully explored. Allergens rich

in cysteine protease activity, like papain and HDM, can directly

activate nociceptors through a cysteine protease-dependent

mechanism (55, 84). On the other hand, serine-like protease

activities from pollen (ragweed), fungus (Alternaria alternata), or

German cockroach do not activate TRPV1+ neurons (55).

Furthermore, the activation of TRPV1+ neurons by allergens with

cysteine protease activity does not depend on the expression of

the protease-activated receptor PAR2 (55). Although, other

studies have indicated that sensory neurons express PAR2 and

that their activation through a PAR2-dependent mechanism

triggers the release of substance P (66). As aforementioned,

cysteine protease allergens can directly activate specific members

of the Mrgpr receptor family (72, 77). However, it remains to be

demonstrated whether these receptors are responsible for

TRPV1+ nociceptor activation. Additionally, understanding how

Mrgprb2/X2-mediated mast cell activation contributes to the

initiation of Th2 cell responses is another important question

that requires further investigation. Activation of Mrgprb2/X2 in

cutaneous mast cells leads to the release of tryptase, which in

turn activates PAR2 in keratinocytes, promoting the release of

thymic stromal lymphopoietin (TSLP) (87). TSLP is a potent

activator of ILC2s in the skin (88). Additionally, mast cells have

the potential to activate ILC2s through the secretion of

prostaglandin D2 (PGD2) and the activation of the PGD2

receptor CRTH2 (89), as well as the release of cysteinyl

leukotrienes LTE4 and the activation of the leukotriene receptor

CysLT1 (90). Furthermore, various neuropeptides, such as NMU

(86, 91, 92) and VIP (85), have the ability to modulate the

activity of ILC2s, suggesting that neurotransmitters can directly

stimulate ILC2-driven responses. However, it remains unclear

whether protease allergens can trigger the release of these

mediators from “sensor” neurons.

ILC2s serve as pivotal regulators and effectors in the context of

type 2 immunity (18, 48). Through the production of type 2
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cytokines, such as IL-5 and IL-13, ILC2s assume non-redundant

roles in promoting allergic inflammation during the initial

phases following exposure to protease allergens (18, 93, 94). But

in addition, ILC2s significantly contribute to the initiation of

Th2 cell responses, particularly in response to protease allergens

(18, 48). In other words, activating ILC2s is a pivotal step

leading to subsequent Th2 cell responses to protease antigens.

Mechanistically, ILC2s achieve this function by inducing cDC

migration and licensing pro-Th2 functions in cDC2s, primarily

through the activation of IL-13-STAT6 signaling (17, 18, 22,

48). It should be noted that Th2 cells can still undergo

differentiation independently of ILC2s, particularly in protease-

independent Th2-inducing models, such as OVA/alum

immunization or Nippostrongylus brasiliensis parasite infection

(18). This suggests that different triggers employ different

pathways to ultimately modulate cDC2 function to drive Th2

cell priming. Nonetheless, even in protease-independent models,

the activation of ILC2s has the potential to augment existing

Th2 cell responses (18). The precise mechanisms by which

ILC2s enhance Th2 cell responses in these contexts remain

unclear, but it is possible that ILC2s play a role in facilitating

the recruitment of Th2 cells to effector sites (95). Finally, Th2

cells can promote ILC2 expansion, establishing a mutual ILC2-

Th2 amplification loop (18).
FIGURE 2

Role of sensory neurons in detecting protease allergens and initiating Th2 cell i
proteolytic activity, stimulate sensory nociceptor neurons expressing TRPV1 ion
substance P, NMU, and VIP. These neuropeptides activate a complex comm
ultimately leading to the full development of Th2 cell responses to protease
and triggers mast cell degranulation through the activation of the Mrgprb2/
the release of tryptase, which subsequently activates PAR2 in keratinocytes, i
as NMU and VIP, as well as mast cell-derived mediators like PGD2 and LTE4
early stages of allergic inflammation and significantly contribute to the initiati
Th2 functions in cDC2s through the activation of IL-13-STAT6 signaling. This
the immune response to protease allergens, orchestrating the development o
in the skin. Figure was created with BioRender.com.

Frontiers in Allergy 06
Collectively, the available data indicate that a neuronal sensor

detecting protease activity can initiate immune responses to

allergens in the skin by activating a communication network

among mast cells, keratinocytes, ILC2s, and cDC2s (Figure 2),

which also exhibit reciprocal activation (85). This network

ultimately leads to the full development of Th2 cell responses.

