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Dysbiotic lung microbial
communities of neonates from
allergic mothers confer neonate
responsiveness to suboptimal
allergen
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Medicine, Indianapolis, IN, United States, 2Department of Microbiology and Immunology, Indiana
University School of Medicine, Indianapolis, IN, United States, 3Division of Pulmonary, Allergy and Sleep
Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States,
4Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham,
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In humans and animals, offspring of allergic mothers have increased
responsiveness to allergens. This is blocked in mice by maternal
supplementation with α-tocopherol (αT). Also, adults and children with allergic
asthma have airway microbiome dysbiosis with increased Proteobacteria and
may have decreased Bacteroidota. It is not known whether αT alters neonate
development of lung microbiome dysbiosis or whether neonate lung dysbiosis
modifies development of allergy. To address this, the bronchoalveolar lavage
was analyzed by 16S rRNA gene analysis (bacterial microbiome) from pups of
allergic and non-allergic mothers with a basal diet or αT-supplemented diet.
Before and after allergen challenge, pups of allergic mothers had dysbiosis in
lung microbial composition with increased Proteobacteria and decreased
Bacteroidota and this was blocked by αT supplementation. We determined
whether intratracheal transfer of pup lung dysbiotic microbial communities
modifies the development of allergy in recipient pups early in life. Interestingly,
transfer of dysbiotic lung microbial communities from neonates of allergic
mothers to neonates of non-allergic mothers was sufficient to confer
responsiveness to allergen in the recipient pups. In contrast, neonates of allergic
mothers were not protected from development of allergy by transfer of donor
lung microbial communities from either neonates of non-allergic mothers or
neonates of αT-supplemented allergic mothers. These data suggest that the
dysbiotic lung microbiota is dominant and sufficient for enhanced neonate
responsiveness to allergen. Importantly, infants within the INHANCE cohort with
an anti-inflammatory profile of tocopherol isoforms had an altered microbiome
composition compared to infants with a pro-inflammatory profile of tocopherol
isoforms. These data may inform design of future studies for approaches in the
prevention or intervention in asthma and allergic disease early in life.
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Introduction

Allergic asthma is the most common chronic airway disease in

children. With the increase in prevalence of allergic diseases,

approaches to limit development of allergy early in life are

needed (1–3). A maternal history of allergic disease remains the

greatest risk factor for development of allergies and asthma in

offspring (4). Although mothers and their children occupy the

same homes with the same pollutants and environmental

contaminants and allergens, when controlling for these factors,

there is increased sensitivity to development of allergy in the

offspring of allergic mothers. Moreover, maternal transmission of

reactivity to allergen in the offspring is not specific for the type

of allergen in patients and animal models (5–11). Consistent

with this non-specificity for type of allergen, transfer of splenic

dendritic cells (DCs), but not macrophages, from neonatal mice

of allergic mothers transfers allergen responsiveness to recipient

neonates from non-allergic mothers (4, 12). Neonates from

allergic mothers have increased lung DC subsets, including

monocyte-derived DCs (mDCs) and resident DCs (rDCs) but no

change in regulatory DCs (pDCs or CD103 + DCs) (13, 14). The

development of responsiveness to allergen results from complex

interactions with environmental factors, including allergens and

dietary lipids (13, 14).

We have demonstrated that responsiveness to allergen by

neonates of allergic mothers is modifiable by the dietary lipids

α-tocopherol (αT) and γT in maternal diets (13, 14). In adult mice,

we demonstrated that γ-T elevates allergic responses to chicken egg

ovalbumin (OVA) (15, 16) and to house dust mite extract (HDM)

(17) and that γT potently ablates the anti-inflammatory benefit of

α-T during allergic responses (15, 16). We also demonstrated that

dietary supplementation of allergic mothers during pregnancy and

nursing with αT inhibited, whereas γT increased development of

allergen (OVA) responsiveness and DC numbers in the offspring of

allergic mothers (13, 14). During allergic inflammation, tocopherols

function as anti-oxidants and regulate signal transduction during

DC differentiation and leukocyte transendothelial migration (18–

20). We demonstrated that tocopherols regulate cell signal

transduction by binding to a regulatory domain of protein kinase

C; when bound to PKC, αT is an antagonist and γT is an agonist

of PKCα (15, 18, 20–23).

In humans, we demonstrated that plasma with low αT &

>10 µM γT associates with lower lung function in children (24)

and in adults (25). Based on the prevalence of serum

γ-T > 10 µM in adults in the USA and adults in the 2011 USA

census, up to 4.5 million U.S. adults had >10 µM serum γ-T and

may have had 500 ml lower FEV1 and FVC (25). We also

demonstrated that γ-T associated with increased odds for asthma

in China (17). It is reported that patients with asthma or allergy

have low levels of α-tocopherol (26–29), suggesting that an

increase in α-tocopherol may be necessary, in combination with

other regimens, to decrease allergic disease. We also reported

that higher plasma αT and lower γT concentrations in children

at 3 years of age associate with better lung function at 6–19 years

of age in project VIVA (24). Together the preclinical studies in

mice and humans indicate that a higher plasma γT concentration
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is a pro-inflammatory tocopherol profile and a higher plasma αT

with lower γT concentration is an anti-inflammatory tocopherol

profile with regards to allergic inflammation and lung function.

Thus, the preclinical studies and data for clinical associations

suggest that tocopherols may modify mediators that regulate the

development of allergic disease.

It is suggested that risk for allergic disease in humans is

associated with in utero and early exposures to environmental

factors (30). Microbiota are acquired from the environment in

utero and as neonates. Since the advent of non-culture-

dependent microbe characterization, the lungs have been known

to harbor commensal and pathogenic microbes (31). The airways

are colonized by a diverse range of bacterial, archaeal, protozoal

and fungal microorganisms known collectively as the airway

microbiome. Microbes occupy the airways during health and

disease, but the abundance and diversity of microbes is altered

during lung diseases including asthma. Briefly, microbes of the

Proteobacterium phylum are elevated during allergic asthma,

including members of the Streptococcus, Haemophilus, and

Moraxella genera (32–35). Streptococcus colonization during

early life is a strong predictor of allergic asthma development

(35). Alterations in the microbiota have a profound association

with allergic asthma development during childhood (35). It is

not known whether αT supplementation modifies the lung

microbiome in offspring of allergic mothers. Moreover, it is not

known whether lung microbiome of offspring of allergic mothers

affects the development of responsiveness to allergen in the

offspring lung.

We report that in mice, the lung microbiome of offspring of

allergic mothers is altered before allergen challenge of the neonate.

