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Asthma is a common chronic condition in children and in an African setting is
often highly prevalent in urban areas as compared to rural areas. Asthma is a
heritable disease and the genetic risk is often exacerbated by unique localised
environmental factors. The Global Initiative for Asthma (GINA) recommendation
for the control of asthma includes inhaled corticosteroids (ICS) alone or
together with short-acting β2-agonists (SABA) or long-acting β2-agonists (LABA).
While these drugs can relieve asthma symptoms, there is evidence of reduced
efficacy in people of African ancestry. Whether this is due to immunogenetics,
genomic variability in drug metabolising genes (pharmacogenetics) or genetics
of asthma-related traits is not well defined. Pharmacogenetic evidence of first-
line asthma drugs in people of African ancestry is lacking and is further
compounded by the lack of representative genetic association studies in the
continent. In this review, we will discuss the paucity of data related to the
pharmacogenetics of asthma drugs in people of African ancestry, mainly
drawing from African American data. We will further discuss how this gap can
be bridged to improve asthma health outcomes in Africa.
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Introduction

Asthma is one of the most common non-communicable diseases, affecting an estimated

262 million people in 2019 (1). An International Study of Asthma and Allergies in

Childhood (ISAAC) has provided the most reliable global, comparative data on the

prevalence of asthma and other allergic conditions in children, enabling comparison of

asthma prevalence between different parts of the world (2). In this study, the prevalence of

asthma in 13–14-year-old Black African children was 15.3%, which was higher than the

global average (14.1%) (3). In this study, the prevalence of asthma in Africa was determined

among 16 countries and 22 centres (3). Several centres, including Cape Town, South Africa

(SA) (20.3%), Polokwane, SA (18.0%), Reunion Island (21.5%), Brazzaville, Republic of

Congo (19.9%), Nairobi, Kenya (18.0%), Urban Ivory Coast (19.3%) and Conakry, Guinea

(18.6%) showed relatively high asthma symptom prevalence similar to those in western

Europe (3). These findings are analogous to previous studies conducted in Africa, depicting

the prevalence of asthma to be higher in urban than rural areas (3–6). A few recent studies
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conducted in the Western Cape and Eastern Cape in South Africa

comparing rural and urban children showed a significant impact

of geographical location in the development of allergic disease in

children under the age of 12 years (7, 8). Atopic dermatitis is

much lower in rural areas compared to urban areas which have a

prevalence similar to western countries (9). Environmental bacterial

endotoxin have a strong protective correlation, where high levels

are observed in rural areas and less so in urban areas. Interestingly,

levels of house dust mites are comparable between urban and rural

areas (9). These trends are similar to those that have been shown

elsewhere (10, 11). ISAAC provided the prevalence of asthma in

Africa, however, the underlying factors responsible for genetic

determinants of asthma still need to be investigated.

While the risk factors for asthma are well known and managed

in high resource settings, such healthcare systems do not exist in

some parts of Africa. This leads to poor and late diagnoses of

asthma in children and adults, many deaths go unreported and

prevalence may be higher than current estimates (12, 13). The

burden of other infectious diseases in Africa means that generally

noncommunicable diseases including asthma are largely

neglected (14). The increased number of people dying due to

asthma is alarming when the disease itself is treatable in most

cases by medication available in public hospitals (15, 16). Inhaled

corticosteroids (ICS) together with inhaled short-acting

β2-agonists (SABA) are the mainstay for treatment as they can

act as a short reliever. However, the lack of simple inhaler

devices that can reliably deliver a known drug concentration

leads to reduced treatment efficacy in low and middle-income

countries (LMICs) (15). Affordability and availability of first-line

asthma drugs or their generic equivalents in public hospitals

contribute to poor control of asthma (17). Local solutions such

as homemade spacers from 500 ml plastic bottles have been

shown to be effective for children with asthma (18). Part of the

problem lies in that most people don’t recognise symptoms and

have never been diagnosed to have asthma. In cases where

people have been properly diagnosed, with limited educational

support, they may poorly adhere to prescribed medication.

