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Peanut butter feeding induces oral
tolerance in genetically diverse
collaborative cross mice
Robert M. Immormino1*, Johanna M. Smeekens1,2,
Priscilla I. Mathai1, Janelle R. Kesselring1,2, Andrew V. Turner1,2,
Michael D. Kulis1,2† and Timothy P. Moran1†

1Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC, United States, 2UNC Food
Allergy Initiative, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC, United States

Background: Early dietary introduction of peanut has shown efficacy in clinical
trials and driven pediatric recommendations for early introduction of peanut to
children with heightened allergy risk worldwide. Unfortunately, tolerance is not
induced in every case, and a subset of patients are allergic prior to introduction.
Here we assess peanut allergic sensitization and oral tolerance in genetically
diverse mouse strains.
Objective: We aimed to determine whether environmental adjuvant-driven airway
sensitization and oral tolerance to peanut could be induced in various genetically
diverse mouse strains.
Methods: C57BL/6J and 12 Collaborative Cross (CC) mouse strains were fed
regular chow or ad libitum peanut butter to induce tolerance. Tolerance was
tested by attempting to sensitize mice via intratracheal exposure to peanut and
lipopolysaccharide (LPS), followed by intraperitoneal peanut challenge. Peanut-
specific immunoglobulins and peanut-induced anaphylaxis were assessed.
Results: Without oral peanut feeding, most CC strains (11/12) and C57BL/6J
induced peanut-specific IgE and IgG1 following airway exposure to peanut and
LPS. With oral peanut feeding none of the CC strains nor C57BL/6J mice
became sensitized to peanut or experienced anaphylaxis following peanut
challenge.
Conclusion: Allergic sensitization and oral tolerance to peanut can be achieved
across a range of genetically diverse mice. Notably, the same strains that
became allergic via airway sensitization were tolerized by feeding high doses of
peanut butter before sensitization, suggesting that the order and route of
peanut exposure are critical for determining the allergic fate.
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Introduction

The onset of peanut allergy typically occurs during childhood and is a potentially fatal

disease. Unlike other common childhood food allergies such as egg or milk, peanut allergy is

often lifelong (1–4). Allergic sensitization to peanut and other food allergens occurs due to a

failure to initiate or maintain oral tolerance (5, 6). Children with atopic diseases such as

eczema or asthma are at heightened risk for food allergies (7). Additionally, non-oral

routes of peanut exposure, including cutaneous and airway exposure, have been linked to

allergic sensitization in clinical studies and mouse models (6–9).

The potentially severe allergic responses to accidental exposure and lifelong persistence

of peanut allergy have compelled research into means of preventing and treating peanut
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allergy (10–12). For prevention, the Learning Early About Peanut

Allergy (LEAP) trial is a seminal study that found that early

dietary introduction of peanut reduced rates of peanut allergy

(13, 14). Subsequently, based on the observations in LEAP and

other trials (15–17), the National Institutes of Allergy and

Infectious Diseases (NIAID) and international experts updated

recommendations for the early dietary introduction of peanut

(18, 19). Follow-up studies generally reinforced the main finding

from LEAP that early introduction of dietary peanut is

efficacious, especially in higher-risk children (20). However, one

recent study from Australia found that the overall rate of infant

peanut allergy has not significantly decreased since introduction

of the new feeding guidelines. Instead, early peanut introduction

showed statistical benefits for infants with Australian ancestry

but not those with East Asian ancestry (21). These findings

suggest the existence of additional environmental and genetic

confounders that limit the efficacy of early introduction of

dietary peanut. A fuller understanding of these confounders may

help guide peanut introduction recommendations and promote

higher rates of oral tolerance.

Here, we aimed to determine whether environmental adjuvant-

driven allergic sensitization and oral tolerance could be induced in

genetically diverse mouse strains. For genetic diversity we surveyed

C57BL/6J mice and 12 Collaborative Cross (CC) mouse strains. CC

mice were specifically developed as a set of inbred mouse strains

with genetically distinct backgrounds (22) and have been used to

establish mouse models of human diseases (23). We chose to

survey 12 CC strains because any set of greater than 10 CC

strains is highly likely to sample each founder haplotype at least

once at each locus, thus allowing an assessment of the impact

that common genetic variation in the CC can have on a trait

of interest. Each of the mouse strains were fed peanut butter

or regular chow before intratracheal sensitization to peanut

with the environmental adjuvant, lipopolysaccharide (LPS), and

subsequently assessed for peanut allergy.
Methods

Mice

Mice from 12 Collaborative Cross (CC) mouse strains were

obtained from the Systems Genetics Core Facility at UNC in

November of 2022. The 12 strains included; CC001/Unc, CC004/

TauUnc, CC006/TauUnc, CC012/GeniUncJ, CC013/GeniUncJ,

CC015/UncJ, CC033/GeniUncJ, CC037/TauUnc, CC060/UncJ,

CC061/GeniUncJ, CC068/TauUncJ, and CC071/TauUnc. C57BL/

6J founding breeders were purchased from Jackson Laboratories

(Bar Harbor, ME) and bred in-house. All mouse strains were

maintained under specific pathogen-free conditions and raised on

standard mouse chow 5V5R (Lab Diet subsidiary of Land

O’Lakes Arden Hills, MN) which is free of peanut and soy

allergen. Male CC (n = 3–4 per strain) and C57BL/6J mice (n =

8–10) between 5 and 14 weeks of age were used for experiments.

