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Around 155 million people worldwide suffer from asthma. In Chile, the prevalence
of this disease in children is around 15% and has a high impact in the health system.
Studies suggest that asthma is caused by multiple factors, including host genetics,
antibiotic use, and the development of the airway microbiota. Here, we used 16S
rRNA high-throughput sequencing to characterize the nasal and oral mucosae of
63 asthmatic and 89 healthy children (152 samples) from Santiago, Chile. We found
that the nasal mucosa was dominated by a high abundance of Moraxella,
Dolosigranulum, Haemophilus, Corynebacterium, Streptococcus, and
Staphylococcus. In turn, the oral mucosa was characterized by a high
abundance of Streptococcus, Haemophilus, Gemella, Veillonella, Neisseria, and
Porphyromonas. Our results showed significantly (P < 0.001) lower alpha
diversity and an over-abundance of Streptococcus (P < 0.01) in nasal samples
from asthmatics compared to samples from healthy subjects. Community
structure, as revealed by co-occurrence networks, showed different microbial
interactions in asthmatic and healthy subjects, particularly in the nasal
microbiota. The networks revealed keystone genera in each body site, including
Prevotella, Leptotrichia, and Porphyromonas in the nasal microbiota, and
Streptococcus, Granulicatella, and Veillonella in the oral microbiota. We also
detected 51 functional pathways differentially abundant on the nasal mucosa of
asthmatic subjects, although only 13 pathways were overrepresented in the
asthmatic subjects (P < 0.05). We did not find any significant differences in
microbial taxonomic (composition and structure) and functional diversity
between the oral mucosa of asthmatic and healthy subjects. This study explores
for the first time the relationships between the upper respiratory airways
bacteriome and asthma in Chile. It demonstrates that the nasal cavity of children
from Santiago harbors unique bacterial communities and identifies potential
taxonomic and functional biomarkers of pediatric asthma.
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Introduction

The World Health Organization estimates that around 250,000

people die each year globally due to asthma and that its prevalence

will increase to 100 million people by 2025 (1). Asthma affects all

age ranges, but it is a common chronic disease in children and

adolescents (2–4); being their most common chronic respiratory

condition worldwide, with around 14% of children and young

people affected (4). In Chile, the prevalence of pediatric asthma

is 15.5% (5, 6) and has a high economic impact on the health

system with approximately 15 million dollars spent in treatment

per year (7).

Many factors are involved in the onset and incidence of

asthma, including host genetics (8), ethnic components (9),

degrees of urbanization (10), gender (11), and environmental

factors, e.g., dust exposure (12), living in a farm-like

environment (13), antibiotic use during infancy (14), and mode

of delivery (15). All of the aforementioned factors also contribute

to the microbiota establishment, where an imbalance of the

microbiota can lead to disease (16–19).

Several studies have described a relationship between the airway

microbiota and the development of asthma, the vast majority

revealing an imbalance or dysbiosis (17, 20–23). Some of those

studies have also highlighted that the most predominant bacterial

genera in the respiratory tract of asthmatic patients are Moraxella,

Haemophilus, and Streptococcus, with Moraxella catarrhalis,

Haemophilus influenzae, and Streptococcus pneumoniae being

dominant in children with asthma (20, 24–28). While many of

those studies have focused on the dysbiosis of healthy subjects

compared to asthmatics and concurred that this dysbiosis is related

to Moraxella, Haemophilus, and Streptococcus, fewer studies have

explored changes in microbial interactions (29, 30).

The nostrils are a repository and point of entry of multiple

pathogens to the lower respiratory tract (31). However, the oral

cavity is the initial interface between allergens, microbiome, and

mucosal immunity. The anatomical connection between the oral

cavity and the lungs provides many opportunities for the oral

microbiota to affect the lung microbiota in different situations

(32–34). In fact, recent studies have found differences in the

dental microbiota of subjects with asthma and atopy compared

to healthy subjects (35). However, studies are still limited and

often include few subjects.

Current studies on respiratory airway microbiota have

predominantly focused on populations from the northern

hemisphere, including the USA (26), Taiwan (16), China (36)

and Portugal (30). However, some evidence indicates that the

microbiota is affected by factors such as ethnicity, diet, and

geographic zone (37, 38). Consequently, the relationships

between certain bacteria and asthma in northern populations

might not hold for other populations around the world. For

instance, the Human Microbiome Project showed that bacterial

taxa found in healthy US subjects are not universal, neither in

the body sites studied nor in the subjects (39). In Ecuador, for

example, members of the genus Streptococcus are detected in

oropharyngeal samples in higher abundances than in Europe or
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the USA, although the implications of this are not yet fully

understood (40). In part this has prompted the rise of

microbiome centers with a regional component such the

American Gut (41) and MetaHIT Consortium (42). Geographic

variation is also true for environmental microbiomes as

demonstrated for example by the MetaSUB Consortium (43).

Studies related to asthma in Chile are limited to socioeconomic

factors (44) and prevalence (6, 45), are clinically descriptive (46),

and address treatments (47) related to the disease. Therefore, the

diversity of the airway microbiota in healthy and asthmatic

Chileans is still unknown.