Again, due to the complex nature of the disease, patients coming

to hospitals are likely to have acute symptoms and often drugs

for the management of acute asthma, oxygen, oral

corticosteroids, and spacer devices are not included in the World

Health Organization’s (WHO) essential medicines list and likely

not to be available in local hospitals.
Asthma risk factors

The major risk factors for the development of asthma include

genetic variation and environment. Research supporting the role of

environmental risk factors for the development of asthma includes

nutrition (1), obesity (19), antibiotic use during pregnancy and in

infants as well as toddlers (20) and psychosocial factors (21, 22).

Other risk factors that are key in Africa are the presence of

eczema (23), allergen exposure [e.g., pet (24), house dust mite,

cockroach, mould (25)], industrial pollution (26) and informal

housing (24). The genetics of asthma can be described at three
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more likely to develop asthma, immunogenetics, (ii) genomic

variability that affects or determines how asthma patients

respond to a given medication, pharmacogenomics, (iii) the

genetics of asthma-related traits (i.e., lung function, asthma

exacerbations, IgE levels, asthma severity). The association

between genetics and asthma is dissected separately in this article.
Immunogenetics of asthma

Twin studies have suggested that between 60% and 80% of asthma

disease is heritable, meaning genetics are crucial in outcomes (27–32).

Genetic-wide association studies (GWAS) have identified variations in

genes associated with the immune system to be critical in asthma

development (33–35). These genetic risk alleles span across the

genome and are found in chromosome 2 (IL-1R1, rs1558641),

chromosome 5 (RAD50, rs6871536), chromosome 7 (CDRH3,

rs6967330), chromosome 9 (IL-33, rs928413) and chromosome 17

(GSDMB, rs2305480) (33). It is evident that there is multiple

genetics involved in the immunopathology of asthma, thus studies

have dissected susceptible genes in different ethnic groups. There is

a measurable difference in asthma phenotypes across ethnicities (36,

37). Although some of these differences can be attributed to

healthcare affordability, some are due to inherited genetic variation.

Studies with admixed populations have suggested that genetic

variation determines asthma severity (38). African ancestry impacts

lung function and people of African ancestry show low baseline

lung function when compared to people of European ancestry (39).

Adult people of African ancestry show increased genetically

associated asthma exacerbations independent of treatment

management and other socio-economic factors (40). Interestingly, in

children of African ancestry, both genetic and socioeconomic factors

influence hospital re-admission rates for uncontrolled disease when

compared to European-ancestry children admitted for the same

symptoms (41). These underlying genetic variants within specific

populations have implications for early disease diagnosis,

misclassification and response to treatment. Asthma-related

morbidity and mortality are higher among Puerto Rican and

African Americans compared to non-Hispanic white people and

Mexican Americans (42).

Some of the more prominent genetic variations are in the 17q12-

21 locus harbouring genes such as GRB7, IKZF3, ZPBP2, GSDMB,

ORMDL3, GSDMA and the 6p21.32 locus harbouring HLA genes

such as HLA-DQ and HLA-DR and appear to be the main

asthma contributors identified through GWAS (32, 43). Of the

one hundred and twenty-six asthma-associated independent

variants (p-value <5.0 × 105) identified to date, the majority belong

to the 17q12-21 locus and have been replicated in multiple

ancestries (44, 45). Signals near the HLA-DQ gene were found in

European American, African American, and Latino populations;

but with different SNPs identified in each ethnic group (31).

Furthermore, class II HLA alleles appear to be involved in late-

onset allergic asthma in European and Hispanic populations (46–

48). Interestingly, the HLA-DRB1*09:01 allele was associated with

increased total Immunoglobulin E levels in African ancestry
frontiersin.org
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individuals with asthma, potentially through a mechanism involving

specific peptide presentation and/or increasing inflammation (49).

