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Obesity and the microbiome in
atopic dermatitis: Therapeutic
implications for PPAR-γ agonists
Jeremy P. McAleer*

Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United
States

Atopic dermatitis (AD) is an inflammatory skin disease characterized by epidermal
barrier disruption, Th2 immune responses to skin allergens and microbial dysbiosis
within affected lesions. Studies within the past decade have revealed genetic and
environmental factors contributing to AD in children. Obesity is a metabolic
disorder that often manifests early in life and is associated with reduced bacterial
diversity, leading to skin colonization with lipophilic bacteria and intestinal
colonization with pro-inflammatory species. These changes impair epithelial
barriers and promote Th17 responses, which may worsen the severity of AD
symptoms. While few studies have examined the contribution of microbiota in
obesity-induced allergies, there is emerging evidence that PPAR-γ may be an
effective therapeutic target. This review discusses the microbiome in pediatric AD,
treatment with probiotics, how disease is altered by obesity and potential
therapeutic effects of PPAR-γ agonists. While healthy skin contains diverse species
adapted for specific niches, lesional skin is highly colonized with Staphylococcus
aureus which perpetuates the inflammatory reaction. Treatments for AD should
help to restore microbial diversity in the skin and intestine, as well as epithelial
barrier function. Pre-clinical models have shown that PPAR-γ agonists can suppress
Th17 responses, IgE production and mast cell function, while improving the
epidermal barrier and microbial homeostasis. Overall, PPAR-γ agonists may be
effective in a subset of patients with AD, and future studies should distinguish their
metabolic and anti-inflammatory effects in order to inform the best therapies.
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Introduction

Atopic march describes the successive development of allergic diseases beginning in

infancy, including atopic dermatitis (AD), allergic rhinitis, asthma and food allergy (1).

The first manifestation is usually AD, occurring in 85 percent of affected children before

the age of 5 (2). In U.S. children, the prevalence of AD is 17 percent and is associated

with a reduced quality of life due to anxiety and sleep disturbances. AD is typically

caused by Th2 immune responses against skin allergens that lead to IgE production. Re-

exposure to these allergens results in the degranulation of skin-resident mast cells that

have been sensitized with IgE, leading to allergic manifestations including a rash,

inflammation and pruritus. Longitudinal studies suggest that severe AD early in life

increases the risk for allergic rhinitis or asthma in childhood or adulthood (2). These

findings underscore the importance of identifying factors regulating the development of

AD that may be exploited as therapeutic targets.

Epithelial surfaces of the body are colonized with microorganisms, collectively referred to

as the microbiome. Many studies have characterized bacterial and fungal species present in the
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gastrointestinal (GI) tract, skin and lungs in healthy and diseased

individuals, revealing several immunomodulatory functions.

Nevertheless, our molecular understanding of how microbial

colonization impacts the immune system is incomplete. Beneficial

and detrimental roles for microbes have been identified in

pediatric allergies, with protection associated with breastfeeding,

vaginal delivery, having pets and avoiding antibiotics (3).

Collectively, these studies suggest that dysbiosis, or imbalances in

microbial species prevalence and diversity, contributes to atopy.

Obesity is a metabolic disorder that often manifests early in life

and is associated with reduced bacterial diversity in the GI tract (4–

6). Several lines of evidence suggest that obesity increases the

severity of allergic diseases (7), including food allergies (8).

