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The “epithelial barrier hypothesis” states that a barrier dysfunction can result in allergy
development due to tolerance breakdown. This barrier alteration may come from the
direct contact of epithelial and immune cells with the allergens, and indirectly,
through deleterious effects caused by environmental changes triggered by
industrialization, pollution, and changes in the lifestyle. Apart from their protective
role, epithelial cells can respond to external factors secreting IL-25 IL-33, and TSLP,
provoking the activation of ILC2 cells and a Th2-biased response. Several
environmental agents that influence epithelial barrier function, such as allergenic
proteases, food additives or certain xenobiotics are reviewed in this paper. In
addition, dietary factors that influence the allergenic response in a positive or
negative way will be also described here. Finally, we discuss how the gut
microbiota, its composition, and microbe-derived metabolites, such as short-chain
fatty acids, alter not only the gut but also the integrity of distant epithelial barriers,
focusing this review on the gut-lung axis.
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Allergy: a pandemic of the 21st century

Allergic diseases are characterized by immunological alterations that drive to

hyperresponsiveness mainly against protein components called allergens. These molecules are

present in a plethora of natural sources (house dust mites, molds, pollens, bee or wasp

venoms, vegetable and animal foods, etc.), and lead to many different inflammatory diseases

such as asthma, allergic rhinitis, food allergy (FA) or atopic dermatitis (AD) (1).

Worldwide prevalence of allergic diseases has dramatically increased during the last decades

(2–5). Asthma, food allergy, and atopic dermatitis are considered the most relevant allergic

diseases, and the connections to each other are still under research. Asthma is a chronic

disease where the allergen avoidance is often difficult. Proper diagnosis and follow-up are

required, especially in patients displaying severe symptoms, whose main treatment implies the
Abbreviations

AA, Arachidonic Acid; AD: Atopic Dermatitis; DCs, Dendritic Cells; DHA, DocosaHexanoic Acid; EPA,
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administration of corticosteroids, adjusting doses to the minimum

effective ones and/or controlling disease exacerbations (6).

Food allergies affect around 5%–8% of global population, and is

increasing every year, causing deaths, alteration of life quality and

health cost (7, 8). Nowadays, food allergy development is mainly

explained by the “dual allergen exposure hypothesis”, which

addresses that food allergen exposure through inflamed skin before

exposure to the alimentary tract might lead to the development of

FA (9). Accordingly, avoidance of allergenic foods during

pregnancy until the first year of the child’s life has been widely

recommended from decades (10). However, more recent studies

suggest that this practice induces an increase on IgE sensitization

(11–13). Conversely, the introduction of food allergens during

early life could even induce immune tolerance, as concluded by the

PreventADALL study that found that exposure to allergenic foods

from 3 months of age reduced FA at 36 months in a general

population (14). So far, management of food allergies follows two

major strategies: focusing the initial symptoms or long-term

treatments (15). One of the main strategies against FAs is the

avoidance of allergen ingestion or contact; however, around 11% of

allergic reactions are caused due to non-accidental contacts (7). A

correct diagnosis of FA is key for the avoidance of allergic

reactions; nowadays, the gold standard for food allergy diagnosis is

the Oral Food Challenge, but other methods are also used,

including blood IgE level measurements, Skin Prick Tests, physical

examination, and anamnesis (16, 17). Most common allergic

components of the diet are cow’s milk, tree nuts, peanut, shellfish

and vegetables, as determined by the US National Health and

Nutrition Examination Survey (NHANES) (18).

Atopic dermatitis is the main inflammatory skin disease, whose

prevalence reaches 20% in children and 3% in adults (19)

producing several alterations of life quality. AD is driven by

various pathophysiological mechanisms, including genetic factors,

and is related to other diseases such as asthma, allergic rhinitis,

and food allergy (20–22). In fact, AD is considered by several

authors as the first cause that could trigger subsequent allergenic

processes. The mechanisms of AD are multifactorial, involving

barrier dysfunction and Th2 response, with a main role of IL-4

and IL-13, but also IL-31, IL-17, IL-22 and TSLP (23). Two types

of AD have been described: the extrinsic form, with an IgE-

mediation; and the intrinsic form, not IgE mediated (19). AD

patients often manifest eczema with excoriation and serous

exudation, and the treatment is based on corticosteroids,

cyclosporine for dupilumab for patients that do not respond to

topical therapies (24).