This is blocked by maternal supplementation with αT. Moreover,

transfer of the lung microbial communities of offspring of allergic

mothers to offspring of non-allergic mothers confer responsiveness

to allergen. In infants, a pro-inflammatory profile of tocopherol

isoforms associates with an altered airway microbiome.
Methods

Animals

Adult C57BL/6 female and male mice were from Jackson

Laboratory, Bar Harbor, Maine and maintained under specific

pathogen free (SPF) conditions at Indiana University Lab Animal

Resource Center. C57BL/6 mice are used in this study because

C57BL/6 mice have been vital for our studies of mediators that

regulate the development of allergic responses by offspring of

allergic mothers (13, 14, 36). The studies were approved by the

Indiana University Institutional Review Committee for animals.
Tocopherol and basal diets

αT is necessary for mouse and human placental development

(37, 38). Standard basal mouse chow diet contains 45 mg αT/kg

of diet and 45 mg γT/kg of diet and supports fetal development
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in mice. Supplemented αT diets contain 250 mg αT/kg of diet and

45 mg γT/kg of diet (13, 14). Translation of mouse basal α-T doses

to humans is calculated as we previously described (page 173 of

39). Taking into account differences in food consumption and

metabolism (39), a 45 mg αT/kg of diet for mice is 57 mg αT/

day for human adults. For healthy adult humans, 15 mg αT/day

is recommended, but asthmatics have low plasma αT (26–29).

The 250 mg αT/kg of diet for mice is 285 mg αT/day for human

adults, which is well below upper safety limits of 1,000 mg αT/

day in human pregnancy and near the 268 mg (400IU) d-αT in

pre-eclampsia pregnancy trials (40–45). A relevant dose is a dose

that achieves similar fold changes in tissues in mice and humans.

For supplementation of diets with tocopherol, D-α-tocopherol

(>98% pure) from Sigma was sent to Dyets, Inc (Bethlehem, PA) to

produce the diets with 250 mg αT/kg of diet (catalog#103373) (13,

46). The purity of these tocopherols that were used to make the

diets and the tocopherol concentrations in the diets were confirmed

by HPLC with electrochemical detection as previously described

(13, 46). These αT supplemented diets increase tocopherols 3-fold

in mothers and pups (13, 14, 47–49). This is similar to fold tissue

changes achievable in humans (15, 16, 21–23, 46).
Allergens

In our studies, pups received the same allergen or different

allergen than the mother because in mice (5–11) and humans

(4), allergen responses by offspring are not specific to the

allergen to which the mother had been exposed. We induced

allergic lung inflammation in mothers or pups with OVA or

HDM. OVA is a well-characterized model purified allergen that,

in humans, can also be inhaled when exposed to powered egg or

when gasping during egg allergic reactions. HDM extract is a

model environmental allergen from Greer and has been used in

allergy shot induction of tolerance in humans. Mothers with

allergic responses and allergic inflammation at the time of

mating (15, 46, 50) are mated to non-allergic fathers (13, 14). On

gestational day 18 (GD18) [during time of fetal hematopoiesis],

we collect mother plasma, placentas, and fetal livers (site of

hematopoiesis in the fetus) (13, 14). To assess offspring

development of allergy, pups receive a suboptimal allergen

sensitization/challenge protocol (Figure 1) (13, 14). There are no

differences by sex so data include both sexes (13, 14).
Separation of microbiota from mouse BAL

For lung microbiota transfers and microbiota taxa analyses, the

microbes were separated from the BAL by differential

centrifugation as follows: the BAL was centrifuged for 10 min at

1200 rpm to pellet host cells and supernatant collected. This

supernatant was centrifuged at 10 min at 15,000 rpm (500×g) to

pellet the microbiome. The supernatant, which contains soluble

proteins and mucins (51), was removed and pellet contains the

microbiota. The microbiota were 96 ± 0.7% viable as determined

by the Biotium Bacterial Viability and Gram Stain Kit with
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analyses by flow cytometry. Also for visualization of microbiota,

separated BAL microbial communities from allergen-challenged

pups of allergic and from non-allergic mothers were suspended

in a minimal volume, fixed in a small spot on a glass slide,

stained with a gram stain for bacteria, and analyzed by microscopy.
OVA administration, lung microbiota
transfers and analysis of inflammation

C57BL/6 female mice were maintained on chow diet. The mice

were sensitized by intraperitoneal injection (200 μl) of OVA grade V

(Sigma-Aldrich Co.) (5 μg)/alum (1 mg) or saline/alum (1 mg) on

days 0 and 7 (13, 14). The mice were exposed to nebulized saline or

3% (w/v) OVA in saline for 15 min on 3 consecutive days at 8, 12,

and 16 weeks of age and then mated. The pregnant and nursing

dams received basal diet (45 mg αT/kg of chow) or αT-

supplemented diet (250 mg αT/kg of chow) as indicated in the figures.

In experiments with transfer of lung microbial communities,

BAL was collected from neonates at PND5. The BAL microbial

communities were separated by differential centrifugation For

transfer of microbial communities, the pelleted donor microbiota

were suspended in saline and immediately administered to lungs

of recipient pups to most closely represent the donor microbiome

levels and abundance. The few hours between collection of BAL

microbiota from donor pups to administration to recipient pups

was within the timeframe described for survival of aerobic

microbes, as these aerobic microbes can survive for days in PBS

(52). The BAL microbial communities of 2 donors were combined

for each recipient and administered in 10 µl intranasally to each

PND4 recipient pup for adequate inoculation, similarly to studies

by others with viral inoculation of neonates (53).

For allergen challenge of the pups, six-day old pups were sub-

optimally sensitized by treating with only one 50 µl i.p. injection

(rather than two injections) of 5 µg OVA/1 mg alum (13, 14). At

13, 14, and 15 days old, the pups were challenged for 15 min

with 3% OVA. At 16 days old, the pups were weighed,

euthanized and tissues collected. Pup bronchoalveolar lavage

(BAL) cells were stained and counted as previously described

(13, 14). OVA-specific IgE was determined by ELISA as

previously described (13, 14).
16S rRNA gene analysis of mouse BAL

For microbiome analyses, the microbes were separated from

the BAL by differential centrifugation. To limit confounding

contributions from contaminant bacteria during collection and

sequencing reagents (54, 55), data from the BAL microbiome of

pups of allergic mothers were compared to control BAL groups

and N = 8–10 pups from 3 to 4 mothers per group. The same

sterile reagents were used within an experiment. 16S rRNA gene

amplicons were generated via PCR amplification using primers

5′TATGGTAATTGTGTGCCAGCMGCCGCGGTAA3′ and 5′
AGTCAGTCAGCCGGACTACHVGGGTWGCTAAT3′ (56). The

full sequencing protocol is published by Kumar et al. (56) The
frontiersin.org
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FIGURE 1

Enhanced responsiveness to challenge with HDM or OVA by pups of mothers with allergy was inhibited by maternal supplementation with α-tocopherol.
The allergen of the mother and offspring can differ. (A,C) Allergic and non-allergic mothers received basal diet or diet supplemented with αT (250 mg αT/
kg of diet) during pregnancy and nursing. Timeline for allergen-sensitization and allergen-challenge of mothers and offspring. (B,D) Pup BAL eosinophils,
monocytes, lymphocytes and neutrophils. (E) Relative IL-5 mRNA expression in lungs of HDM-challenged pups of allergic and non-allergic mothers with
basal or αT-supplemented diets. BAL, bronchoalveolar lavage. n= 8–10 mice/group. Saline treated pups did not have allergic inflammation (data not
shown). *p < 0.05.
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16S rRNA gene sequencing was performed on the Illumina MiSeq

platform. The ASV table for the mouse microbiome studies was

generated by an analysis pipeline using CLC Genomic

Workbench Microbial Module (CLCGW-MM). This includes the

preprocessing of V4 16S amplicon (250 bp) reads, mapping to

SILVA 16S v.132 SSURef, and filtering of initial ASVs (relative

abundance > 1 × 10−5) as described in the University of Alabama

at Birmingham protocol (56, 57). The nomenclature for

Bacteroidetes has recently been updated to Bacteroidota (58),
Frontiers in Allergy 04
therefore we are using these synonymously in this manuscript.