More recently, a consortium on Asthma among African Ancestry

Populations (CAAPA) has identified two novel loci, 8p23

(associated with ARHGEF10 or MYOM2 genes) and 8q24

(associated with intronic TATDN1) in chromosome 8 (50). These

loci although not yet validated in an independent study are

associated with asthma risk in the African ancestry population

(50). Studies have evidently established that genetic associations

for asthma vary amongst different racial and ethnic groups (31,

34, 50). While these studies in African American and other

populations with African ancestry highlight ethnic-specific variants

leading to asthma risk, it is very likely that as more GWAS studies

are performed in Africa, they would be a local environmental

influence on genetic risk factors. Although more than 100 SNPs

have been identified to associate with asthma across multiethnic

GWAS studies, only a small fraction explains asthma phenotype.

This is largely influenced by the missing heritability problem,

particularly in complex trait diseases like asthma, where

environment, epigenetics and heritability overestimation can

influence phenotype. Small effect size SNPs and technical

limitations of GWAS imputations, especially when dealing with

less represented genetic ancestries can also contribute to missing

heritability (51, 52). Large meta-analysis GWAS studies that take

into account the effect size and allele frequency across populations,

and multi-ancestry imputation servers (e.g., CAAPA African

American dbGAP (accession code phs001123.v1.p1, https://

imputationserver.sph.umich.edu) would help in fine-mapping

SNPs and reduce some of the missing heritability (52). Genetic

heterogeneity in African ancestry is also caused by fewer genetic

population bottlenecks and the fact that human evolution began in

Africa. This translated to much lower linkage disequilibrium and

heterogenous haplotypes due to less genetic recombination (53).

All these factors need to be considered in multi-ancestry analysis

of genetic variations in disease and more so in complex diseases

such as asthma which are driven by common variants with small

effect sizes.
Management of asthma

The long-term goals of asthma management are to achieve

good symptom control and to minimize future risk of asthma-

related mortality, exacerbations, persistent airflow limitation and

side effects of treatment (1). For individual patients, treatment

decisions should take into account patient characteristics

(phenotype) that predict the patient’s likely response to

treatment, together with the patient’s goals or concerns and

practical issues (inhaler technique, adherence, medication access

and cost to the patient). Thus, effective asthma management

requires a partnership between the patient (or the parent/carer)

and their healthcare providers (1). Non-drug management of

asthma includes environmental changes such as smoking

cessation (especially exposure in children) and allergen avoidance

(including occupational), weight reduction, avoiding drugs that

are associated with triggering symptoms and managing comorbid
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diseases (e.g., allergic rhinitis, obesity, gastroesophageal reflux

disease) (1). Overall, asthma treatment involves the stepwise

approach whereby treatment is stepped up and down in response

to asthma control and exacerbation risk (54).

Until recently, international asthma treatment approaches

started with reliever medication (e.g., inhaled salbutamol) used

“as required” at the lowest step with the addition of regular

preventer medication, for example, ICS and other therapies

including long-acting β2 agonists (LABA) at higher steps (54).

Global Initiative for Asthma (GINA) guidelines recommend that

the minimum treatment for asthma in adolescents and adults is

either combined ICS-formoterol as reliever therapy (maintenance

and reliever therapy) or ICS whenever SABA is taken (54). In

children below the age of 6 years, LABA is contraindicated,

hence ICS is used whenever SABA is as reliever therapy. Daily

use of ICS is the mainstay of treatment in patients with

troublesome asthma symptoms occurring at least more than

twice a month, or waking due to asthma once a week or more,

especially if any risk factors exist (1). The dose of ICS is

increased in a stepwise manner, based on symptom control (55).