In this study, we assessed whether the oral and nasal

microbiota vary in composition, structure, and function between

healthy and asthmatic children from Santiago de Chile.

Moreover, we explored microbial interactions in both groups to

identify relevant (keystone) taxa in the structure of each

microbiota. Toward these goals, we characterized the nasal and

oral microbiota of 152 subjects using 16S rRNA gene amplicon

sequencing and compared their taxonomic and functional

diversity.
Materials and methods

Study population and sample collection

All study participants were volunteers. Swab samples were

collected at the Amador Neghme primary health center in

Santiago, Chile. Written consent was obtained from parents or

legal guardians of the volunteers before collecting samples. The

study and consent documents were approved by the Ethics

Committee of “Servicio de Salud Metropolitano Sur”.

Healthy and asthmatic children from the Santiago area were

enrolled in the fall and winter of 2016, 2017 and 2018 to

participate in this study. Asthmatics were diagnosed according to

AUGE diagnostic clinical guidelines of the Ministry of Health,

Chile for children under 15 years of age, which in turn are based

on The Agency for Healthcare Research and Quality (48). In

brief, the evaluation criteria are a clinical history of the disease,

difficulty in breathing, spirometry evaluation with bronchodilator

response, and increased forced expiratory volume (equal to or

greater than 12% after receiving the application of 400 µg of

salbutamol after 15 min). Patients who did not present these

characteristics or presented any of the exclusion criteria (see

Supplementary File S1) were not eligible for the study.

Swab samples were taken from both the nostrils and oral cavity

of asthmatic patients and healthy subjects following and adapting

the sample extraction protocol of the Human Microbiome

Project (HMP) (49). Sterile swabs were rubbed against the walls

of the mouth (∼4 cm2) or both nostrils for 20 to 40 s to ensure

transfer of microorganisms to the TD1 buffer solution of the

Ultra Clean Tissue and Cell kit (MoBio Laboratories). Swabs

were immersed in 700 µl of TD1 buffer (UltraClean Cell and

Tissue DNA Isolation Kit) and stored at −20°C until the DNA

extraction procedure. Oral samples from individuals with
frontiersin.org
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“chronic dry mouth”, periodontal lesions, oral abscesses, or

evidence of candidiasis were discarded. Similarly, only nasal

samples from individuals vaccinated with a live attenuated

influenza vaccine administered through the nose at least 28 days

ago, no signs of inflammation, polyps or masses, and no

infection of the nasal cavity and upper respiratory tract were

considered. The healthy subjects enrolled in the study met the

following criteria: not presenting any disorder or disease of the

upper or lower respiratory tract, not having active antibiotic or

antibiotic treatment for 2 months prior to the sampling and not

presenting any exclusion criteria from the study (Supplementary

File S1).
DNA extraction and sequencing

Total DNA was extracted using the UltraClean Tissue & Cells

DNA Isolation Kit (Cat No. 12334-S, MO BIO Laboratories, Inc.).

Samples were homogenized on a horizontal Vortex Adapter

(Catalog #13000-V1, MO BIO Laboratories, Inc.) following the

manufacturer’s instructions. The concentration of DNA was

quantified by a Qubit® 3.0 Fluorometer (Invitrogen), using a

Qubit dsDNA HS Assay Kit (Cat N° Q32854). Each DNA

sample was amplified for the V4 region of the 16S rRNA gene

and libraries were prepared and sequenced using the Schloss

MiSeq_WetLab_SOP protocol (50). Twenty nasal and oral

samples were sequenced at The Microbial Systems Molecular

Biology Laboratory (MSMBL) sequencing group (University of

Michigan, Ann Arbor, MI, USA), while 160 samples (nasal and

oral mucosa) were sequenced at The Environmental Sample

Preparation and Sequencing Facility at Argonne National

Laboratory (Lemont, IL, USA). The sequencing facilities used in

this study used negative and positive controls in their protocols.

Positive controls (Zymo microbiomics) were verified, though

were not formally included in the analysis. After quality control

and filtering 28 samples were discarded and 152 samples

were analyzed. All sequence data was deposited in the NCBI

under Bioproject accession number PRJNA446042. All R code

and metadata are available in GitHub (https://github.com/

ramostapiai/16s-Analysis).
Microbiota analysis

Forward and reverse reads were trimmed at 150 bp to maintain

quality over PHRED 25 and filtered using the following

parameters: maxN = 0, maxEE = c(2,2), truncQ = 0, rm.phix =

TRUE. Error rate learning, dereplication, and read merging were

performed using default settings. Taxonomy was assigned using

the Silva database for the16S rRNA gene (51) (version 132). A

multiple sequence alignment was carried out using the

R DECIPHER package (52) (version 2.7.3) and the phylogenetic

tree was inferred using FastTree (53) (version 2.1.10). We created a

phyloseq object for subsequent microbial analyses using the

Phyloseq package (version 1.23.1). Sixteen-S rRNA–V4 amplicon

sequence variants (ASV) in each sample were inferred using
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DADA2 version 1.18 (54). Following the author’s

recommendations, we discarded samples of <1,000 reads,

uncharacterized (NA) phylum-level taxa, ASVs with an average

relative abundance <1 × −5 and ASVs that were not observed more

than 2 times in at least 10% of the samples. To avoid batch effects,

the sequence files coming from each sequencing facility were

processed separately using DADA2 under default parameters (54).