While few studies have examined the contribution of microbiota

in obesity-induced allergies, there is emerging evidence that

PPAR-γ may be an effective therapeutic target. PPAR-γ is a

lipid-sensing transcription factor that regulates genes involved in

lipid metabolism, insulin sensitivity, adipogenesis and

inflammation (9). Due to these functions, medications that

stimulate PPAR-γ are approved for treating diabetes mellitus and

inflammatory bowel diseases, underscoring its multi-functional

roles. This review discusses the microbiome in pediatric AD,

treatment with probiotics, how disease is altered by obesity and

potential therapeutic effects of PPAR-γ agonists.
Atopic dermatitis

Pathophysiology

Atopic dermatitis (AD), or eczema, is a chronic, relapsing

inflammatory skin disease with a prevalence of up to 25% in

children and 7% in adults (10). Symptoms beginning in childhood

may subside in adolescence or continue for years, involving periods

of exacerbation and remission. Affected individuals have dry, cracked

skin, intense pruritus and a erythematous rash due to Th2 immune

responses against allergens (Figure 1). The skin barrier is impaired

within crusted erythematous areas, associated with epidermal

hyperplasia, scaling and lichenification (10). Some individuals have

deficiencies in filaggrin or antimicrobial peptides, increasing

permeability of the skin and susceptibility to opportunistic infections,

respectively. Skin injury often precipitates AD, causing keratinocytes

to produce cytokines that promote inflammation and immune

activation (TSLP, IL-1, IL-6, IL-25, IL-33, TGF-b) (10). Th2 cells

play a central role in driving pathogenesis, leading to allergen-

specific IgE production and eosinophilia within affected lesions

(Figure 1). Th17 cells also have a role, as lesional regions have

increased expression of inflammatory genes including IL13, IL17A,

IL17F, IL22, CCL17 and S100s (11). During infancy, atopic

sensitization is also associated with IL9, IL33 and IL33R expression.

Scratching affected regions leads to further impairment of the

epidermal barrier, increasing susceptibility to opportunistic

pathogens including Staphylococcus aureus.

Obese patients with immunologic diseases including atopy and

asthma have more severe disease than their lean counterparts (7,

12). Studies examining obesity in infancy and childhood also
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found a positive association with the prevalence of AD (13, 14).

Gender differences have been identified, as only females with AD

had higher abdominal obesity rates than healthy controls (15).

Leptin deficiency is commonly associated with obesity; however,

conflicting studies suggest it may not be directly involved in AD

pathogenesis (16). A murine model investigating the mechanism

of obesity-driven AD identified a role for Th17 cells (17).

Although neutralization of Th2 cytokines (IL-4, IL-13) protected

lean mice from AD, this treatment exacerbated disease in obese

mice due to the lack of PPAR-γ expression in CD4 T cells (17). In

addition, the PPAR-γ agonist rosiglitazone reduced AD severity in

obese mice, demonstrating a protective anti-inflammatory function

(17). While few studies have examined the role of microbiota in

obesity-induced AD, it may contribute to the persistent low grade

systemic inflammation that occurs in obese children (18).
Skin Microbiota

Healthy skin microbiota contains diverse species adapted for

specific niches, including Cutibacterium, Malassezia,

Staphylococcus and Corynebacterium (Figure 2) (19). The most

prevalent bacteria in healthy skin include Cutibacterium acnes,

Staphylococcus epidermidis, and Streptococcus mitis/oralis/

pneumoniae/sanguinis (20). In addition, young children have

increased colonization with Streptococcus, Granulicatella,

Gemella, Rothia, Haemophilius and Candida spp., whereas

Cutibacterium, Corynebacterium, Staphylococcus, Lactobacillus,

Finegoldia and Anaerococcus are more abundant in adults. Over

100 fungal species have been identified on healthy skin, with

most belonging to the phyla Ascomycota (21). Increased sebum

production and structural changes after puberty may facilitate

colonization with lipophilic microbes including Cutibacterium,

Corynebacterium and Malassezia, replacing Streptococcus and

Candida (20, 22). Thus, the skin microbiome in teenagers is

more similar to adults than children. The overall diversity of skin

microbes in children is due to specific environmental niches

promoting colonization with certain species, which may change

after the onset of puberty.

Few studies have analyzed the impact of obesity on skin

microbiota. Having a low body mass index (BMI) correlated with

an increased Shannon Diversity Index compared to normal

weight or obese individuals (23). Ten genera were enriched in

underweight people, including Gordina, Lupinus and Prevotella,

whereas seven were enriched in obesity including Anaerococcus,

Finegoldia and Peptoniphilus (Figure 2). In addition,

Corynebacterium colonization correlated with BMI (23). A

mouse study found that skin Corynebacterium species and free

fatty acids increased in response to a high fat diet (24). The

authors speculated that increased adipogenesis created a

microenvironment that favored colonization with lipophilic

bacteria such as Corynebacterium. Dietary factors have also been

shown to influence skin bacteria in humans (25). These data

suggest that BMI and diet impact the composition of skin

microbiota. Further studies are needed to analyze skin fungi in
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FIGURE 1