However, the precise receptors, interactions, mediators, and

sequence of events involved in the initiation and progression of

Th2 cell responses to protease allergens remain to be fully

explored. Furthermore, it remains unclear whether this neuronal

sensor primarily functions in the skin or if it also plays a role in

initiating Th2 cell immunity in other locations, such as the

airways or the gut.
Pithelial cells in sensing protease
activity in the airways

Allergen source-derived proteases can cleave tight junctions in

epithelial surfaces, potentially leading to a compromised barrier

function. The key transmembrane proteins involved in tight

junctions are claudins, occludins, and junctional adhesion

molecules (JAMs). The primary function of tight junctions is to

regulate the passage of molecules through the intercellular space
mmunity in the skin. Protease allergens, especially those with cysteine-like
channels. This stimulation results in the release of neuropeptides such as

unication network involving mast cells, keratinocytes, ILC2s, and cDC2s,
allergens. Substance P plays a dual role as it promotes cDC migration

X2 receptor. Activation of Mrgprb2/X2 in cutaneous mast cells leads to
nducing the release of TSLP. TSLP, along with other neuropeptides such
, can activate ILC2s to secrete IL-13. ILC2s are crucial players during the
on of Th2 cell responses by inducing cDC migration and promoting pro-
complex interplay of cells and signaling molecules plays a central role in
f Tfh2-dependent B cell IgE responses and Th2-driven allergic reactions
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between cells, ensuring selective permeability. Allergen-derived

serine and cysteine proteases have been shown to trigger the

cleavage of tight junctions in cultured epithelial cell monolayers

(45, 96–99). This disruption of tight junctions results in

increased permeability and enhanced movement of allergens

across the epithelial monolayer. For example, the cysteine

protease activity of papain and Der p 1 has been shown to

degrade the tight junction protein occludin (96, 100). Similarly,

serine protease allergens from fungi, cockroaches, and pollens

can also disrupt occludin (45, 97–99). These data suggest that

allergens containing protease activity have the potential to

disrupt tight junctions in epithelial cells, thereby increasing

allergen penetration and accessibility to sentinel antigen-

presenting cDCs located beneath the epithelial barrier.

Accordingly, when serine and cysteine proteases of allergen

origin are administered in vivo through intratracheal or

epicutaneous routes, their protease activity is required to disrupt

the epithelial barrier and gain accessibility to cDCs (38, 101,

102). However, inactivation of protease activity in complex

allergen extracts, such as HDM, did not affect the ability to

penetrate the airway epithelial barrier or the capacity of cDCs to

capture the allergen (38), suggesting that allergens employ

diverse pathways to penetrate and cross the epithelial barrier.

However, inactivation of protease activity in HDM prevented the

development of Th2-driven inflammation (55), indicating that

protease activity contributes to the development of Th2 cell

responses by mechanisms other than by increasing the barrier

permeability.

Epithelial cells react to tissue perturbations by secreting ample

amounts of the alarmins cytokines IL-33, TSLP, and IL-25. These

alarmins play essential roles in initiating and sustaining type 2

responses (18, 103–105). Specifically, as previously detailed,

alarmins activate ILC2s, which in turn produce type 2 cytokines

to orchestrate type 2 inflammation and initiate adaptive Th2 cell

responses (18, 48, 88, 93, 95, 105–108). Several studies have

demonstrated that allergen proteases possess the ability to induce

the secretion of cytokines and alarmins in cultured epithelial

cells. These effects are mediated through the cleavage and

subsequent activation of PAR2 in epithelial cells (68–70, 73, 109–

112). These findings suggest that protease allergens have the

potential to directly activate epithelial cells via PAR-dependent

mechanisms and induce the production and/or release of

alarmins for the initiation of type 2 immunity. However, there is

currently a lack of in vivo evidence to support this assumption.

In the airways, ILC2 activation and Th2 cell differentiation in

response to cysteine protease allergens is IL-33-dependent, but

TSLP and IL-25-independent (18, 48). IL-33 is produced as a

full-length precursor and is constitutively expressed in the

nucleus of epithelial and endothelial cells (113). Exposure to

papain cysteine protease does not further increase its expression

(113), but it leads to the release of IL-33 (18). Activation of

epithelial cells upon exposure to environmental allergens triggers

the intracellular cleavage of the full-length IL-33 at its C

terminus. This cleavage is mediated by the activation of the

RIPK1-caspase 8 ripoptosome. Consequently, active caspase 8

processes pro-caspases 3 and 7, leading to the generation of
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active IL-33, which is subsequently released (114). Furthermore,

the full-length precursor of IL-33 can also be processed at the N-

terminus by inflammatory proteases from neutrophils and mast

cells. This processing generates alternative mature forms of IL-33

that exhibit enhanced activity compared to the full-length

precursor (115, 116). Similarly, protease allergens have been

found to directly cleave the N-terminus of full-length IL-33 to

enhance its activity (117). On the other hand, IL-33 can be

inactivated through oxidation (118) and proteolysis by apoptotic

caspases (119, 120). These processes can lead to the loss of IL-33

biological activity. IL-33 plays a crucial role in promoting the

activation of ILC2s and stimulating the production of IL-13 (18).