We then combined the inferred ASVs and generated a single

phyloseq object according to the author’s recommendations (55).

We normalized our samples using the negative binomial

distribution as recommended by McMurdie and Holmes (56) as

implemented in the Bioconductor package DESeq2 (57).

Taxonomic alpha diversity (Chao1, ACE and Shannon) was

estimated in R using the phyloseq function estimate_richness

(Phyloseq version 1.23.1). Phylogenetic diversity was estimated with

estimate_pd (btools package of R version 0.0.1). Statistical

differences between groups were assessed using Linear Mixed

Effects (LME) model as implemented in the lme4 R package (v1.1–

21) (58). In our LME model we included alpha diversity indices

and taxa (phyla and genera) abundances (response variables) and

health status (healthy or asthmatic; predictors), while accounting

for non-independence of subjects (random effects). We included

random effects in our LME models since some participants were

sampled twice during the study. We also considered the potential

contribution of clinical characteristics of the cohort on the

composition of the microbiota. Therefore, other covariables were

also initially included in our LME analyses (sample collection date,

use of drugs, age, condition of the host, and gender). We also

included “sequencing facility” to further account for potential batch

effects. To avoid redundancy, we did not include three variables

(use of drugs, age, and gender) used to predict health status

(healthy or asthmatic). We also tested LME models with random

intercepts and random slopes and different orders of factors. Initial

LME models including the variables listed above were compared

using the function lmerTest, which performs automatic backward

elimination of factors. ANOVA type III tests with Satterthwaite

approximation for degrees of freedom were also carried out for

hypothesis testing.

Beta diversity was estimated using weighted and unweighted

Unifrac distances. Dissimilarity between samples was explored

using Principal Coordinates Analysis (PCoA). Indices were

compared using permutational multivariate analysis of variance

(adonis2) as implemented in the vegan R package version 2.5–6

(59). Models were compared using the Akaike Index Criterion (60)

and significance was determined through 10,000 permutations. We

also included “sequencing facility” as a factor in the permutational

analysis to account for potential batch effects (R2 < 0.02).

Community interactions among bacterial taxa were inferred

using the network approach implemented in the SPIEC-EASI R

package version 1.0.5 (SParse InversE Covariance Estimation for

Ecological Association Inference) (61) under the neighborhood

selection (mb) model. Keystone species at the ASV level (hub

nodes) were calculated using the node degree and node centrality

metrics (Degree >5 and Betweenness >200). The degree value of

a node represents the number of edges connected to the node.

Betweenness is also a measure of centrality of the nodes that
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make up the network. The betweenness value of a node is

calculated as the total number of shortest paths from all nodes to

all other nodes that pass through the node in question.

Microbial functional signatures (i.e., metabolic pathways) based

on 16S rRNA gene sequences were predicted using Phylogenetic

Investigation of Communities by Reconstruction of Unobserved

States (PICRUSt2) version 2.2.0-b (62). Differentially represented

pathways were calculated via the Welch’s t-test (63) (CI = 0.95)

with Benjamini-Hochberg correction-FDR (64) as implemented

in the STAMP software (65).

Visualizations of alpha and beta diversity indices, microbial

relative abundances, and co-occurrence networks were carried

out in RStudio (version 1.2.1335) and R (version 3.6.1).
Results

Microbiome composition and diversity

After filtering and quality control, 152 samples (69 oral and 83

nasal) were obtained (Table 1 and Supplementary Table S1),

which included a total of 4,921,605 sequences (mean = 27,001,

median = 23,430), ranging from 2,023 to 91,604 sequences per

sample and 120 ASV.

Nasal microbiomes included sequences corresponding to four

dominant phyla (>1%): Firmicutes (41%), Proteobacteria (41.8%),

Actinobacteria (15.5%) and Bacteroidetes (1.3%). These phyla

comprise 7 dominant genera (>1%) genera: Moraxella (24.1%),

Dolosigranulum (17.4%), Corynebacterium_1 (13.9%), Streptococcus

(10.8%), Staphylococcus (10.5%), Haemophilus (9.8%) and

Veillonella (1%). On the other hand, the oral microbiome included

sequences that corresponded to five dominant phyla (>1%):

Firmicutes (53.2%), Proteobacteria (31.4%), Bacteroidetes (9%),

Actinobacteria (3.1%) and Fusobacteria (3.1%). Those phyla

comprised 7 dominant (>1%) genera: Streptococcus (35.7%),

Haemophilus (16.5%), Gemella (7.4%), Veillonella (6.5%), Neisseria

(5.5%), Porphyromonas (3.9%) and Moraxella (1.2%) (Table 2,

Supplementary Figures S1, S2).