Inhaled Corticosteroids work by binding to the intracellular

glucocorticoid receptor (GR), which is encoded by the gene

NR3C1 (56). Several proteins/ enzymes are then involved during

the translocation of the ICs-GR complex to the nucleus where it

binds to its cognate DNA sequences called glucocorticoid

response elements (GREs) (57). The binding of the ICs-GR to

GREs triggers the transcription of several genes. It is important

to note that, the anti-inflammatory activity of ICs is achieved

through a combination of inhibition and upregulation of gene

transcription of different genes (58). Inhibition results in the

reduction in the production of pro-inflammatory cytokines. On

the other hand, transactivation results in an upregulated

expression of annexin A1 which leads to reduced prostaglandin

and leukotriene production. It is believed that transactivation

plays a critical role in the onset of unwanted adverse events

(ADEs) induced by ICSs (56, 57).

Furthermore, other preventer therapies such as LABA, and

Leukotriene receptor antagonist (LRTA) may be added if patients

do have complete control of symptoms (59). In severe symptoms

and low lung function, long-acting anticholinergic (tiotropium) is

added and a short course of oral corticosteroids (OCS) may be

prescribed (60). Referral for phenotyping is recommended as a

last step in the GINA guidelines, in order to add more targeted

therapy such as biologics.

Management of acute asthma exacerbation includes nebulised

drug administration initiated in the emergency department with

the administration of oxygen aimed at achieving arterial oxygen

saturation of 93%–95% in adults and adolescents and 94%–98%

for children between 6 and 11 years. Inhaled SABA therapy

should be administered frequently. The most cost-effective and

efficient delivery is by pressurized metered-dose inhalers (pMDI)

with a spacer (61, 62). Systemic corticosteroids speed the

resolution of exacerbations and prevent relapse, and should be

utilized in all but the mildest exacerbations in adults, adolescents

and children 6–11 years (63, 64). The oral route of systemic

corticosteroids is preferred because it is quicker, less invasive and
frontiersin.org
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TABLE 2 Genes that determine the genetic susceptibility and treatment
corticosteroid response profiles in asthma.

Gene Associated loci Affected pathways, or
therapeutic drugs

ABCB1 (MDR1) rs1128503, rs2032582 Pharmacokinetics of corticosteroids

rs1045642

CRHR1 rs242941, rs1876828,
rs242941

Corticosteroid pathway

CYP3A4 rs35599367 (3A4*22) Pharmacokinetics of corticosteroids
(e.g., fluticasone propionate)

CYP3A5 rs776746 (CYP3A5*3) Pharmacokinetics of corticosteroids
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less expensive (65), however, intravenous steroids may be

administered in patients failing to tolerate them orally. Additional

treatment (intravenous magnesium, high dose ICS) is indicated in

severe patients with poor clinical response (1). For adults and

children with moderate-severe exacerbations, treatment in the

emergency department with both SABA and ipratropium, a short-

acting anticholinergic, was associated with fewer hospitalizations

and greater improvement in PEF and FEV1 compared with SABA

alone (62, 63). However, ipratropium showed no benefit in

children admitted for acute asthma.

(e.g., beclomethasone)

DUSP1 rs881152, rs34507926 Corticosteroid pathway

FBXL7 rs10044254 Corticosteroid pathway

FCER2 (rs28364072, T2206C) Modifies corticosteroid activity

FKBP4 rs4713916 Corticosteroid pathway

GLCCI1 rs37972 Modifies corticosteroid activity

HDAC1 rs1741981 Corticosteroid pathway

HDAC2 rs58677352 Corticosteroid pathway

IPO13 Pharmacokinetics of corticosteroids

miRNA hsa-miR-142-3p; hsa-
miR-17-5

hsa-miR-142-3p targets GC
receptor- α

NR3C1 rs6189, rs6190,
rs41423247, s56149945

Corticosteroid pathway

ORMDL3 rs2872507, rs72821893 Modifies corticosteroid activity

STIP1 rs6591838, rs223647,
rs6591838, rs1011219

Corticosteroid pathway

TBX21 rs2240017 Modifies corticosteroid activity

RNASE2 rs3827907 ICS treatment response in the
presence of eosinophilic
inflammation

APOBEC3B and
APOBEC3C

rs5995653 Modified by ICS and associated
with protective response to
exacerbations
Pharmacogenomics of asthma