Differential abundant analysis was done by a built-in function in

the CLCGW-MM, which generated FDR and log2fold differences

in the taxa between two comparison groups. Data are shown as

% abundance of 16S rRNA gene amplicon counts of total counts

within specific taxonomic levels. Alpha and beta diversity

analyses were performed using Quantitative Insights into

Microbial Ecology v2 2022.8 (59, 60). Principal component

analysis was performed using EMPeror (61).
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qPCR analysis of cytokines and chemokines

Total RNA was isolated from 50 to 100 mg lung tissue using

the QIAGEN RNeasy Mini Kit (catalog #74136). cDNA was

prepared using a MMLV Reverse Transcriptase kit (QuantaBio,

catalog #95047) and analyzed by PCR on an ABI 7300 Thermal

Cycler (Applied Biosystems). Taqman probes and Taqman

Universal Master Mix were used as directed (Applied Biosystems,

catalog #4304437). Taqmanprobes used were GAPDH (catalog

#4331182) and MUC5AC (catalog#4331182). IL-5, IL-13, IL-33,

and CCL11 expression levels were quantified using SsoAdvanced

Universal SYBR Green (Biorad catalog# 1725271) with the

following primers obtained from Integrated DNA Technologies.
F

Target
rontiers in
Forward primer sequence
Allergy
Reverse primer sequence
CCL11
 TGTAGCTCTTCAGTAGTGTGTTG
 CTTCTATTCCTGCTGCTCACG
GAPDH
 GTGGAGTCATACTGGAACATGTAG
 AATGGTGAAGGTCGGTGTG
IL-33
 AATCACGGCAGAATCATCGAGAAA
 GGAGCCAGAGGATCTCCGATT
IL-13
 CCAGGGCTACACAGAACCCG
 GCTCTTGCTTGCCTTGGTGG
IL-5
 ACTGTCCGTGGGGGTACTGT
 CCTCGCACACTTCTCTTTTTGG
INHANCE cohort

INHANCE cohort (62, 63) is an urban cohort (birth to 18

months of age) in the Indianapolis area (n = 180, 70% Black or

mixed-race Black; NIH K23 AI135094-01 PI Kloepfer). Of these

180 infants, 43 of the 3–5 months of age infants and 50 of the

12–18 months of age infants had nasal 16S microbiome data (62,

63) and sufficient plasma volume available for tocopherol

analyses by HPLC.Human 16S rRNA gene sequencing data were

analyzed using Quantitative Insights into Microbial Ecology v2

2022.8 (59, 60). Human sequences were aligned with the SILVA

138.1 taxonomy database (57). Also serum tocopherol

concentrations at 3–5 months or 12–18 months of age were

measured by HPLC with electrochemical detection (64) as

previously described (24). Because we have demonstrated that in

children and adults that better lung function associates with

increasing αT when gamma-tocopherol (γT) concentrations are

lower (24, 25, 65–67), the INHANCE cohort infants were placed

in groups based on below or above median αT and median γT

concentrations (64 and manuscript in preparation) withQ1 (high

γT, low αT), Q2 (high γT, high αT), Q3 (low γT, low αT) and

Q4 (low γT, high αT). Q4 has an anti-inflammatory profile of

tocopherols and Q2 has a pro-inflammatory profile for

tocopherol isoforms for allergic lung inflammation and lung

function as in our previous reports in children and adults (13,

14, 24, 25, 66, 68).

Data availability
The raw fastq files of the 16S rRNA analysis from mouse BAL

in (Figures 2–5) are deposited as NCBI BioProject repository,

accession number ID PRJNA925891. The raw fastq files of the

16S rRNA analysis in INHANCE cohort in (Figure 8) are

deposited as NCBI BioProject repository, accession number ID

PRJNA928382.
05
Statistics

Data in the figures were analyzed by a one-way ANOVA

followed by Tukey’s or Dunnett’s multiple comparisons test (JMP

software, SAS Institute). Data in figures are presented as the

means ± the standard errors. Data include both genders because

there were no differences in outcomes by gender (data not

shown). For analyses of the 16S microbiome from INHANCE

cohort infants 3–5 months and 12–18 months of age, cutoffs

were set for the data, including removal of 3 samples with

insufficient ASV detection (<4% total ASV reads/sample

compared to other samples), removal of ASV’s that had less than

6/43 samples with reads, and to address extension of findings in

mice to human, phyla were included in analyses for phyla

observed in the mouse models. These participants were placed in

4 groups based on the median αT and γT concentrations (64).

Then an abundance cutoff was set at >0.003% abundance for the

sum of the ASV averages for the groups. This yielded 181 ASV

for the 3–5 months age and 217 ASV for the 12–18 months age.

Based on predetermined results in mice with αT

supplementation and low γT, analyses were made in comparison

to the group Q4 which had a serum αT concentration above the

median and a serum γT below the median concentration. There

was no formal adjustment for multiple testing because the

analyses were selected based on preclinical mechanistic

microbiome outcomes. Furthermore, the associations tested were

established a priori at the onset of the project with microbiome

as the primary analysis with tocopherol isoforms.
Results

Enhanced responsiveness to challenge with
HDM or OVA by pups of mothers allergic to
OVA is inhibited by dietary supplementation
of the mother with α-tocopherol

Pups of allergic mothers respond to suboptimal OVA

sensitization with allergen and this allergen responsiveness of

the offspring is reduced by dietary supplementation of the

mother with αT during pregnancy and nursing (13, 14). It is

not known whether the pups of allergic mothers also respond

to HDM and whether this is modified by αT. Pups of OVA-

challenged mothers were responsive to suboptimal

sensitization and challenge with OVA (Figures 1A,B) or HDM

(Figures 1C,D) with increased numbers of leukocytes

(Figures 1B,D) and this was blocked by maternal dietary

supplementation with α-tocopherol as compared to pups from

allergic mothers with a basal diet (Figures 1B,D). OVA

increased numbers of eosinophils, monocytes and lymphocytes

in the BAL (Figures 1B,D), OVA-specific IgE (13, 14), and

lung cytokines (13, 14) in pups of allergic mothers as

compared to pups of non-allergic mothers. HDM challenge of

pups of allergic mothers (Figure 1C) also increased numbers

of eosinophils, monocytes and lymphocytes in the BAL
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FIGURE 2