The group sizes were based on power calculations from an earlier

study (24) using male and female C57BL/6J mice and allowed for
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simultaneous screening of several CC strains. All animal

experiments were approved by the Institutional Animal Care and

Use Committee at the University of North Carolina at Chapel Hill.
Reagents

Peanut protein extract was prepared from roasted de-fatted

peanut flour (Golden Peanut, Alpharetta, GA) in PBS with 1

M NaCl as described previously (25). LPS from Escherichia coli

055:B5 was purchased from Sigma (St. Louis, MO). For peanut

butter feeding mice were given Skippy P.B. Bites Double Peanut

Butter (Hormel Foods, Austin, MN).
Oral tolerance model

To test oral tolerance in CC strains, we modified a LEAP mouse

model (26) as previously described (24). Briefly, mice were given

peanut butter (PB) bites ad libitum for 24 h on days -12, -10, -8,

and -1, before the sensitization protocol and on days 2, 5, 9, and

12, during sensitization, as shown in Figure 1A. Uneaten PB

bites were collected and weighed to determine consumption. PB

weight consumed was converted to peanut protein using the

manufacturer reported protein content of 5 g per 28 g serving.

Mice were sensitized by intratracheal (i.t.) administration with

peanut and LPS twice weekly for two weeks. Briefly, mice were

anesthetized with isoflurane and co-administered 150 ng peanut

protein and 100 ng LPS in a total volume of 50 μl as previously

described (27, 28). Mice were bled on days -12, -1 and 14 to

quantify peanut-specific IgE and IgG1. Mice were challenged by

i.p. injection using 0.5 mg peanut protein on day 17 and 2.5 mg

peanut protein on day 25 to help account for the variable

susceptibility to i.p. peanut seen across mouse strains (23, 27).

Core body temperatures were monitored every 15 min for one

hour with a rectal thermometer (Physitemp, Clifton, NJ).
Quantification of peanut-specific
antibodies

Serum collected by submandibular bleed at the beginning

of the model, before airway sensitization, and before peanut

challenge (Figure 1A) was analyzed for peanut-specific IgE

and IgG1 via ELISA, as described previously (27). Briefly, 96-well

plates were coated with 20 µg/ml HSA-DNP (for standard

curves) or peanut extract (for experimental samples) and blocked

with 2% BSA in PBS-0.05% Tween. Samples were diluted

1:100 for peanut-specific IgE and 1:20,000 for peanut-specific

IgG1 ELISAs. Standard curves ranging from 62.5–0.06 ng/ml

for mouse IgE anti-DNP or from 2,000–2 ng/ml for mouse

IgG1 anti-DNP (Accurate Chemicals, Westbury, NY) were

generated via 1:2 serial dilutions. Plates were detected with

HRP-goat anti-mouse IgE (1:10,000, Southern Biotech,

Birmingham, AL) or HRP-goat anti-mouse IgG1 (1:40,000,

Southern Biotech, Birmingham, AL). All plates were developed
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FIGURE 1

Model of peanut airway sensitization and peanut oral tolerance. (A) Experimental scheme showing peanut butter or regular chow feeding prior to airway
sensitization with peanut (PN) and lipopolysaccharide (LPS) via intratracheal (i.t.) administration. Mice were challenged to peanut via intraperitoneal (i.p.)
injection. (B) Average amount of peanut protein consumed per mouse per feeding (left), and per strain (right). Data are represented as means ± SD.
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using TMB (Seracare, Milford, MA) and stopped using 2N

sulfuric acid. Immunoglobulin ELISA plates were read at 450 nm

using a microplate spectrophotometer (BioTek Instruments,

Winooski, VT), and concentrations were calculated based on

standard curves.
Statistical analysis

GraphPad Prism version 9 was used to analyze all data. Paired

t-tests were performed, and a p-value < 0.05 was considered

significant.
Results

Varying quantities of peanut butter are
consumed during ad libitum feeding

A modified oral tolerance model (24) was implemented, where

mice were given peanut butter eight times before or during airway

exposure to peanut plus LPS and assessed for sensitization and

anaphylaxis to peanut as a readout of allergy (Figure 1A).