Differences in genetic ancestry might also be important in the

therapeutic efficacy of commonly used asthma therapies. At least

50% of the variability in ICS response is thought to be due to

individual characteristics of target genes (66). African Americans

with moderate to severe asthma have reduced bronchoresponsivess

compared to European ancestry individuals (67), while Puerto

Ricans show less responsiveness to albuterol compared to other

Hispanic groups (68). The most relevant is related to a commonly

used class of pharmacologic agents: β2-adrenergic receptor

agonists, which are divided into short-acting β-agonists (SABAs)

and long-acting β-agonists (LABAs) (Table 1). SABAs include

fenoterol, isoproterenol, pirbuterol, levalbuterol, and albuterol

whereas LABA includes salmeterol and formoterol, which are

often used in combination with inhaled corticosteroids for chronic

management (55). SABAs are the most frequently prescribed

asthma medication due to their ability to rapidly cause smooth

muscle relaxation in the airways (69).
Inhaled corticosteroids

The importance of genetic variation in each of the genes in

Table 2 derives from their normal function and the effects of

disturbing that homeostasis. For example, genetic variation in

NR3C1 causes modifications of the GR (56). The FKBP4 gene

encodes for the immunophilin FKBP52, which regulates GR

signalling (58). Corticosteroid metabolism occurs in the liver and

most ICSs are metabolized to inactive metabolites. ICSs are

substrates for CYP3A4, CY3A5 and transporters such as the
TABLE 1 Genes that determine the short and long β2-adrenergic receptor
agonists response profiles in asthma.

Gene Associated loci Affected pathway or
therapeutic drug

ADCY9 rs2230739 Inhaled β2-adregenrnic receptor agonists,
SABAs

ADRB2 rs73650726, rs1042713 SABAs, albuterol

ARG2 rs2781667, rs7140310,
rs10483801

SABAs, albuterol

SPATS2l rs295137 LABAs, Salmeterol and formoterol

ADRB2 rs1042713, rs1800888 LABAs, Salmeterol and formoterol

SABA, short-acting β2-agonists; LABAs, long-acting β2-agonists.
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multidrug-resistance gene MDR1 (ABCB1) (70). Mutations in

any of these genes which are part of the pharmacokinetics and

pharmacodynamics of ICSs contribute to variability in response

observed among asthmatic patients. Importins (IPOs) are known

to direct the ligand-activated GR to gated channels of the nuclear

membrane and cause the translocation of the GR to the nucleus

(56). Thus, genetic variation in IPO coding genes such as IPO13

is likely to affect the functions associated with its proteins (56).

The stress-induced phosphoprotein 1 (STIP1) modulates

chaperone activities of HSP70 and HSP90, which can influence

lung function responses to corticosteroids, thus any genetic

variation will disturb this functioning (58). STIP1 is associated

with lung function response during ICS therapy (71). On the

contrary, research revealed that asthmatic adult individuals who

were carriers of the variant form of the (H33Q) nonsynonymous

TBX21 rs2240017 polymorphism, had worse control of symptoms

when treated with ICSs for 12 weeks, thus suggesting that the

mentioned polymorphism is related to response to ICS (72).

In a multi-ancestry population Study of Asthma Phenotypes

and Pharmacogenomic Interactions by Race-ethnicity

(SAPPHIRE), response to a 6-week ICS was found to impact the

rs3827907 variant, which highly correlated with the RNASE2

gene (73). This variant was replicated in GALA 1 and SAGE I

populations with Latino and African American populations.