Interactions between the immune system and microbiome in atopic dermatitis. In healthy individuals, the epidermal barrier is intact and maintained by
filaggrin expression, antimicrobial peptides, and other factors. This is associated with a diverse microbiome that colonizes distinct niches on the skin
surface. Atopic dermatitis (AD) patients have an impaired skin barrier leading to increased permeability within the keratinocyte layers. This is
associated with reduced microbial diversity, including increased colonization with Staphylococcus aureus. These individuals are at increased risk of
inflammatory skin injury, leading to the production of cytokines that facilitate Th2 cell differentiation. Allergen-specific Th2 cells then produce
cytokines that promote eosinophil recruitment to the skin and IgE production by B cells. Mast cells that are sensitized with IgE release histamine and
other inflammatory mediators following subsequent exposures to the skin allergen, while eosinophils mediate skin damage by releasing intracellular
granules. Obesity is associated with increased lipid composition on the skin which facilitates dysbiosis, including colonization with lipophilic
Corynebacterium species. The chronic inflammatory milieu in obesity promotes Th17 responses on epithelial surfaces including the skin. Cytokines
produced by Th17 cells, including IL-17 and IL-22, impact keratinocyte differentiation, epithelial permeability and antimicrobial peptide production. In
addition, diet-induced obesity is associated with increased production of IgE and mast cell accumulation in the skin. These effects of obesity are
thought to increase the severity of AD in affected patients. PPAR-γ is a transcription factor with anti-inflammatory properties that also regulates lipid
metabolism. Medications that target PPAR-γ may treat AD through multiple mechanisms including suppression of Th17 differentiation, mast cell
accumulation, IgE production or pro-inflammatory cytokines. PPAR-γ agonists also improve insulin sensitivity, lipid metabolism, epidermal barrier
function and microbial diversity, while pro-inflammatory effects include Th2 differentiation and IL-9 production. It is important to ascertain if the
efficacy of PPAR-γ agonists in microbiota-dependent allergic diseases is influenced by body mass index, comorbidities or potential pro-inflammatory
effects on the immune system in certain patient endotypes.
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obesity, as Malassezia spp. are lipophilic and can induce Th17

responses (26), which may contribute to obesity-driven AD (17).

AD is characterized by reduced lipid content in skin, higher pH

and increased transepidermal water loss, which may shape the

composition of microbiota. Although children with AD had a more

diverse microbiome in non-lesional skin compared to adults,

dysbiosis occurred within skin lesions due to an impaired barrier

(20). Dysbiosis was associated with reductions in Streptococcus,

Cutibacterium and Malassezia, accompanied by increases in

Staphylococcus aureus, suggesting an antagonistic relationship

between skin commensals (20, 21). Streptococcus may inhibit

S. aureus growth by producing hydrogen peroxide (27), whereas

Cutibacterium and Corynebacterium are involved in porphyrin

metabolism which may further suppress S. aureus colonization (20,

28). Dysbiosis might also be caused by a failure in antimicrobial

peptide production which leads to increased colonization with

S. aureus (29), immune activation in response to superantigens

(30), and the development of AD (31). Patients are also sensitized
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to fungal antigens, including those from Malassezia spp., due to the

disrupted epidermal barrier (21). Several lines of evidence implicate

S. aureus in perpetuating AD. For instance, skin colonization at 3–6

months of age increases the risk of developing AD (32, 33), and

both S. aureus and S. epidermidis increase during flares and

decrease post-flare (34). Treating S. aureus-infected lesions with

antibiotics reduces inflammation, demonstrating a critical role for

microbiota in driving AD (35, 36). Topical treatments including

corticosteroids, antibiotics and calcineurin inhibitors were associated

with an increased diversity, including colonization with

Streptococcus, Cutibacterium and Corynebacterium spp (34).