Mechanistically, allergic reaction development starts with the

recognition of allergens by the immune system. Under certain

conditions, this recognition triggers a reaction called sensitization

phase, that primes naïve B cells into differentiating plasma cells,

that finally produce specific IgE against the allergen. As stated by

“the atopic march theory”, skin barrier impairment during infancy

and the development of AD acts as key drivers for further

development of asthma or FAs due to cytokine release and

defective barrier function (25). Even though not shared by all the

allergic patients, a common feature is the disruption of an

epithelial barrier during allergy development, mainly those from

skin, gut, and lungs, matching the three more prevalent allergic
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diseases. The epithelial barriers constitute the main surfaces of

contact between the inside of the body and the outside world and

are strongly involved in the outcome of the immune responses,

playing an active role in the sensitization phase during allergy

development. In addition, other components in close contact with

these barriers, such as the microbiome, have been proven to play

key roles in epithelia homeostasis whereas dysbiosis may trigger a

tolerance breakdown.

The most common manifestation of allergic responses to food

involves the gut, but it is increasingly evident that gastrointestinal

allergy to ingested foods often precedes or coexists with respiratory

tract symptoms, rhinorrhea, sneezing, coughing, and wheezing.

Asthmatics and patients with allergic rhinitis are often affected by

gastrointestinal disorders (26). In addition, it has been shown that

exposure to aeroallergens (e.g., pollen derived allergens such as

profilin) not only have a significant effect on the development of

allergic diseases in the lung but can also induce sensitization

towards specific foods components (27). The opposite direction has

been also shown in mice, as experimental gastrointestinal allergy to

egg ovalbumin (OVA) enhances pulmonary responses to OVA but

also to an unrelated allergen as house dust mite (28). As an

opposite effect, evidence from mice has shown that dietary fiber,

metabolized by a “healthy” gut microbiota, exerts a beneficial effect

in the immunological environment in the lung protecting against

the development of allergy and asthma (29, 30). Intestinal

microbiota is of special interest as producer of fiber-derived short-

chain fatty acids (SCFAs) that present beneficial effects not only in

the gut but also in distant organs. Besides, SCFAs have a powerful

anti-inflammatory effect and enhance epithelial function (31, 32).

Taking all these considerations into account and in view of the

highly interesting crosstalk between the gut microbiota and the

lung epithelia in the context of allergy, we focused this review

firstly on factors that modulate the integrity of epithelial barriers to

focus finally on the role of gut derived SCFAs in the regulation of

lung epithelia homeostasis.
Epithelial barriers play a key role in
allergy development

The different epithelial barriers of the human body constitute the

first line of defense against harming agents, pathogens, or even

allergens. Growing evidence supports the “epithelial barrier

hypothesis”, which states that epithelial barrier integrity and

function is key to maintain the homeostasis of the organism

and that a dysfunctional barrier may underlie allergic and

other inflammatory diseases and explain their increase in

prevalence (33–35).

Even though each epithelia have a different role and morphology,

they share many physiological and structural/mechanical features.