RNASE2 is highly expressed in eosinophil granules and can be
frontiersin.org
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used as a predictive marker for ICS response, particularly in

African American or Latino populations. In another ICS

response study in admixed children from GALAII and SAGE

cohorts with asthma, rs5995653 SNP related to apolipoprotein B

mRNA-editing catalytic polypeptide 3 (APOBEC3)B and

APOBEC3C genes was associated with a protective effect against

asthma exacerbations (74). This is likely due to the APOBEC3’s

role in antiviral response and viral exacerbation-induced asthma.
Short-acting β2-agonists

A GWAS study of 949 African American children with asthma

under Study of African Americans, Asthma, Genes and

Environments (SAGE I and II) receiving albuterol, found a better

response to bronchodilators compared to European ancestry

children with asthma (75). A smaller cross-sectional study found

significantly lower responsiveness in African Americans

compared to European Americans at higher doses of albuterol

(360 mcg and 540 mcg), suggestive of a dose-dependent response

(76). The variant (rs73650726) responsible for differential

albuterol response is more common in African Americans (8%)

and less frequent in Latino populations (1%) and absent in

European and Asian populations (75). Other bronchodilator

response genes such as SPATA13-AS1 have been identified using

SABA in otherwise healthy 328 African Americans (Table 1).

This gene was independently verified in a replication cohort of

the Study of Asthma Phenotypes and Pharmacogenomic

Interactions by Race-ethnicity (SAPPHIRE) of African Americans

and European Americans with asthma (69). It is interesting that

no major safety issues have been reported in patients of African

ancestry receiving SABA compared to other ethnicities.
Long-acting β2-agonists

Clinical outcomes from multiple randomised controlled trials

(RCT) and cohort studies on LABAs responses across different

ethnicities are inconclusive (77). Several Cochrane reviews of

RCTs have found seriously increased risk of disease deterioration

in African Americans associated with LABA therapy compared

to other population groups (78–81). African Americans were

found to be at high risk of respiratory-related death and

hospitalisation requiring intubation and mechanical ventilation,

however, LABA therapy did not lead to significantly more

asthma-related deaths (80). Some of the increased risk of

asthma-related death in African American population can be

attributable to treatment failure in patients receiving LABA alone

or in combination with other biologics such as Leukotriene

receptor agonists (82). Some RCT studies have reported no

significant increased risk in African Americans compared to

others receiving ICS (fluticasone) alone or in combination with

salmeterol in adolescents and adults (83). This was also true for

patients of African ancestry receiving a combination of

formoterol with budesonide or budesonide alone. Generally,

there is a suggestion that people of African ancestry are at higher
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risk of being hospitalised due to asthma-related symptoms and

that some LABA (in this case salmeterol) at certain doses can

increase this risk further. More powered observational studies

would be essential in determining asthma-related or LABA

therapy-related risk amongst patients of African ancestry in

order to control asthma more effectively.
Genetic variants in the β2-adrenergic
receptor gene

The β2-adrenergic receptor gene (ADRB2), a receptor target for

beta-agonist therapy has been vigorously investigated (Table 1)

(67, 75, 77, 84, 85). ADRB2 is intronless, yet a polymorphic gene

with more than 49 different genetic variants in multi-ethnic

asthma cohorts evaluated to date (86–88). Of these, the most

intensively studied are mutations leading to amino acid changes

in position 16 leading to 2 variants (Gly16Gly and Gly16Arg,

rs1042713) and changes in position 27 leading to 3 variants

(Gln27Glu, Glu27Gln, Gln27Gln, rs1042714) (85). These changes

lead to the downregulation of the β2-adrenergic receptor (β2AR)

and resistance to β2-adrenergic agonist-induced relaxation of the

smooth muscle (89). A meta-analysis study found the ADRB2

genotype (Arg16Arg) to be beneficial in children of African

ancestry treated with SABA compared to other ethnicities (89).

However, in a LARGE RCT study, the Arg16Arg variant had the

opposite effect in the participants of African ancestry treated

with LABA together with ICS or LABA alone (82). The

Gln27Glu variant has been investigated in both adults and

children. An RCT study of 87 patients with the 27Gln variant

receiving LABA, showed an age-dependent response, with older

patients responding better than younger patients. Younger

patients with 27Gln or 27Glu responded better to LABA plus

ICS (90). In another pharmacogenetic study of rare ADRB2

variants, the rare Thr164Ile variant (rs1800888) was associated

with asthma-related hospitalization in the past year in non-

Hispanic white population and African American asthmatics

treated with LABA, respectively (88). Interestingly, the same

genotype was associated with fewer hospital visits in non-

Hispanic white population not receiving LABA (91).