The nasal and oral microbiomes differ greatly in species

turnover as indicated by the PCoA of weighted Unifrac distances
TABLE 1 Relevant variables collected for this study.

Asthmatic
(63 samples)

Healthy
(89 samples)

Nasal
mucosa

Oral
mucosa

Nasal
mucosa

Oral
mucosa

Male 16 13 29 23

Female 19 15 18 18

Age [average
(median/SD)]

6.6 (6/4.6) 8 (6.5/5.2) 8.4 (6.0/5.4) 10.2 (13.0/5.7)

Bronchodilator
use (%)

32 (91.4) 25 (89.3) 4 (8.3) 2 (4.9)

Antihistamine
use (%)

0 (0) 0 (0) 2 (4.1) 1 (2.4)

The chi-square statistic is 44.8 and 49.7 for nasal and oral mucosa in

Bronchodilator use, respectively (P-value <0.0001). The other variables do not

present significant differences between asthmatic and healthy samples.
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and confirmed by the Permutational Multivariate Analysis of

Variance (PERMANOVA) (P = 9.999 × −5, R2 = 0.26966). While

the oral mucosa samples are similar to each other, the nasal

microbiome exhibits a wide dispersion among samples, which

indicates that its composition, phylogenetic, and taxonomic

structures are more variable (Figure 1). Likewise, we did not find

any clear patterns structuring oral microbiomes regarding their

disease status, i.e., microbial communities coming from asthmatic

patients did not seem to differ substantially in species turnover

from healthy individuals (Supplementary Figure S3).

The microbiota of asthmatic and healthy children in both the

nasal and oral compartments shared many bacterial genera, but

differed in their relative proportions, especially in the nasal

compartment. Our LME analyses of nasal samples from healthy

and asthmatic subjects showed significant differences in the

phylum Bacteroidetes (P = 0.03787), and the genera Streptococcus

(P = 0.011443) and Neisseria (P = 0.0002554) (Table 2). Similarly,

our LME analyses of the oral mucosa did not show differences in

the abundances of the phyla or genera (Table 2). The oral

microbiome did not show significant differences in alpha

diversity between asthmatic and healthy subjects (Table 2 and

Figure 2).

Conversely, the results in the nasal communities showed that the

diversity between asthmatic and healthy subjects varies greatly

(Permanova, Unifrac, wUnifrac, Bray-Curtis and Jaccard index; P >

0.01) (Table 2 and Supplementary Figure S4). In particular, nasal

microbiomes showed significant differences in alpha diversity

between the asthmatic and healthy subjects in indices Chao1 (P =

4.699 × −5), ACE (P = 9.513 × −8), Shannon (P = 0.0006668), and

phylogenetic diversity (P = 0.0033340) (Table 2). Altogether, these

results suggest that the microbiota is structured differently in the

upper airways and that there is a significant difference between

asthmatic and healthy subjects in the nasal mucosa. We did not

observe significant differences in the diversity of the oral

microbiota and results show no evidence of community differences

between asthmatic and healthy subjects in the oral samples, except

for a trend in the abundance of Firmicutes.
Microbiome interactions

To infer interactions between bacteria and identify keystone

taxa (ASVs), we performed a co-occurrence network analysis.

The nasal microbiome networks showed clear differences in

topology and number of keystone taxa between asthmatic and

healthy subjects (Figure 3). The oral microbiota was

characterized by keystone ASVs of the genera Leptotrichia

(ASV27: degree = 27 and betweenness = 726; ASV60: degree = 8

and betweenness = 2,250; ASV105: degree = 6 and betweenness =

491), Porphyromonas (ASV2007: degree = 5 and betweenness =

764), Prevotella_6 (ASV2081: degree = 5 and betweenness = 661),

and Kingella (ASV3054: degree = 5 and betweenness = 985). In

turn, the nasal microbiome network of healthy children included

keystone ASVs of the genera Prevotella_2 (ASV2059: degree = 7

and betweenness = 160) and Prevotella_7 (ASV2128: degree = 7

and betweenness = 146). The nasal microbiome networks also
frontiersin.org
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TABLE 2 Mean alpha-diversity indices, beta diversity indices, and mean relative abundance of dominant phyla and genera (>1%) of nasal and oral samples.