Therefore, local inflammation during AD flares disrupts the

microbiome by generating an environment that favors colonization

with Staphylococcus spp. An adult study found that AD severity

positively correlated with S. capitis and S. lugdunesis in lesional

skin, and negatively correlated with S. hominis (37). Collectively,

these observations suggest that factors influencing microbial

colonization may impact an individual’s susceptibility to AD.
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FIGURE 2

Microbiome changes in obesity and atopic dermatitis. Skin microbiota in healthy individuals has been well characterized, although more studies are
necessary to elucidate developmental changes occurring throughout life. Structural changes associated with atopic dermatitis reduce bacterial
diversity and increase colonization with Staphylococcus aureus. Potential probiotics (red font) help to restore diversity and have anti-inflammatory
effects. In addition, they may suppress the growth of S. aureus. Obesity results in increased colonization with lipophilic species including
Corynebacterium. While intestinal microbiota have been shown to contribute to AD severity in obesity (not shown), the role of skin microbiota in
pathophysiology needs to be further studied. Identifying skin species that are unique to atopic dermatitis in the presence or absence of obesity
(question marks) may help to guide therapeutic strategies to promote healthy microenvironments colonized with symbiotic microbiota.
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Filaggrin (FLG)-deficiency contributes to dysbiosis by increasing

skin pH, facilitating colonization with S. aureus (38). Virulence

factors produced by S. aureus may then cause further breakdown

of the skin barrier and stimulate immunity towards skin allergens

(19). Skin microbiota are critical for the inflammation associated

with FLG-deficiency. For instance, Flg−/− mice have spontaneous

dermatitis and increased colonization with Staphylococcus spp.

(39). In this model, dermatitis was dependent on IL-1β, but

independent of Th2 cytokines. When raised germ-free, Flg−/−

mice showed signs of dermatitis as neonates; however, this

inflammation resolved in adulthood (39), suggesting that dysbiosis

maintains the chronic inflammation in genetically susceptible

individuals. Other genes associated with childhood AD include

GRP1, CCL22, TTC27 (40), although their impact on skin

colonization remains unclear.

Studies have explored if topically-applied probiotics can

alleviate inflammation by restoring homeostasis. Ito, et al.
Frontiers in Allergy 04
demonstrated that skin inoculation with S. cohnii protected

against spontaneous and chemical-induced AD by

suppressing inflammation (41). Protection was attributed to

the expression of glucocorticoid-inducible genes in skin,

although S. cohnii strain-specific differences were observed.

Roseomonas and Cutibacterium spp. may inhibit colonization

with S. aureus and be suitable probiotics for AD skin (19);

however, some Cutibacterium spp. (C. acnes) also facilitate

S. aureus biofilm formation. A probiotic formulation

containing Roseomonas mucosa, poly(vinyl pyrrolidione),

poly(vinyl alcohol) and sodium alginate demonstrated

antimicrobial activity against S. aureus (42). Other topical

probiotics investigated for skin use include Bacillus,

Bifidobacteria, Lactobacillus, Paenibacillus, Pseudomonas,

Staphylococcus, Streptococcus, and others (43). These studies

demonstrate a focus towards treating dysbiosis in order to

reduce skin inflammation.
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Gut microbiota in atopic dermatitis

The gut microbiome has been compared between infants with

and without AD. Facultative anaerobes predominate during the

first 6–12 months of life prior to colonization with obligate

anaerobes (44). Notably, the anaerobe Akkermansia muciniphila

was only detected in healthy infants and their mothers, suggesting

it may correlate with protection against AD (45). Breast feeding

may account for some of the microbiota differences between AD

and non-AD infants (44). In the second year of life, moderate to

severe AD was associated with a higher abundance of facultative

anaerobes compared to healthy controls. This correlated with

decreased production of the short chain fatty acid butyrate, and

decreased expression of the butyrate receptor Gpr109a and Pparg

in the colon of AD-induced mice (44). The authors speculated

that low butyrate levels perturb the microbiome by decreasing

oxygen consumption, promoting the growth of facultative

anaerobes. In support, metabolic pathways responsive to oxidative

stress are upregulated in the microbiome of AD patients (46). This

was associated with increased colonization with Faecalibacterium

prausnitzii and decreased levels of butyrate and propionate. In

addition to Faecalibacterium, Bacteroides and Ruminococcus

lactaris are increased in AD infants, whereas Bifidobacterium,

Clostridium paraputrificum and Lachnospiraceae are decreased

(45). Taken together, these data demonstrate that AD is associated

with an altered microbial profile in the GI tract.