The apical junction complexes (AJCs) are one of the main

components maintaining the integrity of epithelial barriers as they

regulate cell-cell adhesion, cell polarity, and paracellular

permeability of exogenous elements. These complexes are

composed of two main structures, the tight junctions (TJs) and the

adherens junctions (AJs) (36–38). TJs are formed by extracellular

domains of transmembrane proteins (such as occludin and claudin
frontiersin.org

https://doi.org/10.3389/falgy.2023.1093800
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


Parrón-Ballesteros et al. 10.3389/falgy.2023.1093800
protein families) that form strong links between them and connect

with actin and tubulin cytoskeleton via scaffold proteins such as

zonula occludens-1 (ZO-1) (39). TJ formation is regulated by the

expression and phosphorylation of their components or the

expression of disruptor proteins (e.g., Claudin 2) (40). Allergen

tolerance is directly related to TJs integrity: IL-17 and IL-22 induce

ZO-1 and claudin expression; but, in atopic individuals, this route

is impaired because of the presence of Th2 cytokines facilitating

the entrance of allergens (41, 42) (Figure 1).

Epithelial cells have indeed an immunologic function: they are

the first sensors of external damage, producing and secreting

alarmins IL-25, IL-33 and thymic stromal lymphopoietin (TSLP),

triggering the activation of type 2 innate lymphoid cells (ILC2)

Th2 responses (33, 43). This activation is key for sensitization and

in the physiopathology of allergic diseases, triggering epithelial

damage and an increase in its permeability. ILC2 cells regulate and

crosstalk with naïve T cells, showing an important role for specific

CD4+ T cell production by secreting IL-5 and IL-13. They

participate on IL-4 mediated Th2 differentiation, and promote

mast cell sensibility to degranulation, but also inhibit Treg
FIGURE 1

Immunoregulation of tolerance induction and breakdown in healthy and damag
and lung epithelial barriers. IL-17 and IL-22 induce the expression of TJ proteins,
cells release IL-18 and TGF-β in response to allergens, which enhance the produ
leading to tolerance induction. On the other hand, epithelial cells in damaged
breakdown with the activation of a Th2 response in ILC2 cells with the release
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induction (44). They also have a higher cytokine production rate in

comparison to Th2 when activated and have the capacity of

antigen presentation via MHCII (45).

Thus, these epithelial cell-derived cytokines can be considered as

novel targets for allergy treatment (46). Currently, an anti-TSLP

monoclonal antibody has been approved in the US for the

treatment of uncontrolled severe asthma (47), and an anti-IL-33 is

being proved in clinical trials against AD (48) and peanut allergy

(49). Moreover, intestinal epithelial cells (IECs) express MHCI/II,

thus having the possibility to induce specific antigen immune

responses towards allergenic components, and these cells secrete

exosomes containing these MHCII-peptide complexes mediating

indirect presentation of allergens that prime for an immunogenic

rather than tolerogenic response (50, 51).

Healthy epithelia have also a regulatory function: they sense the

environment and activate different routes of homeostatic responses

via toll-like receptors (TLR), protease-activated receptors (PAR)

and nucleotide-binding leucine-rich repeat-containing receptors

(NLR) (52–54). The gut epithelia also secrete antimicrobial

peptides (AMPs) that play an important role in maintaining
ed epithelia. Tight junctions are essential for the maintenance of healthy gut
but this effect is impaired in the presence of Th2 cytokines. Healthy epithelial
ction of IL-17 and IL-22 and stimulate Treg cells to release IL-10 and TGF-β,
barriers secrete alarmins (IL-25, IL-33 and TSLP) which trigger tolerance

of IL4, IL-5 and IL-13 (Created with BioRender.com).
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tolerance to gut microbiota, protecting against enteric infections, and

thus maintaining a healthy microbiome. In addition, some AMPs

present anti-inflammatory and immunostimulatory properties. For

example, human α/β-defensins and cathelicidin regulate the

intestinal microbiota, limiting invasion of the epithelia and acting

against gram-positive commensals, restricting enterohemorrhagic E.

coli infections; lactoferrin and hepticidin control free iron required

for bacterial growth and lysozyme enzymatically degrades the

peptidoglycan of gram-positive bacteria inducing their lysis (55, 56).