Alpha-diversity Nasal mucosa Oral mucosa

Asthmatic Healthy i (DF) P(>F ) Asthmatic Healthy F (DF) P(>F)
ACE 19.9 28.81 39.37 (48.0) P < 0.01 54.7 49.4 0.4 (57.0) ns

Shannon 1.1 1.55 13.4 (43.0) P < 0.001 2.5 2.4 1.49 (60.1) ns

Chao1 18.4 26.4 19.25 (60.0) P < 0.001 54.2 49.1 0.39 (62.0) ns

PD 3.3 3.99 9.78 (38.6) P < 0.01 5.9 5.6 0.01 (62.0) ns

Beta-diversity
Jaccard – – 2.5 (1.0) P < 0.001 – – 1.1 (1.0) ns

Bray-Curtis – – 3.37 (1.0) P < 0.001 – – 1.1 (1.0) ns

Unifrac – – 3.2 (1.0) P < 0.05 – – 1.2 (1.0) ns

Wunifrac – – 3.8 (1.0) P < 0.01 – – 0.3 (1.0) ns

Phylum—% (SD)
Proteobacteria 50.1 (32) 35.7 (32) 5.4 (51.5) ns 30.1 (16) 32.3 (18) 2.8 (62.7) ns

Firmicutes 36.8 (22) 44.1 (25) 6.8 (59.2) ns 53.4 (17) 53.1 (19) 4.5 (55.8) ns

Actinobacteria 12.7 (19) 17.5 (21) 0.5 (48.5) ns 3.4 (3) 2.9 (2) 0.37 (69.0) ns

Bacteroidetes 0.3 (0.6) 2 (5) 1.4 (67.2) P < 0.05 9.2 (7) 8.8 (7) 65.7 (0.08) ns

Fusobacteria – – – – 3.7 (3) 2.7 (2) 1.2 (64.3) ns

Genus—% (SD)
Moraxella 33.1 (30) 17.5 (28) 5.7 (62.7) ns 2.9 (15) 0 (0.04) 1.8 (2,141.0) ns

Haemophilus 14.3 (24) 6.5 (12) 4.6 (41.5) ns 14.4 (9) 18 (13) 0.11 (69.0) ns

Dolosigranulum 21.5 (20) 14.5 (0.1) 0.4 (59.0) ns – – – –

Streptococcus 8.1 (10) 12.7 (16) 64.1 (4.5) P < 0.01 34.4 (14) 36.5 (14) 3.1 (60.9) ns

Corynebacterium_1 12.5 (19) 14.9 (20) 0.1 (50.1) ns – – – –

Veillonella 0.5 (1) 1.4 (3) 2.7 (66.8) ns 6.2 (6) 6.7 (6) 1.7 (60.9) ns

Staphylococcus 6.3 (13) 13.6 (21) 3.7 (44.1) ns – – – –

Neisseria 0.1 (0.3) 1.1 (1) 9.3 (65.3) P< 0.001 5.4 (6) 5.6 (5) 0.18 (60.9) ns

Gemella – – – – 8.4 (6) 6.7 (5) 0.11 (61.9) ns

Porphyromonas – – – – 3.6 (4) 4.1 (5) 0.01 (65.8) ns

Linear mixed-effects (LME) model results are shown for alpha-diversity indices and taxa abundances, while permutational multivariate analysis of variance (adonis) results

are shown for beta-diversity indices. The significance of LME models was estimated using ANOVA of type III with Satterthwaite approximation for degrees of freedom. For

each test, we report the relevant F statistic, degrees of freedom (DF), and significance [P(>F )].
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showed differences in topology between asthmatic and healthy

subjects, but the keystone taxa did not vary much; a ASV of the

genus Streptococcus (ASV203: degree = 11 and betweenness =

1,085) was observed in both healthy and asthmatic children,

while two ASVs of the genera Granulicatella (ASV296: degree = 6

and betweenness = 777) and Veillonella (ASV441: degree = 6 and

betweenness = 900) were found only in the asthmatic subjects.
Microbiome functional profiles

We found significant differences in the relative abundances of

metabolic pathways between nasal microbiomes of asthmatic and

healthy subjects (Figure 4 and Supplementary Table S2). We

identified a total of 51 metabolic pathways, of which a total of 38

pathways were significantly underrepresented in asthmatics; these

pathways are related to the degradation and synthesis of amino

acids, nucleotides, and carbon sources. Only 13 pathways were

significantly overrepresented in asthmatics, including tRNA

charging pathway, L-alanine biosynthesis, pyrimidine

deoxyribonucleotides biosynthesis/degradation and purine

nucleotides biosynthesis. With respect to the oral mucosa, we did

not detect any significant differences in metabolic pathways

between healthy and asthmatic subjects.
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Discussion

Asthma is a condition that imparts large economic burdens to

individuals and society. While previous studies indicate that

multiple factors are related to the onset and development of

asthma, emerging evidence suggest that asthma is intimately linked

to alterations of the upper airway microbiota. In this cross-sectional

study, we applied 16S rRNA gene sequencing to a cohort of

children and adolescents from Santiago de Chile. We identified

distinct taxonomic and functional profiles, as well as significant

differences in the structure of the microbiota and key bacterial taxa.
Diversity and composition of the nasal and
oral microbiotas in asthmatic and health
subjects

Our results show differences in diversity and composition in the

nasal microbiota of asthmatic subjects compared to healthy subjects

(Table 2). We detected a decrease in alpha diversity in the nasal

microbiota of asthmatic individuals (Figure 1). Decreased microbial

diversity has also been observed in other human diseases, e.g.,

intestinal failure (66), diarrheagenic infection (67) or intestinal

inflammation (68), including some related to the airways, such as
frontiersin.org
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FIGURE 1