Pups of allergic mothers have altered lung bacteria microbial composition. Mouse treatments were as in (Figure 1A). BAL microbiota from pups at (A)
PND4 and (B,C) 24 h after OVA-challenge (PND16) was separated and analyzed by 16S rRNA gene sequencing and a microbiome analysis pipeline. (A)
At PND4, before allergen exposure, there was increased Proteobacteria and decreased Bacteroidota in the lungs of offspring of allergic mothers
(log2FC > 0.6, FDR < 0.1) as compared to offspring of non-allergic mothers with basal diet. (B) ASV table of the relative abundance of phyla within the
total pup BAL bacterial microbiome. *p < 0.05 compared to other groups. (C) BAL microbiota from pup BAL PND16 were separated and concentrated
by differential centrifugation as in the methods, suspended in minimal volume for fixation in a small spot on a glass slide and stained with gram stain
from bacteria. Representative images of lung microbiota are shown.
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(Figure 1D) and lung IL-5 expression (Figure 1E). It has been

demonstrated that pups of allergic mothers that are challenged

with saline do not have allergic lung inflammation and that

BAL cell numbers are similar to allergen-challenged pups of

non-allergic mothers.(5) There were no sex differences in pup

weight or eosinophilia as we previously reported (13, 14), so

data include both sexes.
Pups of allergic mothers but not pups of
non-allergic mothers exhibited lung
bacterial microbiome dysbiosis

The airway microbiome is altered in adult humans with allergic

asthma and in adult mice with allergic lung inflammation (69). This

airway microbiome dysbiosis in adults has an increased abundance

of Proteobacteria and decreased Bacteroidota (69–71). It is not

known whether the lung microbiome is altered in pups of allergic
Frontiers in Allergy 06
mothers. It is also not known whether the lung microbiome plays a

role in regulation of airway response to allergen. Interestingly, at

PND4 before pup exposure to allergen, the BAL of pups of allergic

mothers with a basal diet had increased abundance of Proteobacteria

and decreased abundance of Bacteroidota (log2FC > 0.6, FDR < 0.1)

as compared to pups of non-allergic mothers with a basal diet

(Figure 2A). To assess whether allergen alters the bacterial

microbiome of pups, the pups of allergic mothers and pups of non-

allergic mothers were challenged with a purified allergen. OVA was

used as a purified protein allergen, thereby avoiding contaminant

bacterial 16S in the extracts from HDM. The microbiota, that was

separated from the BAL of allergen-challenged PND16 pups,

contained gram negative and gram positive microbiota as

determined by gram-staining of BAL bacteria fixed to glass slides

(Figure 2C). The 16S analyses of the PND16 BAL microbiota of

allergen-challenged pups of allergic mothers demonstrated an

increase in abundance of Bacteriodota and decrease in abundance of

Proteobacteria (Figure 2B). There were increases in several taxa
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FIGURE 3

Pups of allergic mothers have altered bacteria microbiome. Mouse treatments were as in (Figure 1A). Pup BAL microbiota were separated and analyzed by
16S rRNA gene sequencing at PND16. Shown are the % abundance for pup BAL bacteria with a significant difference in the OVA/Basal group compared to
the other groups. *p < 0.05.
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within the Proteobacteria, Firmicutes, Fusobacteria and

Verrucomicrobia, but decreases in taxa with the Bacteroidota and

several other Firmicutes, Proteobacteria and Archaea as compared to

pups of non-allergic mothers and as compared to pups of allergic

mothers supplemented with αT (Figure 3).
Transfer of the BAL microbial community of
pups of allergic mothers to pups of non-
allergic mothers sustained the donor
microbiome in the recipient pups

Neonate bacterial load increases over PND0-14 (72). To

address a potential function for the microbiome dysbiosis in

allergen responsiveness, the microbial community was obtained

from the BAL of PND4 pups without allergen exposure. The
Frontiers in Allergy 07
donor PND4 BAL microbial community was separated from the

BAL and transferred intranasally to recipient PND4 pups. Then,

the PND4 pups without donor microbiota and the PND4 pups

that received the microbiota transfers were challenged with

allergen (Figure 4A). For the transfers, the pup groups are

designated as maternal treatment of the donor pups→maternal

treatment of the recipient pups. The donor sample 16S

microbiome had increased Proteobacteria and decreased

Bacteroidota taxa in the lungs of offspring of allergic mothers

(log2FC > 0.6, FDR < 0.1) (Figure 2A).

The PND4 donor microbiota were also analyzed for alpha-

diversity and beta-diversity. The PND4 donor microbiota groups

had a similar Shannon within-group alpha-diversity index; the

Shannon Index incorporates total number of bacterial species

and relative differences in the abundance of various species in

the microbiota community of a group (Supplementary
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FIGURE 4

After intranasal microbiome transfers and airway allergen challenge, there was pup BAL microbiota with increased Proteobacteria and decreased
Bacteroidota taxa for pups that were either recipient pups of mothers in the OVA,basal group or were pups receiving microbiome from pups of
mothers in the OVA,basal group. (A) Timeline for treatment of mothers and pups. (B) Donor BAL microbiome was administered intranasally in 10 µl to
PND4 recipient pups (as indicated in figures as the group of pups providing donor BAL microbiome for transfer into a recipient group of pups, i.e.,
donor→ recipient group). Yellow arrows on the x-axis are those groups with donor and recipients within the same group. In RED BOX are groups
with recipient or donor microbiota of PND16 pups of allergic mothers (OVA/basal). Blue arrows within panel B indicate that Bacteroidota are
decreased and Gamma-Proteobacteria are increased in groups in red box. N= 8/group. In panels B,C only, the OVA was in 0.09% saline;
nevertheless, it did not alter the fold effect on BAL cell inflammation which is included in (Figure 5) with data from 7 microbiome transfer
experiments. (C) In RED BOX are recipient or donor microbiota of PND16 pups from allergic mothers (OVA/basal). Data are presented as percent
abundance of bacteria taxa. *, p < 0.05 as compared to Saline,basal→ Saline,basal group (yellow arrow in graphs in C). Sal/B, saline-treated mother
with basal diet. Sal/αT, saline-treated mother with αT-supplemented diet. OVA/B, OVA allergen-treated mother with a basal diet. OVA/αT, OVA
allergen-treated mother with αT-supplemented diet.

Bloodworth et al. 10.3389/falgy.2023.1135412
Figure S1A). For beta-diversity analysis, the donor groups did not

separate in the Principal Component Analysis (PCA) of the

Unweighted Unifrac and Weighted Unifrac between-group beta-
Frontiers in Allergy 08
diversity analysis of bacterial microbiota (Supplementary Figures

S2B,C, left panels); the weighted-Unifrac analysis incorporates

only the relative abundance of taxa shared between samples and
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FIGURE 5

Recipient or donor microbiota from pups of allergic mothers (OVA,basal) conferred responsiveness to allergen in the recipient pups (red box). Mice were
treated as in timeline in (Figure 4A) BAL (A) eosinophils, (B) monocytes, (C) lymphocytes, and (D) neutrophils are presented as mean ± SEM. Data are from
7 experiments. N= 10–36/group. Sal/B, saline-treated mother with basal diet. Sal/αT, saline-treated mother with αT-supplemented diet. OVA/B, OVA
allergen-treated mother with a basal diet. OVA/αT, OVA allergen-treated mother with αT-supplemented diet. *p < 0.05 as compared to the saline,
basal→ saline,basal group., +p < 0.1 as compared to no donor→ Saline/basal group.

Bloodworth et al. 10.3389/falgy.2023.1135412
the unweighted-Unifrac analysis incorporates only the presence/

absence of taxa between groups. In contrast, when incorporating

both overall abundance per sample and abundance of each taxa

of the microbiota communities by the Bray-Curtis beta-diversity

distance analyses, there was clustering by PCA for the donor

saline groups and for the donor OVA groups, which was

unaffected by αT (Supplementary Figure S2A, left panel).