Several bacterial species are being tested for their therapeutic

efficacy in AD. Oral administration of A. muciniphila or F.

prausnitzii improved AD symptoms in mice, including dermatitis

score, scratching behavior, serum IgE and TSLP (47). Treatment

with these strains increased filaggrin in skin and ZO-1 expression

in the intestine, demonstrating improved epithelial barriers. The

mechanism of how A. muciniphila protects against AD may be

multi-factorial, as monocolonization of germ-free mice upregulated

genes involved in epithelial homeostasis, antigen presentation,

immune activation and PPAR-α-dependent metabolism (48). Oral

treatment with Pediococcus acidilactici decreased AD severity in

mice, including erythema, hemorrhage, edema, excoriation,

dryness and scratching behavior (49). In addition, P. acidilactici

prevented the AD-induced decreases in Lactobacillales,

Butyricicoccus, and Ruminococcus, demonstrating that it may help

to restore intestinal homeostasis. Oral administration of

Lactobacillus paracasei reduced AD-associated skin lesions,

epidermal thickening, serum IgE and immune cell infiltration into

skin lesions in a mouse model of AD (50). This was associated

with decreased effector T cell cytokines and increased IL-10 and

TGF-β. Similar results were found for L. plantarum, including

increased colonization with butyrate-producing bacteria (51). In

children with mild or moderate disease, L. plantarum

supplementation resulted in a greater reduction in AD scores

compared to placebo (52). A mouse model using

Limosilactobacillus reuteri found that combining prenatal and

postnatal treatment was better at improving AD and lowering

serum IgE than postnatal treatment alone (53). This suggests

maternal factors may influence the risk of developing AD in utero.

Supplementation with L. reuteri increased microbial diversity in
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the GI tract, including colonization with Faecalibacterium,

Bifidobacterium and Akkermansia (53). The anti-inflammatory

effects of L. reuteri may have been due to PPAR-α signaling and

retinol metabolism. These data demonstrate complex roles for

microbiota and probiotics in protection against AD, including

suppressing inflammation, improving microbial diversity, and

increasing epithelial barrier function.
Gut microbiota and obesity

Few studies have examined the role of gut microbiota in obesity-

induced allergies. Altering the microbiome with antibiotics during

the first year leads to increased adiposity (54), demonstrating a

role for bacteria in regulating metabolism. In support, human

microbiota from obese donors increase body weight and adiposity

when transferred to germ-free mice (55). Currently, a clinical trial

is analyzing the microbial signature associated with obesity and

AD (56). A mouse study demonstrated that diet-induced obesity

aggravates contact hypersensitivity in an IL-17-dependent manner

(57). This correlated with colonization of the GI tract by pro-

inflammatory species including segmented filamentous bacteria,

Clostridium type IV, and Enterococcus. Another study found that

high fat diets increase IgE, small intestinal mast cells and gut

permeability in response to food allergens (58). These data

demonstrate that obesity-induced changes to the microbiome

correlate with AD severity, and suggest that probiotics associated

with leanness may protect against AD. Several species were shown

to have lipid-lowering effects in human epidermal keratinocytes in

vitro, including Bifidobacterium bifidum, Lactobacillus acidophilus,

L. delbrueckii, L. casei, and L. gasseri (59), although their impact

on obesity and atopy remain unknown. In vivo, Bifidobacterium

breve persisted for at least 90 days after administration, whereas

Lactobacillus salivarius colonization was transient (60),

demonstrating that some probiotics may need more frequent

administration than others.
PPAR-γ and childhood obesity

PPAR-γ is a master regulator of adipogenesis and functions as

a transcription factor, improving insulin sensitivity (61). In

addition, PPAR-γ has anti-inflammatory functions through its

suppression of NF-κB and cyclooxygenase 2 in epithelial cells,

granulocytes and T cells. High expression levels within adipose

tissue, intestinal and immune cells contributes to the therapeutic

efficacy of PPAR-γ agonists in type 2 diabetes and inflammatory

bowel diseases (IBDs). Natural ligands for PPAR-γ include

prostaglandins, medium to long chain fatty acids, foods and

environmental pollutants (62). Genome studies have identified

PPARG as one of the genes linked to childhood obesity (63, 64).