PCoA analysis of all samples by compartment. Oral samples in orange and nasal samples in green. We conducted a PERMANOVA test using distance
matrices (Jaccard, Bray-Curtis, Unifrac and Wunifrac; P < 0.0001). R2 for Jaccard (0.14097), Bray-Curtis (0.21004), Unifrac (0.26966) and wUnifrac
(0.20951).
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rhinitis, bronchiolitis, and cystic fibrosis (18, 30, 69, 70). Our results

also agree with previous studies in other populations that show that

microbial communities of asthmatics are less diverse than those of

healthy individuals (25, 26, 71, 72), which we interpret as a result of

the overdominance of some taxonomic groups, and the resulting

changes in community structure and microbial interactions over the

whole of the community.

Regarding the diversity of the oral microbiota, our analyses did

not show significant differences in any diversity index evaluated,

indicating that there is no significant variation in the oral

microbiota among asthmatic subjects compared to healthy

individuals. These results suggest that the oral microbiota seems to

be resistant in this particular cohort. We chose the oral mucosa as

the relevant sample to study because relationships between the

oral microbiota and its involvement in respiratory diseases or

complications are unknown. Associations between microbes in the

oral cavity and respiratory diseases have been identified in other

studies. In pneumonia, for example, respiratory pathogens such as

Haemophilus influenzae and Klebsiella pneumoniae are readily
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detected (73); Staphylococcus aureus (74) and SARS-CoV-2 have

also been detected recently (75). In addition, other studies have

shown that subjects with COPD have poor oral health and, in

consequence, alterations in the oral microbiota (76, 77). Also,

recent studies show significant changes in composition and

structure of the microbial communities in asthmatics, rhinitis

patients, and controls (78). Although certain microorganisms have

been found that could be associated with allergies or asthma, such

as Gemella or Lactobacillus (79); Veillonella, and Streptococcus

(80); and Aggregatibacter (81), they have not shown dysbiosis in

the oral microbiota during asthma.

Previous studies have also shown that the composition of the

microbiota varies across human populations (37, 39, 82).

Likewise, the oral and nasal microbiota, either in health or

disease, have been shown to vary across populations (83–86). In

this study, we found that the nasal microbiota of asthmatic

subjects has a high relative abundance of Moraxella and

Haemophilus (Table 2). These results partially agree with

previous studies on cohorts from different countries. For
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FIGURE 2

Alpha diversity of the nasal and oral microbiota. Nasal (top panel) and oral (bottom panel) microbiota from healthy subjects (cyan) and asthmatic patients
(red). The Chao1, ACE, Shannon and PD indices show differences between the asthmatic and healthy nasal microbiota. See Table 2 for detailed statistics.
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instance, in the USA the most abundant taxa in asthmatic subjects

are Moraxella, Streptococcus and Haemophilus (24–26). In one

population in Europe, the more common taxa are Streptococcus,

Veillonella, Haemophilus, Prevotella, and Rothia (87), while in

Portugal high abundant taxa in asthmatic subjects were

Dolosigranulum, Haemophilus, Lawsonella, Moraxella, and

Neisseria (30). Therefore, the same microorganisms have been
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detected, however, they differ in their relative abundances, which

suggests that this depends on each population under study. The

overabundant taxa possibly involved in dysbiosis (Moraxella and

Haemophilus) are shared with other respiratory diseases such as

bronchitis (28) or rhinitis (88), which are chronic diseases of the

respiratory tract, producing inflammation and dysfunction of the

nasal mucosa (89, 90).
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FIGURE 3

Structure of the nasal microbiota in health and disease. Upper panel shows nasal microbiota co-occurrence networks in healthy (left) and asthmatic (right)
subjects. Bottom panel shows oral mucosa co-occurrence network in healthy (left) and asthmatic (right) subjects. Colors represent taxa at the phylum
level.
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In terms of composition, our findings show large

variability across subjects with and without asthma (Table 2).

However, the genera Moraxella, Dolosigranulum, Haemophilus,

Corynebacterium_1, Streptococcus and Staphylococcus dominated

most of the samples of the asthmatic nasal mucosa. In studies

related to asthma in children, the same consortium of bacteria

(Moraxella, Streptococcus, Haemophilus, Corynebacterium_1,

Dolosigranulum and Staphylococcus) has been reported in other

tissues and samples, frequently associated with respiratory tract

diseases (17, 25–28, 91, 92). In the same way, the nasal mucosa

of healthy children is characterized by the presence of the same

genera listed above, all previously reported in the literature (26,

71, 88).

For the oral microbiota in both types of individuals, the most

prevalent and abundant genera were Streptococcus, Haemophilus,

Gemella, Vellionella, Neisseria, and Porphyromonas. Only the

phylum Firmicutes varied significantly in abundance between

healthy and asthmatic subjects. This could be, at least in part,

because the oral microbiota is associated with other human

diseases such as periodontitis, refractory periodontal disease,

caries, and odontogenic infection (93). Other works associate

early changes in the oral microbiota with maturation of the

immune system and the development of allergies or asthma (79).
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However, a study on an African American cohort showed

significant changes in the composition of the microbiota in saliva

samples (oral cavity) with an increase in the genera Streptococcus

and Veillonella in asthmatic subjects (80).