Alpha-diversity was also assessed for the PND16 pup

microbiota from the BAL of allergen-challenged pups with and

without microbiota transfer. Without the microbiota transfers,

the BAL of allergen-challenged PND16 pups from allergic

mothers (the no donor→OVA/B group in Supplementary

Figure S1B) had decreased alpha-diversity as compared to the

saline groups (the no donor→ Sal/B group and the no donor→
Sal/αT group) (Supplementary Figure S1B). With the

microbiota transfers, the BAL of allergen-challenged PND16

pups of allergic mothers (OVA) as either donor or recipients

(designated as microbiota donor→ recipient pairs of pups) had

reduced alpha-diversity (Supplementary Figure S1B, red box) as

compared to several control groups, including the no donor→
Sal/B, the Sal/B→ Sal/B, the no donor→ Sal/αT or the OVA/

αT→OVA/αT (Supplementary Figure S1B).

Beta-diversity was assessed for the PND16 pup microbiota from

the BAL of allergen-challenged pups with and without microbiota
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transfer. There was minimal separation of the PND16 groups in the

PCA plot of the Unweighted Unifrac and Weighted Unifrac

between-group beta-diversity bacterial microbiota analyses

(Supplementary Figures S2B,C, right panels). In the PCA plot of

the Bray-Curtis beta-diversity distance analyses of the allergen-

challenged pups without donor microbiota transfers

(Supplementary Figure S2A, right panel with cone-shaped

symbols), there was some separation of the no donor→OVA/B

group as compared to the other no donor groups. In the PCA plot

of the Bray-Curtis beta-diversity distance analyses of the allergen-

challenged pups that received donor microbiota transfers, there was

unique clustering of microbiota from pups of allergic mothers with

basal diet (OVA/B) as either donors or recipients (Supplementary

Figure S2A, right panel with sphere-shaped symbols); these are the

groups with allergic inflammation in Figure 5.

Notably, when either the BAL microbial community of the donor

pup or the recipient pup was from an allergic mother with basal diet

(OVA/B), the recipient pup BAL had an increase in abundance of the

class Gamma-proteobacteria and decrease in abundance of the class

Bacteroidia (Figure 4B), as compared to the saline/B→ saline/B

group of pups (Figure 4B). In Figure 4C, when the BAL microbial

community was from a group with a donor pup or the recipient

pup from an allergic mother with basal diet (OVA/B), there was an

increase in a Proteobacteria and a Fusobacteria and a decrease in
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several Bacteriodota taxa and a Firmicute. These data suggest that the

BAL microbial community of the pups of allergic mothers with basal

diet was dominant.
Transfer of the dysbiotic BAL microbial
community of pups of allergic mothers to
pups of non-allergic mothers conferred
enhanced responsiveness to allergen in the
recipient pups, demonstrating a functional
role for the lung microbiome

The BAL cells were assessed for the pups in (Figure 4).

Without microbiota transfers, the pups of allergic mothers had

increases in BAL eosinophils, monocytes and lymphocytes

(Figure 5), no-donor groups). After intranasal microbiome

transfers and airway allergen challenge, there were increased

numbers of BAL eosinophils, monocytes and lymphocytes in the

pups that were either recipient pups of mothers in the OVA,basal

group or were pups receiving microbiome from pups of mothers

in the OVA,basal group (i.e. OVA/B as donor or recipient) as

compared with the pups of the control saline/B→ saline/B group

(Figure 5). The donor→ recipient pup groups without an OVA/

B group in the donor or the recipients did not develop lung

eosinophilia after allergen exposure (Figure 5). Interestingly, the

mice were in a specific-pathogen-free facility and dysbiosis of the
FIGURE 6

Recipient or donor microbiota from pups of allergic mothers (OVA,basal) conf
IgG1 (red box). Mice were treated as in timeline in (Figure 4A). Serum (A) anti-O
Data are presented as mean ± SEM. N= 6–9/group. Sal/B, saline-treated mot
diet. OVA/B, OVA allergen-treated mother with a basal diet. OVA/αT, OVA alle
to the saline,basal→ saline,basal group. +p < 0.1 as compared to no donor→
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transferred microbial communities was sustained in recipient

pups (Figure 4) and only exhibited in pups with allergic lung

responses (Figure 5). These novel transfer studies demonstrate

that the dysbiotic microbiome of pups of allergic mothers

enhances pup responsiveness to allergen.
The transferred BAL microbial community
influenced induction of allergen-specific
IgE and the allergen-induced expression of
cytokines

Mediators of allergic inflammation were measured including

serum allergen-specific antibodies, the chemokines and

cytokines that mediate eosinophilia, and the mucin Muc5ac.

We have reported that anti-OVA IgE is increased in the OVA/

B group and this is reduced by OVA/αT (13). The serum of

pups in the OVA/B→OVA/B group and OVA/B→ Sal/B

group had elevated anti-OVA IgE after allergen exposure

(Figure 6), suggesting that the transfer of microbial

communities of pups of allergic mothers with basal diet is

sufficient to mediate enhanced induction of anti-OVA IgE in

these pups. In contrast, there were no increases in anti-OVA

IgG2b and anti-OVA IgG1 (Figure 6). The chemokine CCL11,

which mediates recruitment of eosinophils, and IL-33, which

is important in induction of allergic inflammation, was
erred allergen sensitization with increased IgE but not increased IgG2b or
VA IgE, (B) anti-OVA IgG2b, and (C) anti-OVA IgG1 as determined by ELISA.
her with basal diet. Sal/αT, saline-treated mother with αT-supplemented
rgen-treated mother with αT-supplemented diet. *p < 0.05 as compared
Saline/basal group.
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increased in the groups with OVA/B as donor or recipient and in

the no donor→OVA/B group (Figure 7). Similarly, IL-5 and IL-

13 had a significant increase in the no donor→OVA/B group

and had either a trend or significant increase in most of the

microbiota transfer groups with pups of OVA/B-treated moms

that were either the donor or recipient of the microbe

transfers (Figure 7). Muc5ac was increased in several groups

that had OVA/B as donor or recipient (Figure 7). The pups

with transfers of microbial communities from pups of saline-

treated mothers did not have an increase in CCL11, IL-13, IL-

5 or Muc5ac (Figure 7). There was also no increase in IL-33

for the recipient pups with saline-treated mothers, except a

small increase for the OVA/αT→ saline/B group (Figure 7).