Inflammatory responses also alter intracellular signaling routes

that are intrinsically linked to the maintenance of the barrier

integrity (57) (Figure 1). Classic Th2 cytokines IL-4 and IL-13

contribute to TJ instability in skin and the lungs (58). Moreover,

IL-4, IL-5, and IL-13 signaling cascades can be triggered after the

cell response to barrier-disrupting noxious stimuli (33). In

addition, other inflammation-derived molecules, such as IL-6 (57)

or histamine (59), are known to induce epithelial barrier

permeability.
Environmental factors promote allergic
diseases by disrupting epithelial barriers

Western lifestyle, diet, and environment account among the

more commonly described factors contributing to the development

of the allergic diseases. Humans are daily exposed to a plethora of

different chemical and biological agents, overall known as the

exposome (60). Human exposome includes compounds related

with pollution (61, 62), hygiene-derived products such as laundry

detergents (63), house dust mites (64), natural toxins (e.g., the

mycotoxin deoxynivanelol) (65), and food additives (e.g., food

emulsifiers) (66), which are mostly harmful for highly exposed

body cell surfaces like the epithelial barriers. Several in vitro studies

show that when the human epithelial barrier is exposed to these

compounds, cell functions are altered (67, 68), and allergenic

responses could be enhanced (69–74). Moreover, an adverse

outcome pathway (AOP) describing the covalent binding of

electrophilic chemicals to keratinocyte proteins leading to skin

sensitization has been described (https://aopwiki.org/aops/40). This

AOP is quite interesting as the covalent binding of electrophiles

could potentially affect proteins from epithelial cells form other

organs triggering their activation, leading to further activation of

dendritic cells and T-cells and sensitization towards these

electrophilic compounds.

Diverse environmental proteases have been described as

allergenic initiators triggering further immune responses. Among

them, it is important to mention those from house mite feces

(whose presence in the exposome is directly related with western

lifestyle), such as Der p 1 (75), and fungal proteases, such as Asp f

13 (76). The activity of these proteases disrupts the human TJs and

increases the epithelial barrier permeability, facilitating the passage

of diverse allergens according to in vitro studies (74, 77), and the

stimulation of the innate immune system (78, 79). Their effect is

regulated by the redox microenvironment of the bronchial lumen,

as it has been described that Der p 1 activity is enhanced by

glutathione-S-transferase-pi, a detox enzyme secreted by the

bronchial epithelium, and by the presence of the antioxidant
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glutathione, both of which are highly abundant in the human

epithelial lung fluid (80). This effect is stronger on damaged or

inflamed epithelium (as occurs in asthmatic patients), in which

anti-protease and mucociliary clearance are impaired (81). Protease

inhalation is also related to FA, as a higher response to food

allergens and an associated gut epithelium disfunction has been

described in mice after intranasal exposure to dust mite extracts (82).

Environmental proteases as Der p 1 not only affect human

bronchial epithelium, but also alter the integrity of intestinal

epithelium as they are present in the diet together with food

derived allergens with protease activity (e.g., Act d 1, a Cys-

protease from kiwifruit) (83, 84). Der p 1 has been detected on

human intestinal biopsies, where it not only disrupts the epithelial

barrier integrity but also reduces the expression of TJ proteins and

mucus barrier and induces a pro-inflammatory response with

increased cytokine release (85, 86). Apart from barrier disruption,

it is worth mentioning that alternative mechanisms could be acting

at promoting allergic sensitization triggered by airborne proteases.

In this sense, and although much less explored, Der p 1 cleavage

of other secondary allergens have been described to generate small

and more permeable allergen-derived peptides, which indeed

preserve IgG/IgE reactivity and activation of basophils from allergic

patients (77).

Several other exposome components of the urban environment

produce or synergistically enhance epithelial damage, as has been

shown in asthma and allergic rhinitis patients (87). On the inhaled

group of toxic agents, it is important to mention traffic and

industry related contamination (NO2, O3, particles in suspension),

whose levels have been related geographically with a higher rate of

infant asthma (88). Maternal exposure to NO2 causes an

impairment in Th1/Th2 balance in newborn mice, leading to

enhanced sensitivity to allergens and increased airway

hyperresponsiveness (89). Increased Th2 response and

accumulation of ILC2 cells was observed in a diesel exhaust-

enhanced allergic mice model (90). Ozone and NO2 have, as well,

a pro-inflammatory effect upon bronchial epithelial cells,

promoting the release of cytokines and chemokines, such as IL-33,

IL-25 and TSLP, in both normal and asthmatic patients (91, 92).