The characterization of the oral microbiota is consistent with other

studies. For instance, studies in adults using oropharynx and oral wash

samples and 454 pyrosequencing detected a high relative abundance of

Streptococcaceae, Veillionellaceae, Fusobacteriaceae and Neisseriaceae

(94). Hilty and collaborators in 2010 reported the same phyla and

genera in oropharynx samples, one of the first studies related to

asthma and microbiota (20). Other studies have found similar results

than those reported here, e.g., high abundances of Streptococcus,

Prevotella, and Veillonella, which comprise 70% of the oral

microbiota (95). However, more studies of the oral microbiota in

children or adolescents are required, since recent studies have shown

that the microbiota of children is more diverse than that of adults;

however, the predominant microorganisms of the oral microbiota

have similar abundances (96).

Furthermore, in our study we have observed limited variability

of the oral microbiota between subjects, as shown by alpha and

beta indices (Figures 1, 2). In contrast, other studies of different

diseases or conditions, like children with obesity (97), have

revealed changes in the diversity of the microbiota compared to
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FIGURE 4

Metabolic pathways present in the asthmatics and healthy subjects’ nasal microbiota. Asthmatic subjects in red and healthy subjects in blue. Last column
shows P-value (P > 0.05).
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children with normal weight, or changes in microbial diversity

associated with gingival bleeding in children (98). In our cohort,

we did not detect any evidence of change or alteration in

composition or difference in diversity in the oral microbiota. We

expect that a new analysis using a greater number of individuals

may increase the power to detect variation in this compartment.

Finally, in oral samples, our results only showed a trend

between healthy and asthmatic members of the Firmicutes

phylum. This is not analogous to what has been suggested by

other studies on asthma in children and young people carried

out in a different cohort (African Americans) (80). This result

reinforces the importance of local studies; cross-sectional studies

in addition to longitudinal studies in different populations will be

decisive in providing information linking oral microbiota

dysbiosis with asthma.
Nasal microbial function varies between
asthmatic and healthy subjects

We detected differences in the representation of metabolic

pathways on nasal mucosa in asthmatic subjects, e.g., in

metabolic pathways related to nucleotide synthesis such as

pyrimidine biosynthesis and purine biosynthesis, and pathways

related to amino acids, metabolism and transport. These results

suggest that the functional potential of the nasal microbiota

could be subject to an imbalance as a result of microbial

differences in composition between asthmatic and healthy

subjects. Previous studies have shown similar results in unrelated

populations (30, 99–103). Studies focused on other respiratory

illnesses, such as cystic fibrosis have also shown major changes in

the representation of metabolic pathways, e.g., enrichment in

degradation of aminobenzoate, geraniol, lysine, benzoate, valine

leucine and isoleucine; metabolism of beta-alanine, propanoate,

tryptophan, butanoate and fatty acid (70).

Like asthma, rhinitis is a disorder in which immunoglobulin E

(IgE) and Th2 lymphocytes mediate responses to a small numbers of

allergens (104–106). Some studies estimate that 38% of subjects with

asthma have rhinitis and that both conditions can coexist in the

same patient (106). Metabolomic studies in allergic rhinitis show

that deoxyuridine and inosine compounds (pyrimidine metabolism

and purine metabolism, respectively), are mostly present in subjects

with this disease (107). These same pathways are also

overrepresented in asthmatic subjects (Figure 4). In addition, studies

of allergic rhinitis with other cohorts show that the same metabolic

pathways are increased in cases compared to controls (30, 108).

The alanine synthesis pathway also shows an

overrepresentation in asthmatic subjects. Amino acids such as

lysine, histidine, and tyrosine, among others, have been studied

and are related to IgE sensitivity and response in mild and severe

asthma (109). In the case of cystic fibrosis, changes in carbon

sources are correlated with a dysbiosis in the microbiota, which

might reflect changes in energy requirements in metabolizing

carbohydrates (70). Similarly, pyrimidine and purine nucleoside

triphosphates serve as precursors of DNA and RNA (110), which

also suggest that an enrichment in these pathways is related to
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changing energy requirements. We speculate that the microbiota

in asthma is more energy demanding than in the healthy

microbiota, possibly due to challenges imposed by the host or by

members of the microbiota.