Thus, transfer of microbial communities with the OVA/B

group as the donor or recipient regulated these mediators of

allergic inflammation.
FIGURE 7

Recipient or donor microbiome from pups of allergic mothers (OVA,basal) con
(red box). Mice were treated as in timeline in (Figure 4A). Lung cytokine expr
(E) Muc5ac. N= 6–9/group. Data are presented as mean ± SEM. N= 6–9/gr
mother with αT-supplemented diet. OVA/B, OVA allergen-treated mothe
supplemented diet. *p < 0.05 as compared to the saline,basal→ saline,basal g
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A human infant plasma pro-inflammatory
tocopherol isoform profile associated with
altered lung microbiome

We have demonstrated that in children and adults that better lung

function associates with increasing αT concentrations when the

gamma-tocopherol (γT) concentration is lower (24, 25, 65–67). To

extend our microbiota studies in mice to humans, it was determined

whether infants within the INHANCE cohort with an anti-

inflammatory tocopherol isoform profile (high αT with low γT levels)

had an altered microbiota composition compared to infants with a

pro-inflammatory tocopherol isoform profile (high γT levels). To

assess infant microbiome associations with an anti-inflammatory

tocopherol profile, the INHANCE cohort infants that had 16S

microbiota data and sufficient plasma volume for tocopherol analysis

were placed in groups based on median αT and γT concentrations
ferred allergen-induced increases in CCL11, IL-13, IL-5, IL-33, and Muc5ac
ession was determined by qPCR. (A) CCL11. (B) IL-13. (C) IL-5. (D) IL-33.
oup. Sal/B, saline-treated mother with basal diet. Sal/αT, saline-treated
r with a basal diet. OVA/αT, OVA allergen-treated mother with αT-
roup. **p < 0.05 as compared to saline/αT→ saline/αT group.
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(64). Themedian serum tocopherol concentrations at 3–5months of age

were 28 µM αT and 2.6 µM γT and at 12–18months of age were 19 µM

αT and 2 µM γT (Table 1). The higher medians for 3–5 months infants

are consistent with increased tocopherol concentrations during

pregnancy (24) that will influence early life tocopherol concentrations

in infants. The four groups are Q1 (high γT, low αT), Q2 (high γT,

high αT), Q3 (low γT, low αT) and Q4 (low γT, high αT) were defined
TABLE 1 Grouping of infants by median serum αT and γT concentrations
in the INHANCE cohort. Serum αT and γT for infants in the INHANCE
cohort were measured by HPLC. Median serum αT and γT
concentrations for infants at (A) 3–5 months and (B) 12–18 months of
life. Four groups Q1, Q2, Q3, and Q4 of infants for 3–5 months and for
12–18 months infants were generated using high and low αT and γT
concentrations defined as higher or lower than the median for the
tocopherol isoform for the age group. N, number of participants in group.

Group αT (µM) γT (µM) N
(A) 3–5 months, serum tocopherol

Q1 <28 >2.6 7

Q2 >28 >2.6 15

Q3 <28 <2.6 13

Q4 >28 <2.6 8

(B) 12–18 months, serum tocopherol

Q1 <19 >2 11

Q2 >19 >2 14

Q3 <19 <2 11

Q4 >19 <2 14

FIGURE 8

Infants with an anti-inflammatory tocopherol isoform profile (higher αT, lower γ
compared to other tocopherol isoform profiles. Serum αT and γT for infants in
Q2, Q3, Q4) for 3–5 months and for 12–18 months infants were generated usi
higher or lower than the median concentration for the tocopherol isoform for
given for significant differences or trends in taxa compared to group Q4.
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using the median serum tocopherol concentrations (Table 1). Thus,

the microbiome of groups Q1, Q2 and Q3 groups were compared to

Q4 because Q4 had the anti-inflammatory profile (low γT, high αT)

for allergic lung inflammation, lung function and wheeze (13, 14, 24,

25, 66, 68) and had the highest lung function (64). To examine the

associations of αT without elevated γT, as this was the condition in the

mouse studies in (Figures 1–7), Q4 was compared to Q3. In infants 3–

5 months of age, there was a significance or trend for higher %

abundance in some Firmicutes and Bacteroidota taxa in Q4 compared

to Q3 (Figure 8A). As infants, the airway microbiome matures from

birth to 1 year of life (73–75). In INHANCE infants at 12–18 months

of age, there was significantly lower % abundance in a Firmicute in Q4

compared to Q3 (Figure 8B). Moreover, for the group Q2, which has a

pro-inflammatory tocopherol isoform profile with allergic lung

inflammation and function (13, 14, 24, 25, 66, 68), there was a

significantly higher % abundance in taxa of a Firmicute and an

Proteobacteria (Figure 8B). These data suggest that tocopherol profiles

associate with altered microbiome abundance of several taxa in infants.
Discussion

We report that pups of allergic mothers had allergic lung

inflammation and lung microbial community dysbiosis with

increased Proteobacteria and decreased Bacteroidota before and
T) for allergic responses had a different abundance of bacterial microbiota
the INHANCE cohort were measured by HPLC. Four groups of infants (Q1,
ng high and low αT and γT concentrations in (Table 1) that were defined as
the age group. (A) 3–5 months and (B) 12–18 months of life. p values are
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after allergen sensitization. This indicated a sustained dysbiosis in

the pups of allergic mothers. The generation of lung microbe

community dysbiosis was blocked by supplementation of the

mothers with αT during gestation and nursing. We also

demonstrated a functional effect of the microbiome dysbiosis.

Fascinatingly, in studies with BAL microbe community transfers,

the lung microbiome dysbiosis of neonates of allergic mothers

mediated enhanced neonate responsiveness to allergen with

increases in eosinophils, monocytes, lymphocytes, CCL11, IL-5,

IL-13, IL-33 in the lungs of recipient pups. There was also

increased serum anti-OVA IgE. In contrast, neonates of allergic

mothers were not protected from development of allergy by the

transfer of non-dysbiotic microbial communities from either

neonates of non-allergic mothers or neonates of αT-supplemented

allergic mothers. These data suggest that the dysbiotic lung

microbiome is dominant and sufficient for enhanced neonate

responsiveness to allergen. Furthermore, human infants with an

anti-inflammatory tocopherol profile compared to a pro-

inflammatory tocopherol profile had an altered abundance of

several Proteobacteria, Firmicutes and Bacteriodota taxa.

In humans, the onset of atopy and asthma correlates with home

environment, viral infections, and antibiotic exposures (76). It has

been suggested that the diversity of overall bacterial environmental

exposures rather than any one exposure may be contribute to

immune skewing and allergen responses (77). Human adults with

allergic asthma have airway microbe community dysbiosis with

decreased Bacteroides and increased Firmicutes and Proteobacteria

(78–81). This includes an increase in the Proteobacteria

Haemophilus in asthmatics (82). The increase in abundance of

Proteobacteria, including Haemophilus and Moraxella, is also

observed in adult patients with neutrophilic asthma and the

abundance of these microbiota was associated with asthma severity

(83). In another study of induced sputum from patients with

severe asthma, an enrichment of Moraxella, Haemophilus, or

Streptococcea associated with severe airway obstruction and airway

neutrophilia (84). Because multiple bacterial taxa associate with

regulation of allergic or neutrophilic asthma, it suggests that

individual taxa of the bacterial microbial community in the lung

may be less important than the interactions of bacteria in general

or shared features of the bacteria. A similar airway microbial

community is present in infants with wheeze. In mice and human

infants, the nasal and lung airway differ in bacteria species, but

are similar at the family level (85), suggesting that there may be a

similar regulation or function of the species in allergic airway

inflammation. It has been reported that PND6 neonatal mice have

a predominance of Firmicutes and gamma-Proteobacteria in the

lung but then as adults, mice acquire an increase in abundance of

Bacteroidota (72). In IL13-transgenic adult mice with allergic lung

inflammation, there is increased Proteobacteria and decreased

Bacteroides in airways (69). Similarly, in infants, hypopharyngeal

Streptococcus pneumoniae, Moraxella catarrhalis, and/or

Haemophilus influenzae at 1 month of age associated with

persistent wheeze, increased blood eosinophil counts and elevated

total IgE at age 4, and asthma diagnosis at age 5 (33). In children,

infection of M. catarrhalis or S. pneumoniae and rhinovirus

associated with greater severity of respiratory illness, including
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asthma exacerbations, suggesting that respiratory bacteria may