Peanut consumption was monitored during ad libitum feeding;

C57BL/6J and all CC strains consumed peanut, with an average
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consumption of ∼450 mg of peanut protein per feeding

(Figure 1B). There was variation among strains that correlated

with both age and weight, with average protein consumption

ranging from ∼300–700 mg of peanut protein. No correlations

were observed between amount of peanut butter eaten and the

induction of peanut specific antibodies or anaphylaxis upon i.p.

peanut challenge (data not shown).
Peanut butter feeding prevents peanut
allergy in genetically diverse mice

Non-oral routes of peanut exposure, including skin and

airway exposure, have been associated with peanut allergy (6, 13).

In our model, airway exposure to peanut plus LPS was used as

the sensitization regimen, and development of peanut-specific

IgE and IgG1 were quantified. C57BL/6J mice and each of the

CC strains except CC004/TauUnc totaling (11 out of 12)

that received regular chow developed peanut-specific IgE

and/or peanut-specific IgG1 after airway sensitization (Figure 2,

blue lines; and Supplementary Tables S1, S2). Peanut-specific

IgE was significantly higher after sensitization (day 14) compared

to baseline (day -12) in C57BL/6J and 7 CC strains (Figure 2;

left graphs, blue lines), and peanut-specific IgG1 was significantly

higher after sensitization in C57BL/6J and 10 CC strains
frontiersin.org
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FIGURE 2

Serum peanut specific IgE and IgG1 throughout the experiment. Peanut specific IgE and IgG1 (respectively PNsIgE and PNsIgG1) from chow-fed (blue)
or peanut butter (PB)-fed (red) mice on days -12, 1 and 14. Means ± SEM are shown. Statistical analysis was performed by Student’s t-test; difference
in chow-fed mice between day -12 and day 14 are indicated above the blue line, and difference between chow and PB-fed CC mice on day 14
are shown with a bracket to the right. No statistical differences were observed between day -12 and day -1 for chow- or PB-fed mice. *P < 0.05,
**P < 0.01, ***P < 0.001.
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(Figure 2; right graphs, blue lines). In conclusion peanut-

specific IgE and/or IgG1 can be induced by airway delivery of

peanut plus LPS in several strains from a pool of genetically

diverse mice.
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Early oral exposure to food allergens is associated with

immunological tolerance (5, 7, 16). In our oral tolerance model,

the development of tolerance is inferred by comparing the

responses of chow-fed mice to those of peanut butter-fed mice.
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Specifically, we assess if there is a reduced induction of peanut-

specific IgE and/or IgG1. Of the 7 CC strains that produced

statistically increased peanut-specific IgE after chow feeding, 6

had significantly lower peanut-specific IgE levels after peanut

butter feeding (Figure 2; left graphs). Of the 10 CC strains that

produced increased peanut-specific IgG1 in the normal chow fed

group, 9 had significantly lower IgG1 in the peanut fed group

(Figure 2; right graphs). The two strains that did not have

statistically decreased peanut-specific antibodies, CC006/TauUnc

for IgE and CC068/TauUncJ for IgG1, had peanut-specific

antibodies that trended lower. Moreover, none of the peanut-fed

mice produced statistically increased peanut-specific IgE or IgG1

after oral peanut feeding (day -1) or after the sensitization

regimen (day 14) (Figure 2; red lines). In summary, dietary

peanut prevented significant induction of peanut-specific IgE or

IgG1 in each case where the corresponding chow-fed strains had

elevated peanut-specific IgE and/or IgG1. These results

demonstrate that peanut feeding promotes oral tolerance in

genetically diverse mice.