These results suggest that in the studied cohort, metabolites from

members of the microbiota could be related to inflammation in the

upper pathways. Further studies using metabolomics or

metatranscriptomics will be needed to identify which metabolites

or active metabolic pathways are up- or down-regulated in

asthmatic subjects. For example, certain compounds can modulate

the microbiota and its metabolic activity (111) or how certain taxa

contribute to asthma (112) or other diseases (COPD). Different

omics approaches are being integrated to establish connections

between microbiome-metabolome and the host (113).
Bacterial interactions in the nasal and oral
microbiotas of asthmatic and healthy
subjects

We found four keystone species in the nasal microbiota of

asthmatic subjects, i.e., Leptotrichia, Porphyromonas, Prevotella_6,

and Kingella. These results suggest that differences in microbial

diversity and composition may cause a restructuring of the

microbial interactions in the nose and mouth, so different taxa

may adopt key roles in the microbiota. Other studies addressing

microbiota structure in asthma have also reported keystone

species. In a study from a population in the USA that used a

metatranscriptomic approach, researchers reported Moraxella,

Alloiococcus, and Corynebacterium as keystone species (27), none

of which were detected in our dataset. A study of a population

from northern Portugal (30) using more than 300 samples also

examined community structure using networks and reported that

subjects with allergic rhinitis with and without asthma have more

complex networks with more connected nodes, which is in

accordance with what we report in this study, where the

networks of asthmatic subjects have more connections and are

more complex (Figure 4). In addition, the key taxa identified in

the Portuguese cohort such as Leptotrichia and Veillonela were

also detected in this study, though the Chilean population also

identified the genus Prevotella as keystone, which was absent in

the Portuguese population. This suggests that asthma has key

and shared mechanisms at the microbiota level and that the

diversity of the microbiota is a key point to consider in future

studies. However, other studies in asthma have also revealed

significant differences in co-occurrence networks when studied

fungal and bacterial composition between endotypes of asthma

(114) and asthmatic vs. controls (115, 116).

Overall, these results are consistent with the available

literature, which suggests that Prevotella is a commensal

bacterial genus, but in some cases exhibits pathobiont

properties (117). Prevotella abundance has been reported to be

reduced in subjects with COPD and with asthma (20). The

genus Prevotella is associated with establishing tolerance in the

respiratory airways as symbiotic bacteria and could partially

reduce Haemophilus-induced IL-12 production by dendritic
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cells (118). In our case, we see Prevotella replaced by other key

taxa, which could suggest that inflammation caused by changes

in composition and the overabundance of certain taxa displaces

its participation (119). This likely reflects different symbiotic

interactions between pathogenic and commensal bacteria in the

nose as seen in other respiratory diseases (120, 121).

Nonetheless, microbial taxa co-occurrences shown here using

16S rRNA data need to be confirmed using more powerful

shotgun metagenomic and RNASeq technologies (122).

Our findings are also in agreement with other studies that

document that less abundant taxa may have a high degree of

connectivity (123), as is the case of Prevotella_2 and Prevotella_7

in healthy nasal mucosa samples and Leptotrichia,

Porphyromonas, Prevotella_6, and Kingella in the asthmatic nasal

mucosa, which are identified as key nodes (i.e., keystone taxa).

Interactions within communities are the fundamental support for

their development and maintenance. Non-asthma studies using

interaction networks within the microbiota have established that

rare taxa play a central role in communities, for example, the

genus Symbiodinium which plays a central role in coral

robustness (124), or rare and low abundance taxa that contribute

significantly to plant rhizospheres (125). This suggests that a

particular node may play an irreplaceable role within the

community by maintaining key interactions or relationships for

its structure, regardless of their abundance.

The Streptococcus genus, one of the main culprits in respiratory

tract diseases like pharyngitis and pneumonia (126) show a

significant difference between healthy and asthmatic subjects

(Table 2). However, we have not detected a high degree of

connectivity or centrality within the network of this particular

genus. Studies carried out in US American populations involving

the use of metatranscriptomics have depicted Streptococcus as a

hub that is negatively associated with all other members of the

microbiota (27). However, traditional correlation analysis of

microbial population amplicon data is likely to produce poor

results (127). Studies based on Pearson’s correlation, as is the

case of the study by Chun et al., do not account for

independence between samples and, being purely compositional,

are biased by the fact that, since they must sum to 1, the

fractions are not independent and tend to be negatively

correlated, regardless of the true correlation between the

underlying absolute abundances (128). Therefore, estimates of

correlations often reflect the nature of the composition of the

data and are not indicative of underlying biological processes

(129, 130). Recent methods that take into account the limitations

of the techniques used and analyze the samples more

independently generate a better representation of the microbial

network (127, 131, 132). Our results do not consider the

Streptococcus genus as a key node within the microbiota, which

may be due to the variability of the microbiota across subjects.

Future studies should estimate co-occurrence networks in the

microbiota throughout the development of the disease. A study

of disease dynamics and progression from a health to a disease

would provide key information to assess how the interactions are

modulated from a healthy microbiota to an imbalanced one (i.e.,

dysbiosis) (133).
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In summary, this cross-sectional study characterizes for the

first time the microbiota of the upper respiratory tract of Chilean

children with and without asthma. We found diversity,

compositional, and structural differences between asthmatic and

healthy children in this particular cohort. The detected bacterial

phyla and genera with differential abundance from those

described in other cohorts of children with asthma. This

reinforces the importance of comparative studies of the

microbiome across human populations to discover differences

and similarities and make more informed decisions about public

health interventions.
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