IL-13 produced by ILC2s facilitates the migration and activation

of cDC2s, leading to the subsequent induction of Th2 cell

responses (17, 18, 22, 48). Hence, IL-33 signaling plays a crucial

role in initiating type 2 responses to protease allergens following

airway exposure. The significance of IL-33 in airway allergy is

supported by genome-wide association studies, which have

associated genetic variants of IL33 and its receptor ST2/IL1RL1

to airway allergy and Th2-driven asthma (121–124).

In contrast, in the skin, the activation of ILC2s and

differentiation of Th2 cells in response to cysteine protease

allergens do not rely on IL-33 signaling (125, 126). However, the

generation of full Th2 responses still depends on the activation

of ILC2s (95). Consequently, different mechanisms are involved

in inducing ILC2 activation and subsequent development of Th2

cell responses to protease allergens in distinct locations. As

previously mentioned, the induction of Th2-driven inflammation

in the skin after exposure to cysteine protease allergens requires

the activation of nociceptors and mast cells (55). Therefore, an

unresolved question remains regarding whether sequential

communication among nociceptors, mast cells, epithelial cells,

ILC2s, and cDC2s is necessary to induce Th2 cell responses to

protease allergens in the skin (Figure 2). Additionally, it is

uncertain if this mechanism also applies to the lung or if an

alternative communication pathway, primarily involving

epithelial-ILC2-cDC2 interactions, is predominantly involved in

that context (Figure 3).
Monocytes subsets in sensing protease
activity and inhibiting Th2 cell
polarization

As discussed, host detection of protease activity in allergens

plays a crucial role in triggering robust Th2 cell responses.

However, this detection can also activate preventive measures

against the development of unwanted Th2 cell responses,

particularly under specific circumstances. This is especially true

when protease allergens are contaminated with bacterial

endotoxin/LPS or other pathogen-associated molecular patterns

(PAMPs), and the host immune system concurrently recognizes

both the presence of PAMPs and protease activity. Specifically,

the activation of nociceptors, mast cells, epithelial cells, and

ILC2s by protease allergens is linked to the induction of Th2

cell responses as discussed earlier. In contrast, activation of a
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FIGURE 3

Role of epithelial cells in detecting protease allergens and initiating Th2
cell immunity in the airways. Proteases derived from allergens have the
capability to cleave the tight junctions in epithelial surfaces,
compromising the barrier function. This disruption allows increased
allergen penetration through the epithelial barrier, providing access to
sentinel antigen-presenting cDCs located below. Additionally,
protease allergens can trigger the secretion of alarmins, especially IL-
33, from airway epithelial cells, indicating a direct activation
mechanism for initiating type 2 immunity. IL-33 is initially produced as
a full-length precursor protein (FLIL-33) and is primarily expressed in
the nucleus of epithelial and endothelial cells. Allergens can activate
the ripoptosome in epithelial cells, leading to caspase 8-dependent
intracellular cleavage of the full-length IL-33 at its C terminus. This
cleavage results in the generation of active IL-33, which is
subsequently released. Proteases from allergens or endogenous
proteases from neutrophils and mast cells can also process the full-
length IL-33, generating alternative mature forms with enhanced
activity. IL-33 stimulates ILC2s, leading to the release of IL-13. IL-13,
in turn, promotes the migration of cDCs and enhances pro-Th2
functions in cDC2s through the activation of IL-13-STAT6 signaling.
This intricate cascade of events underscores the crucial role of
proteases and IL-33 in initiating and orchestrating type 2 immune
responses to protease allergens in the airways. Figure was created
with BioRender.com.
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pro-inflammatory signature in monocytes-derived dendritic cells

(moDCs) is associated with the suppression of Th2 cell responses

(3, 29, 38). In this context, the role of moDCs plays a dominant

role in suppressing Th2 cell responses and thus takes precedence

over the actions of nociceptors, mast cells, epithelial cells, and

ILC2s in promoting Th2 immunity (3). Allergens containing

cysteine protease activity, such as HDM or papain, possess a

strong capability to induce the differentiation of moDCs (38).

This ability is attributed to the capacity of cysteine protease

allergens to stimulate the production of GM-CSF from

perivascular non-classical monocytes (38). As a result, the

production of GM-CSF promotes the differentiation of
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recruited classical monocytes into inflammatory moDCs (38).