Adenylyl cyclase type 9 is an enzyme within the canonical

β2-adrenergic receptor pathway encoded by ADCY9 (Table 1).

ADCY9 coding SNP, Met772Ile (rs2230739), is associated with

bronchodilator response to a SABA, albuterol, only in patients

treated with an ICS from the Childhood Asthma Management

Program (CAMP) cohort (92). This gene pathway interaction

was replicated in an independent Korean population trial cohort

treated with a LABA, formoterol, in combination with an ICS. In

addition, rs1042713 SNP, which conditions the G16R genotype,

influences long-term response to SABA, and salbutamol, and

patients who are homozygous (16R/R) could benefit from

avoiding salbutamol (93).

Other biologics which we have not covered in detail in this

review include leukotriene modifiers. The response to treatment

with leukotriene modifiers among asthmatics is highly

heterogeneous (94). The role of genetics in LTRA still lacks
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strong evidence. Current data suggest that variants in ALOX5

(rs2115819) (95) and LTC4S (rs730012) likely modulate a

portion of the variability in responses to LRTA (59, 96, 97).

Robust research as well as replication pharmacogenetics studies

in asthmatic patients are still lacking, particularly in patients of

African ancestry.
Future direction

There is a paucity of data on the immunogenetics of asthma in

Africa. In this review, we have heavily relied on African American

data. We are cognizant of the fact that African American

population is composed of a complex admixed group. This is

further complicated by the fact that pharmacogenomics of

asthma would be largely influenced by the environment, meaning

such data cannot be extrapolated to Africa. Studies in this area

will give direction in more precise treatment for individual

asthmatic patients. Although factors such as access to drugs or

adherence may affect symptom control in asthmatic patients in

Africa, there may be a subset of patients who do not respond to

certain asthma drugs. Differences in minor allele frequencies at

drug pharmacogenetic loci potentially contribute to a greater

frequency of treatment failures or adverse responses and these

need to be considered at the population level and individual

level, especially when dealing with recently admixed populations.

Currently, no asthma GWAS case-control study or GWAS-based

pharmacogenetics study has been performed in Africa which is

worrying considering how certain drugs could potentially

exacerbate asthma-related complications. There is a need to train

computational biologists and bioinformaticians to close a skills

shortage gap in Africa which will be able to tackle big data being

generated in various consortiums including efforts led by

H3Africa. Ethical considerations and policies to guide against the

exploitation of vulnerable communities and sensitiveness around

unique social, cultural, economic, and religious contexts in Africa

need to be at the forefront when considering genomic research to

build trust. Genomics research in Africa will require huge

investment by global funding bodies and commitment from local

governments to ensure sustainability. Bridging the genomics gap

in African populations has huge potential for genomic medicine

worldwide and importantly will reduce health disparities. The

recently established health monitoring database in South Africa

will likely combine different omics such as transcriptomics,

proteomics, epigenetics, and imaging technologies together with
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genomics and health electronic records will improve health

outcomes and prevent unnecessary morbidity and mortality. In

asthma, there is an urgent need for the discovery of GWAS

studies based on continental African cohorts and also

pharmacogenetics of currently available first-line asthma drugs to

lessen the asthma burden in Africa.
Conclusion

Asthma is a complex disease of high prevalence in Africa.

Environmental factors including genetics have been shown to be

associated with asthma. Furthermore, several susceptible genetics

associated with asthma have been identified in patients of

varying ethnicity, however, little information exists on patients of

African ancestry. Management of asthma includes ICS and

β2-adrenergic receptor agonists, although not all patients are

controlled by this therapy. Therefore, the identification of gene

polymorphism or gene response to therapy is of utmost

importance in symptom control and in developing more

personalised treatment options.
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