contribute to airway inflammation (86). In our studies, we

demonstrated that the neonatal mice of allergic mothers have an

altered BAL microbiome with increased Proteobacteria and

decreased Bacteroidota as early as postnatal day 4. Then after

allergen challenge, there was also a microbiome dysbiosis with a

combination of increased Proteobacteria or Firmicutes and

decreased Bacteroidota; this is consistent with the reports of

associations of increased Proteobacteria and decreased Bacteroides

in infants with wheeze (34). We also demonstrated that Shannon

alpha-diversity was reduced in groups with allergic inflammation

and that the groups with allergic inflammation separated in the

PCA plot of the Bray-Curtis beta-diversity. These data are

consistent with studies demonstrating changes in airway microbiota

community diversity in subjects with wheeze or asthma (62, 87).

Reports have demonstrated airway dysbiosis with allergic

asthma but have not assessed whether lung microbial community

dysbiosis has a functional effect on allergen sensitization. To go

beyond associations of lung microbe composition with allergic

lung inflammation in neonates, analyses of the function of lung

microbiome in neonates are necessary. The function of microbial

communities in tissues has mostly been studied in the gut,

including mouse models with the transfer of gut microbial

communities in disease states or in germ-free conditions. In an

adult mouse model, administration of Escherichia coli to the lung

can skew the type of Th responses and protect the mice from

induction of allergic airway inflammation (88). Also, Herbst and

colleagues reported that induction of allergy in germ-free

neonatal mice was protected by colonization by co-housing with

specific-pathogen-free (SPF) non-allergic mice before allergen

sensitization, suggesting a potential protective effect of

microbiota of SPF mice, although this was colonization with

microbiota composition of non-allergic mice (89). However, the

function of this control microbiota in non-germ-free conditions

is not known. In non-germ-free conditions, microbe transfers

have been studied in adult mice that were most often pretreated

with antibiotics to disrupt the microbe taxa abundance and

provide a niche for transferred microbes. In our studies with SPF

conditions, antibiotics were not needed as the PND4 pups are

rapidly growing neonates, likely providing niches for

establishment of the transferred microbial communities. In our

studies, transfer of the dysbiotic microbial communities from

pups of allergic mothers to pups of non-allergic mothers

established a dysbiotic microbial composition in the recipient

pups and increased responsiveness to allergen. Thus, the

dysbiotic microbial communities of neonates is sufficient for

enhanced responsiveness to allergen and a dysbiotic microbial

composition is sustained in recipient pups through the allergen

challenge. However, the transfer of microbiome from pups not

susceptible to allergen hyperresponsiveness (neonates of non-

allergic mothers) to pups of allergic mothers did not protect the

pups of allergic mothers from hyperresponsiveness to allergen.

Early life development of asthma and allergic disease results

from complex interactions of genetic and environmental factors

(90), including the dietary lipids, tocopherols (13, 14). In adults

and children, increasing plasma αT concentrations associates
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with better lung function and γT associates with lower lung

function (24, 25, 65, 67, 68). In mechanistic studies in adult and

neonate mouse models of allergic lung inflammation, αT blocks

development of lung eosinophilia and this is counteracted by γT

(13–15, 21, 46, 68). In mechanistic studies, αT blocks the

development of allergic inflammation in adults and neonates, at

least, through functioning as an antagonist for protein kinase C

during VCAM-1 signaling in endothelial cells, thereby, blocking

VCAM-1-dependent eosinophil recruitment into tissues (15, 22,

91). αT also blocks development of subsets of dendritic cells

involved in allergic disease (CD11c +CD11b+ DCs) in vitro and

in vivo (13, 18). In our studies herein, maternal supplementation

with αT blocked development of microbiome dysbiosis and

allergen-induced lung eosinophilia in offspring of allergic

mothers. However, transfer of microbial communities from pups

of non-allergic mothers or from allergic mothers with αT-

supplemented diet did not block microbial community dysbiosis

or the hyperresponsiveness to allergen, as detected by increased

BAL eosinophilia when the recipient pups were from allergic

mothers with a basal diet. This suggests that the microbiome of

offspring of allergic mothers is dominant. Consistent with a

dominant microbiome profile, the transfer of BAL microbial

communities from pups of allergic mothers to recipient pups of

allergic mothers or non-allergic mothers with or without αT

yielded a dysbiotic lung microbial composition and responses to

allergen challenge with development of BAL eosinophilia.

Inflammation with eosinophilia is regulated by the chemokines

CCL11 and the cytokines IL-13, IL-5, and IL-33. These mediators

were induced in the no donor→OVA/B group of pups; in these

studies only IL-33 expression was blocked by maternal

supplementation of allergic mothers with αT (no donor→OVA/αT

group). Because CCL11, IL-13 and Muc5ac are produced by airway

epithelium, it suggests that αT did not intervene in epithelial-

generated mediators of allergic inflammation. In pups with lung

microbiome transfers, all pups with either microbiome of OVA/B

group as donor or recipients had increases in several of the

mediators of allergic inflammation, including CCL11, IL-13, IL-5 or

IL-33. This indicates that in the presence of the microbial

community dysbiosis, there was elevated responsiveness to allergen

by increasing multiple allergen-induced mediators of allergic

inflammation. Some variation in effects on CCL11, IL-13, IL-5 and

IL-33 in the microbiome transfer studies with donor or recipient

pups of the OVA/αT group may result from αT effects on cell

signaling because besides αT anti-oxidant functions, αT is also an

antagonist of PKCs by binding the regulatory domain of PKCs (15,

18, 20–23). This suggests that maternal αT has some effects on

cytokine expression that may, in part, be independent of the

transferred dysbiotic microbiota. We also found that recipient pups

of allergic mothers on basal diet (OVA/B) had increased serum anti-

OVA IgE, except for the pups of the OVA/αT→OVA/B group.

However, suggesting although there were low undetectable levels of

serum anti-OVA IgE, anti-OVA specific IgE bound to FcεR on

leukocytes in tissues may participate in the allergic response to

allergen in this group of pups. It is suggested that in humans, serum

IgE does not always associate with severity of allergic asthma and

allergic diseases (92, 93). Allergen-specific IgE-mediated responses
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can occur at low serum levels of allergen-specific IgE when there is

allergen-specific IgE bound to FcϵR on leukocytes in the tissue (94,

95) Thus, supplementation of allergic mothers with αT not only

blocked the development of allergic inflammation in mouse

neonates, but also blocked the development of neonate lung dysbiosis.