These GM-CSF-primed moDCs display an enhanced capacity

to detect low levels of PAMPs, specifically LPS, within

allergens. This heightened sensitivity results in the production

of substantial amounts of pro-inflammatory cytokines,

including TNFα and IL-6 (29, 38). Consequently, cDC2s

integrate and respond to these signals by upregulating the

transcription factor T-bet and producing IL-12 (29, 38) [and

potentially IL-6 as well (19)]. Ultimately, this process impedes

the differentiation of Th2 cells in response to protease allergens

that are contaminated with PAMPs (3, 19, 22, 29, 38).

Particularly, cDC2-derived-IL-12 upregulates T-bet in

responding T cells, interfering with GATA3 function (29),

while IL-6 upregulates SOCS3, restricting IL-2 signaling

necessary for Th2 cell commitment (19) (Figure 4).

In conclusion, protease activity in allergens has a dual role:

triggering Th2 cell responses and activating preventive

measures against undesired Th2 cell responses, especially when

allergens are contaminated with PAMPs, such as LPS. Protease

allergens can activate nociceptors, mast cells, and epithelial

cells, leading to the induction of Th2 cell responses. However,

allergens containing cysteine protease activity have the

additional effect of promoting the differentiation of GM-CSF-

primed moDCs. This mechanism serves to counterbalance the

Th2 cell response when exposed to PAMP-contaminated

protease allergens, by instructing cDC2s to produce IL-12 and

possibly IL-6, thereby suppressing Th2 cell immunity. These

findings underscore the complex interplay between protease

activity, PAMPs, and the host ability to detect and respond to

these activities. Notably, hyporesponsiveness to microbial

stimulation, especially to LPS, poses a risk factor for the

induction of Th2 cell responses and allergic sensitization

during infancy and early childhood (3, 29). Future studies

should focus on exploring potential factors that could influence

the detection of protease and PAMP activity, as well as their

interplay in both promoting and suppressing Th2 cell

immunity at early-age.
Concluding remarks

In this review, we have covered the shared intrinsic

biochemical activity observed in the most prominent

environmental allergens: protease activity. Our primary

objective has been to analyze the significance of detecting

protease activity in foreign proteins for initiating Th2 cell

responses, especially in cases where there is no concurrent

microbial or PRR-dependent stimulation. We propose that this

protease sensing system evolved to detect invading helminth

parasites that utilize proteases to invade host tissues. However,

the same mechanism can potentially lead to undesired

reactions to protease allergens, particularly those with low

levels of microbial contaminants. Additionally, we have

endeavored to unravel the sequential and underlying

mechanisms that ultimately result in the induction of Th2 cell
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FIGURE 4

Role of monocytes subsets in detecting protease allergens and preventing Th2 cell immunity. In addition to triggering Th2 cell responses, protease activity
in allergens can activate preventive measures against the development of undesired Th2 cell responses, particularly when allergens are contaminated with
PAMPs like LPS. Cysteine protease-containing allergens induce the production of GM-CSF by perivascular non-classical monocytes, enhancing the
differentiation of GM-CSF-derived moDCs. GM-CSF priming in moDCs induces a pro-inflammatory signature, making them more sensitive to PAMPs
like LPS. This heightened sensitivity allows moDCs to detect PAMPs in allergens, triggering the production of pro-inflammatory cytokines such as
TNFα and IL-6. Consequently, cDC2s integrate and respond to these signals by upregulating the transcription factor T-bet and producing IL-12 and
IL-6. This process ultimately hinders the differentiation of Th2 cells in response to protease allergens contaminated with PAMPs. Specifically, cDC2-
derived IL-12 upregulates T-bet in responding T cells, interfering with GATA3 function, while IL-6 upregulates SOCS3, restricting IL-2-STAT5 signaling
necessary for Th2 cell commitment. Ultimately, this complex interplay between protease activity and PAMP detection influences the development of
Th2 cell immunity and allergic sensitization, particularly in early childhood. Further research is needed to explore the factors that regulate the
detection and response to protease and PAMP activity, providing valuable insights for understanding and potentially modulating Th2-driven immune
responses in allergic diseases. Figure was created with BioRender.com.
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responses following the detection of protease activity. Allergen-

specific immunotherapy and biologic therapies specifically

designed to target mediators of Th2-type cell immunity have

demonstrated their effectiveness in treating severe atopic/

asthma patients and are already in clinical use (1). However, a

deeper understanding of how proteolytic activity in airborne

allergens initiates and sustains Th2 cell-related events offers

promising prospects for alternative approaches of treatment.

For instance, the development of proteolytic activity inhibitors

[as discussed in (127)] or novel strategies to intervene at the

initial stages of protease sensing leading to Th2 cell

development holds great potential. Comprehensive research in

this field is imperative, and considering the rapid advances

made in a relatively short time, new therapeutic opportunities

may be within our reach.
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