Tobacco smoke exposure also exacerbates asthma and rhinitis

symptoms and decreases muco-ciliary clearance (93). Moreover,

there is a strong epidemiological link between pre- or postnatal

passive cigarette smoke exposure and the prevalence of asthma in

children (94, 95). Recent studies have spotlighted the effect of

cigarette smoke on the pulmonary epithelium, directly disrupting

TJs and modulating TJ protein expression and aggravating OVA-

induced inflammation in asthmatic mice models (96).

Cigarette smoke exposure also modifies epigenetic marks

involved in immune response, such as increasing methylation of

GC isles in genes like IL-10 in human samples (97) and promote

Th2 responses, e.g., by decreasing gene methylation of IL-4, IL-13

or increasing FOXP3 methylation after house dust mite challenge

(44).

Other components from the exposome can also alter the

pulmonary epithelium and facilitate the induction of respiratory

allergic diseases. On this idea, it has been reported that inhalation

of airborne microplastics causes pulmonary inflammatory cell

infiltration, bronchoalveolar macrophage aggregation and increased
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levels of tumor necrosis factor-α (TNF-α) in both healthy and

asthmatic mice (98), and that viral infections during infancy and

childhood predispose to later asthma development (99, 100).
Diet modulates epithelial integrity:
protective and harmful food factors

Perinatal and early age nutrition, and the correct time of active

introduction of dietary components is key to avoid FAs and the

development of tolerance. The actual tendency is to potentiate this

development by introducing probiotics and lactose in child

formulas (101). As described above, a damaged gut epithelium is

related to the development not only of FAs but also of other types

of allergies. In fact, there is increasing evidence of the presence of

ingested noxious agents in the exposome that contribute to this

damage. During the early life introduction of different foods,

especially when breastfeeding is being retired (or has been absent),

the child is lacking the protective compounds supplied by mother’s

milk. In this context, some foods and dietary components,

especially from fish and vegetable meals, have been proven to

possess a protective effect against gut epithelium damage and even

in distant epithelia such as the lung, either directly or after

intestinal microbiome processing (102–104).

Even though some diet components and contaminants may alter

the epithelial barriers, there are several other diet components that

present protective effects against allergic diseases by reinforcing the

epithelial barrier (Figure 2). EAACI 2020 guidelines point towards

the beneficial effect of breastfeeding by preventing the development
FIGURE 2

Diet components that present beneficial or negative effects on the intestinal ep
variety of beneficial factors that enhance intestinal epithelium integrity and repair
diet that, together with natural compounds as gluten, capsinoids or natural to
negative effects on gut epithelial cells increasing barrier permeability and poten
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of food allergy in the first two years of life, or even against asthma

and allergic rhinitis (105, 106). Maternal milk contains a milieu of

beneficial components; however, their levels vary between

individuals, especially when comparing atopic mothers with non-

atopic mothers. Maternal secreted IgA is directly able to raise the

infant immune system as it protects from respiratory and digestive

tract infections, thus preserving epithelial integrity. Lower levels of

IgA in milk are related to higher risk of cow milk allergy (107).

Soluble CD14, that is produced by mammary epithelial cells, is

another powerful immunomodulatory molecule; it mediates

secretion of innate immune response molecules such as IL-8, TNF-

α, and epithelial neutrophil activator-78 by CD14-negative

intestinal epithelial cells exposed to lipopolysaccharide (LPS) or

bacteria (108). CD14 acts as a co-receptor for TLR4 and enhances

the recognition of bacterial LPS by the immune system, especially

at low LPS levels (109). This CD14-TLR4 interaction plays a key

role in immune tolerance development during early life, as

evidenced in the correlation between low CD14 levels in breast

milk with higher risk of AD (110) and sensitization to egg white

(111). Breast milk also contains TGF-β, a powerful anti-

inflammatory cytokine that is also involved in gut epithelial

integrity, IL-10, an inducer of antigen-specific tolerogenic Treg and

Breg cells, and IL-6, a pro-inflammatory cytokine that stimulates

Th-17 responses in the presence of IL-10 and TGF-β (112, 113).