In the airway microbial composition of infants in the

INHANCE cohort (62, 63), nasal microbiome diversity at 3

months of age is lower in the infants with wheeze in the first

year of life, with a decrease in Corynebacterium and increase in

the proteobacteria Moraxella (62). Increased Moraxella is seen in

episodes of wheeze (35, 96–100). Also, lung function in children

associates with profiles of tocopherol isoforms (24). But it was

not reported if the tocopherol isoform profiles early in life

associate with infant airway microbiome composition. In our

analyses of the INHANCE cohort, infants at 3–5 months of age

in group Q4 with an anti-inflammatory tocopherol profile of

higher αT and lower γT (13–15, 21, 24, 25, 46, 65, 67, 68) had a

significant lower abundance of the family Staphylococcaceae

genus Jeotgalicoccus as compared to the opposing group Q1 that

had a proinflammatory profile of tocopherol isoforms with low

αT high γT (13–15, 21, 24, 25, 46, 65, 67, 68). Because

Staphylococcaceae in the lung has been associated with asthma

(32), group Q1 might associate with development of asthma later

in life, but this will need further longitudinal study. Additionally,

group Q4 had a significantly higher % abundance of the phyla

Firmicute genus Enterococcus as compared to group Q3 which

has a low αT low γT. The Enterococcus genus are present as

commensals in lung and gut and Enterococcus can limit the

growth of pathogenic bacteria, although outgrowth of some

Enteroccocus spp. can be pathogens (101–104). The 3–5 months

old infants in group Q4 also had a significantly higher %

abundance for the phyla Firmicute genus Peptoniphilus and a

trend for higher % abundance of the genus Dialister as well as

the Bacteriodota family Chitinophagaceae as compared to group

Q3. Peptoniphilus genus is present in a healthy microbiome

community of the nasopharynx (105) and is decreased in the

nasopharynx with disease such as chronic rhinosinusitis (106).

Diallister spp. are enriched in healthy human lung compared to

lung with infection (107) and is increased in nasopharynx for

adult subjects with non-exacerbated asthma as compared to

exacerbated asthma (106, 108). Chitinophagaceae are present in

myconium and the lung (109–111). Moreover, Chitinophagaceae

are considered beneficial bacteria in the lower respiratory tract

because Chitinophagaceae limit colonization by pathogens in

animal models (111–113). Thus, the higher abundance in these

taxa in group Q4, as compared to group Q3 at 3–5 months of

age, is consistent with an anti-inflammatory tocopherol isoform

profile and is consistent with a potential for lower airway disease.

In infants at age 12–18 months in the INHANCE cohort,

there was a significantly lower % abundance in a Firmicute

family Lachnospiraceae in group Q4 compared to group Q3.

This was similar to our neonate mouse studies with αT

supplementation demonstrating less Lachnospiraceae and less

allergic lung inflammation. In the 12–18 months age group,

group Q4 had a lower abundance of phyla Firmicutes family

Oscillospiraceae and phyla Proteobactera class Alpha-
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proteobacteria family Paracaedibacteraceae as compared to

group Q2, that has a pro-inflammatory tocopherol isoform

profile for allergic inflammation. Interestingly, Oscillospiraceae

are not detected in lung until inflammation is induced by TLR

stimulation in mice and rats (114, 115). This is interesting

because TLR stimulation plays a role in allergic responses

(116). Proteobacteria are elevated in infant lungs with

increased prevalence of wheeze (62) and in our neonatal mice

with increased allergic lung inflammation. These differences in

group Q4 and group Q2 bacterial microbiota suggest that

group Q2 has a microbial community that may have an

increased potential for elevated airway inflammation as

compared to group Q4. A limitation of the INHANCE study is

use of the readily accessible infant upper airway microbiome as

a surrogate of microbiome in lower airways as these sites have

both microbiome similarities and differences, as previously

discussed (62, 85). Nevertheless, the studies of upper airway in

infants and adults and the studies of lower airway in children

and adults suggest that there is a lower microbiota diversity

and increased Proteobacteria with wheeze or asthma (62, 78–81).

In conclusion, unbiased analyses of the lung microbial

communities of mouse neonates of allergic mothers indicate that

both before and after allergen challenge, there is an altered lung

bacterial microbiome composition that is consistent with that found

in infants with wheeze and adults with allergic asthma. Most

importantly, we have gone beyond associations of lung microbial

composition dysbiosis with allergic lung inflammation and have

demonstrated that the lung microbiome composition of offspring of

allergic mothers confers neonate responsiveness to allergen and

development of allergic disease in mouse models. Thus, an early life

airway microbiota dysbiosis may have a significant function in

development of wheeze and allergic asthma in children. This is a

novel regulatory mechanism for development of responses to

allergen challenge early in life that may inform design of future

studies for approaches in the prevention or intervention in asthma

and allergic disease. Further mechanisms for microbiome regulation

are currently under investigation by our research group. Moreover,

the development of lung microbial community dysbiosis in the

neonatal mice was blocked by maternal dietary supplementation

with αT during pregnancy and nursing, suggesting a potential

target for intervention early in life. In human infants at 3–5

months and at 12–18 months of age, there was an anti-

inflammatory tocopherol isoform profile associated with

microbiome taxa abundance composition that may have the

potential to limit development of airway disease.
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SUPPLEMENT FIGURE 1

Alpha-diversity of donor pup BALmicrobiota and allergen-challenged recipient
pup microbiota. Data are from experiments in Figures 2, 3 and 4. Shannon
Index for alpha-diversity which incorporates the total number of bacterial
species and relative differences in the abundance of taxa in the community.
(A) PND4 donor BAL microbiota communities. (B) PND16 BAL microbiota
communities of allergen-challenged pups. Sal/B, saline-treated mother with basal diet.
Sal/αT, saline-treated mother with αT-supplemented diet. OVA/B, OVA allergen-
treated mother with a basal diet. OVA/αT, OVA allergen-treated mother with αT-
supplemented diet. *. p < 0.045 for decrease as compared to no donor→ Sal/B
group. **. p < 0.035 for decrease as compared to Sal/B→ Sal/B group.
+. p < 0.04 for decrease as compared to no donor→ Sal/αT group. ++.
p < 0.045 for decrease as compared to OVA/αT→OVA/αT group.

SUPPLEMENT FIGURE 2

Beta-diversity of donor pup BAL microbiota and allergen-challenged
recipient pup microbiota. Data are from experiments in Figures 2, 3 and 4.
Frontiers in Allergy 16
PND4 Donor pup and PND16 recipient pup BAL 16S microbiota were
analyzed for beta-diversity with donor and transfer microbiome groups.
The donor and transfer groups are displayed in separate three-
dimension graphs for clarity but were generated by the same Principal
Component Analyses (PCA). (A) PCA plots of the Bray-Curtis analysis that
generated a dissimilarity distance matrix for microbiota between groups. Bray-
Curtis dissimilarity between groups is a measure that incorporates both overall
abundance per sample and abundance of each taxa of the microbiota
communities. (B) PCA plots of the Weighted-Unifrac analyses between groups
which incorporates the relative abundance of taxa shared between samples. (C)
PCA plots of Unweighted-Unifrac analyses between groups which only
incorporates the presence/absence of taxa. Sal/B, saline-treated mother with basal
diet. Sal/αT, saline-treated mother with αT-supplemented diet. OVA/B, OVA
allergen-treated mother with a basal diet. OVA/αT, OVA allergen-treated mother
with αT-supplemented diet.
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