While a dominant negative mutation is associated with severe

insulin resistance, type 2 diabetes and hypertension (65), a gain

of function is linked to extreme obesity (66). In mice, the

dominant negative mutation exacerbates insulin resistance in the

context of leptin-deficiency, demonstrating antagonistic roles for
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leptin and PPAR-γ in adipogenesis (67). PPAR-γ concentrations in

obese children positively correlate with birth weight, but negatively

correlate with waist circumference (68). Further, PPARG

expression in immune cells and adipose tissue negatively

correlate with obesity (69, 70), demonstrating complex functions

for this transcription factor in regulating body weight. TMEM18

induces the expression of PPARG in adipose tissue and is critical

for adipocyte differentiation (69). The inflammatory cytokine

TNF suppresses both TMEM18 and PPARG1, leading to

increased adipocyte size, decreased adiponectin, decreased insulin

sensitivity and macrophage infiltration into adipose tissue. Some

of the effects of PPAR-γ activity are mediated by adiponectin

and ANGPTL4 (71, 72), with tissue-specific functions identified

in the GI tract, skin, adipose tissue and immune cells (17, 73–

79). Notably, microbiota have been found to regulate PPAR-γ

signaling in the gut (75), although the role of microbiota on

extra-intestinal functions of PPAR-γ are less clear.
PPAR-γ as a therapeutic target in atopic
dermatitis

Due to its expression profile and anti-inflammatory effects, PPAR-

γ may be a potential therapeutic target in microbiota-dependent

diseases. The thiazolidinedione (TZD) rosiglitazone alleviated AD in

response to a high fat diet, demonstrating a critical function for

PPAR-γ (17). In this model, diet-induced obesity increased the

severity of AD in an IL-17-depedendent manner. This was attributed

to dietary fat downregulating Pparg within Th2 cells, allowing for the

expansion of Th17 cells (17). A model of atopic march found the

combination of rosiglitazone and dexamethasone suppressed allergic

skin inflammation better than either medication alone, suggesting

TZDs may synergize with glucocorticoids (76). Topical treatment

also reduced subsequent lung inflammation following intranasal

challenge. While it remains to be determined if PPAR-γ alters the

microbiome in AD, Pparg expression is decreased in the colon of

mice with AD, correlating with dysbiosis (44). Further, PPAR-γ

agonists modulate intestinal microbes associated with Western diets

or colitis (80–83). The mechanism through which PPAR-γ regulates

GI microbiota involves suppressing lactate fermentation and

promoting beta oxidation (84), facilitating colonization with

anaerobes. Although PPAR-γ stimulation affects microbiota,

therapeutic effects of agonists most likely arise from the suppression

of Th17 cells (17), epidermal keratinocyte growth (85), mast cell

development and differentiation (86, 87), and IgE production (88),

demonstrating several anti-inflammatory functions that may benefit

AD patients (Figure 1).

The etiology and pathophysiology of psoriasis bears some

similarities with AD, including obesity, microbial dysbiosis and Th17-

mediated inflammation (89). Clinical studies identified anti-psoriatic

effects of TZDs (90), suggesting these medications may help in AD.

Nevertheless, the skin microbiome is distinct in psoriasis and

characterized by Corynebacteria spp. rather than S. aureus (91).

Further, only AD patients have transcriptome signatures associated

with epithelial barrier function and immune activation, suggesting that

TZDs must be further studied before their use in pediatric AD
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patients. TZDs have a black box warning for congestive heart failure, a

rare but serious side effect (92). Other adverse reactions include

edema, weight gain, anemia and bone fractures. The use of

mesalamine for IBD has been associated with renal impairment,

hypersensitivity and photosensitivity. Further, PPAR-γ can exert pro-

inflammatory effects through IL-9 which exacerbates dermatitis (93,

94). Although few studies have assessed the clinical use of PPAR-γ

agonists in children, no serious adverse effects were reported in trials

for IBD and autism (95, 96), suggesting an acceptable safety profile.

Collectively, pre-clinical studies suggest that PPAR-γ agonists might

be effective in a subset of patients with AD, and trials comparing their

local vs. systemic administration may help to minimize the incidence

of adverse reactions.
Conclusions

A surge of studies from the last decade helped to define the

commensal microbiome in pediatric AD and how dysbiosis

contributes to chronic diseases. Recent findings into the

pathophysiology of obesity-driven AD have revealed PPAR-γ to be a

potential therapeutic target. Future studies examining the efficacy of

PPAR-γ modulators should distinguish their metabolic vs. anti-

inflammatory effects in the gut, skin, adipose tissue and immune

system, in order to inform the best therapies. The severity of AD and

its role in initiating atopic march underscore the significance of

utilizing effective treatments which may help to reduce the risk of

asthma later in life.
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