Peanut allergy was assessed by i.p. peanut challenge

administered first on day 17, with 0.5 mg peanut protein. CC015/

UncJ and CC033/GeniUncJ mice fed regular chow had severe

and even fatal reactions following peanut challenge. In contrast,

most of the other strains did not experience anaphylaxis (defined

as a greater than 3°C temperature decrease) (Figure 3; left

graphs) following a 0.5 mg peanut protein challenge. To

investigate whether this was related to the dose of peanut given

during the challenge, mice were rechallenged with a five-fold

higher dose of peanut protein (2.5 mg) on day 25. In the second

challenge, most CC strains (9 of 12) fed regular chow

experienced anaphylaxis (Figure 3; right graphs); however,

CC006/TauUnc, CC061/GeniUncJ, and CC068/TauUncJ did not

react even at the higher dose. In contrast, when the 9 reactive

CC strains were fed peanut butter before the sensitization

regimen, none reacted, indicating oral tolerance induction.
Discussion

Few mouse models of airway sensitization to peanut exist

(26–29). Our group and others have demonstrated airway

sensitization to peanut in the conventional mouse strains C57BL/

6J and BALB/cJ (26–29). While these demonstrate a proof of

concept that airway sensitization to peanut can occur, it is

unclear whether this happens in mice from other genetic

backgrounds. Our data demonstrates that 11 of the 12 CC strains

screened developed peanut-specific IgE and/or IgG1 following

airway exposure to a low dose of peanut (150 ng) and the

environmental adjuvant LPS. The induced peanut-specific IgE

and/or IgG1 in C57BL/6J and 9 of the 12 CC strains additionally

correlated with a change in body temperature during the

anaphylaxis challenge (Supplementary Figure S1). These results

suggest that the airway route of sensitization is plausible across

genetic backgrounds and not strain or model specific. These

findings also provide credibility for the airway as a route of

sensitization in humans.
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Oral tolerance induction in mice has been shown for various

antigens, including food proteins (30–33). Typically, these

models are conducted in conventional mouse strains such as

C57BL/6 and BALB/c, but some studies have been performed

with the model allergen ovalbumin in genetically diverse strains

of mice (34). To our knowledge, oral tolerance to peanut has not

been investigated in the CC or other mouse genetic reference

panels. Here, we investigated oral tolerance induction to peanut

in C57BL/6J mice and 12 CC strains by feeding peanut butter

before an airway sensitization regimen. None of the CC strains

fed peanut butter reacted during the peanut challenge, but 9 of

the 12 CC strains experienced anaphylaxis when fed regular

chow. These results demonstrate that oral tolerance to peanut is

induced in various genetically distinct mouse strains, which more

closely resemble the genetically outbred human population.

Two strains (CC015/UncJ and CC033/GeniUncJ) had severe

anaphylaxis following a 0.5 mg peanut protein challenge, while

three strains (CC006/TauUnc, CC061/GeniUncJ and CC068/

TauUncJ) did not experience anaphylaxis. Interestingly, each of

these five strains generate peanut-specific IgE and IgG1,

suggesting that their heightened or lacking reactivity to peanut

may be due to upstream differences including peanut-specific

antibody affinity (35), or mast cell or basophil number or

reactivity (23, 36, 37). The non-reacting strains may have lower

affinity antibodies or a higher threshold for peanut and might

react if given a higher dose during the challenge. On the other

hand, the severely reacting strains may have higher affinity

antibodies or a lower threshold for peanut and more reactive

mast cells or basophils. High affinity peanut-specific antibodies

or highly reactive mast cells or basophils may also explain the

anaphylaxis observed in CC071/TauUnc and CC004/TauUnc

strains of mice, which made very low levels of peanut-specific

IgE and IgG1, yet reacted to peanut. The varying responses

across all 12 CC strains demonstrate the impact of genetic

determinants on both oral tolerance and sensitization to peanut.

In human studies, several candidate genes have been associated

with the development of food allergy, including FLG, HLA, and

MALT1 (38, 39). Additionally, there are environmental factors

that confound the risk of food allergy, including levels of air

pollution, microbial diversity, and residential greenness (40).

Future work needs to be done to identify specific genetic factors

and elements of the external exposome associated with oral

tolerance and peanut allergy.

Further mechanistic studies should be performed to gain a

greater insight into genetic and environmental factors that

influence peanut allergy. Specifically, genetic risk factors can be

investigated by quantitative trait locus mapping through cross-

breeding of CC strains and analysis of allergy endpoints (41).

Additionally, differences in initiating immune responses

including dendritic cell activation and migration, and cytokine

production by innate lymphoid cells can be monitored by flow

cytometry or RNAseq. Differences in the adaptive response phase

can be monitored by ex vivo peanut restimulation of cells from

draining lymph nodes. Finally, differences in antibody

production and affinity could be contributing to dose reactivity

thresholds and could be measured in future experiments. Effects
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FIGURE 3

Peanut challenge results. Body temperature data in chow-fed (blue) and PB-fed (red) CC mice after the peanut (PN) challenge on days 17 and 25. Means
± SEM are shown. Statistical analysis was performed using Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001. The skull and crossbones symbol (N )
indicates mouse death.
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of exposome exposure can similarly be determined by varying

the environmental adjuvant used during the sensitization phase

of our mouse model. Any newly discovered genetic risk factors

could potentially be exploited as diagnostic tools to screen

for food allergy before dietary allergen introduction in

infants. Similarly, pediatricians could inform parents about

environmental factors that may have a detrimental or beneficial

effect on allergy onset.
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Given that the majority of CC strains screened can become

tolerant or allergic depending on the initial peanut exposure, it is

clear that the order and route of peanut exposure are critical for

distinguishing oral tolerance and sensitization. Regardless of

genetic background, all CC strains fed peanut butter were

resistant to peanut-induced anaphylaxis. These results further

emphasize findings from the LEAP study that demonstrate the

importance of early introduction of peanut for preventing allergy.
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