These molecules are absent or undetectable in substitutive formula

for breastmilk.

Early sensitization to food allergens during the breastfeeding, or

even in the amniotic fluid, explain reactions to a food with which

there has been no previous contact. In fact, the presence of major
ithelial barrier. An equilibrated diet and maternal breast milk contains a wide
. However, western lifestyle and pollution have introduced new agents in our
xins [e.g., mycotoxins as deoxynivanelol (DON)], can be irritant or present
tially triggering allergic responses (Created with BioRender.com).
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food allergens in breast milk and amniotic fluid has been shown in

the range of nanograms per milliliter, as described for OVA, β-

lactoglobulin from cow and sheep’s milk, peanut proteins Ara h 1/

2/6, among others from fruit, mustard, wheat or fish (114–116).

The kinetics of antigen shedding and clearance strongly depend on

the mother’s diet, but varies with individuals, the way of antigen

consumption (i.e., raw or cooked), or with the interaction of other

milk components (115). Specific IgG from an allergen-exposed

non-atopic mother is related to the onset of antigen-specific

tolerance in the infant due to the formation of IgG-antigen

immune complexes in breast milk that potentiate specific Treg cell

development (117, 118).

Human breast milk also contains a lipid fraction, which is

responsible for many beneficial properties. Special attention has

been paid to polyunsaturated fatty acids (PUFAs), mainly ω-3 fatty

acids like eicosapentanoic (EPA) and docosahexanoic (DHA) acids,

that depend directly on the mother’s diet (e.g., fish oil

supplementation) and are currently under study due to the

correlation of breast milk lipids and the risk of allergic disease

(119, 120). Oligosaccharides from breast milk are additional agents

that potentiate epithelial barrier function and protect against

pathogen adhesion. Moreover, they contribute to the early life

microbiota development (as will be discussed later in this review)

(121).

In addition to their presence in breast milk, ω-3 long-chain

PUFAs (DHA and EPA) are present in various food sources and

can be incorporated in the routine diet. As described above, they

play a key role in immune system development and in the

establishment of tolerance by suppressing inflammation (122).

These two PUFAs, together with ω-6 arachidonic acid (AA), are

widely present in immune cell membranes. Free AA is oxidated via

cyclooxygenase (COX) and lipoxygenase (LOX) pathways, releasing

prostaglandins and leukotrienes. The role of AA-derived

metabolites in allergic disease is still controversial. In one hand,

they enhance inflammation, histamine production, white cell

infiltration in epithelia and suppress Th1 inflammation; on the

other hand, prostaglandin E2 is reduced in severe anaphylactic

patients’ sera (123). DHA and EPA suppress AA-mediated

inflammation as their oxidation produces anti-inflammatory

molecules. In fact, both PUFAs from fish oil supplements have

been reported to ameliorate allergic responses in children with risk

of developing allergy (124). Novel roles for these acids have been

also described in in vitro porcine and human models, as they

interact with PPAR-α and PPAR-γ in intestinal epithelial cells,

enhancing epithelial cell function (125), protecting against

exogenous damage (126) and decreasing cytokine-mediated

permeability (127). High DHA diet al.so enhances repair of dust-

exposed pulmonary epithelium in mice (128).

Vitamin D is a fat-soluble sterol whose deficiency has been

related to immune deficiencies and is also involved in the

regulation of gut microbiota. Humans can synthesize it after

sunlight exposure (which is reduced by western lifestyle) or obtain

it from animal- and plant-derived food. Vitamin D contributes to

intestinal homeostasis inducing the expression of the antimicrobial

peptide cathelicidin in IECs (129) and is essential to maintain the

integrity of the gut mucosal barrier by enhancement of

intercellular junctions that control mucosal permeability and
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reduction of pro-inflammatory cytokines such as IL-8; therefore, its

deficiency is related to a leaky gut (130, 131). It also has a potent

tolerogenic effect towards the immune system, inducing IL-10

secretion and contributing to Treg differentiation (132).

Nevertheless, there are discrepancies as to the potential benefits

of supplementing diet with vitamin D regarding the prevention of

allergic diseases; these beneficial effects are not clear in FAs and

AD (133) and only some studies detect a decrease in the incidence

of asthma and rhinitis (134). Prenatal administration to pregnant

woman with asthma risky child induces a slight descent on the 3-

year incidence of asthma and rhinitis, but did not influence the 6-

year incidence (135). Vitamin D supplementation, combined with

immunotherapy, enhances FoxP3 expression on specific therapy

towards AD according to human in vivo studies (136); however, no

symptomatologic differences were detected compared to patients

treated with immunotherapy alone. On a cohort of Icelander

children that received (or not) vitamin D supplementation, this

administration correlated with a 6-year lower risk of allergic

sensitization (137). But vitamin D administration is inefficient on

asthmatic patients in which the vitamin blood levels are already

low (138). This may correlate with an increase in oxidative stress

in the gut due to pollutants and increased luminal levels of

oxidized vitamin D metabolites that do not bind to the vitamin D

receptors (139). Low vitamin D blood levels can be also due to

malabsorption of the vitamin, as has been reported in several cases

of food allergies (140). Thus, vitamin D diet supplementation may

not be effective in these patients. In summary, authors conclude

that enough vitamin D administration is key for tolerance

development (specially on Nordic countries with limited sunlight),

but the beneficial effect is still controversial.

Dietary antioxidants have been associated with a protective effect

against allergic diseases (141). Diverse vitamins and vegetable-

derived compounds have been proven to exert beneficial effects on

human health, given the fact that oxidative stress impairs the gut

metabolism of Vitamin D (139). Liposoluble vitamins β-carotene

(pro-vitamin A) and tocopherol (vitamin E), obtained only from

fresh vegetables and nuts, have also proven their protective effects

against allergy due to their strong antioxidant properties. Vitamin

E impairs Th2 inflammation on mice models, inhibiting eosinophil

and neutrophil activation and the production of oxygen reactive

species (142). Intranasal administration of tocopherol is a current

approach to ameliorate symptoms in allergic rhinitis patients, but

oral supplementation is not proven to be efficient in AD, FA or

asthma treatment (143).

Plant flavonoids like kaempferol or quercetin are also known as

inflammation suppressors with increasing relevance in the field of

allergy. Both reduce IgE-induced inflammation in human IECs

(144) and kaempferol mitigates inflammation in asthma models

when orally administrated to OVA-sensitized mice (145). In vivo

studies showed that quercetin ameliorates mice epithelial asthmatic

response inhibiting the secretion of IL-4, IL-25, IL-33 and TSLP

and leads to lower mast cell infiltration and endothelial smooth

muscle thickness (146).

Diet can also contain harmful components or additives that may

impair the intestinal epithelial barrier function and thus foster

inflammatory diseases, such as inflammatory bowel disease, obesity

and celiac disease (33, 147), as well as FA, where the allergens can
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cross the leaky epithelial barrier and reach immune cells (148)

(Figure 2). Along with lifestyle changes and pollution increase,

dietary changes have occurred specially in urban environments,

with reduced fresh food intake and increased processed and junk

foods.

Food additives, mainly dietary surfactants, are on the focus due

to their damaging properties for the epithelial barrier showing

toxic and gut permeabilizing effects (149). For example, the food

emulsifier Polysorbate-80 has been reported to increase the

permeability to food allergens in rodents and human IECs (150–

152), as well as presenting effects on distant tissues, being able to

alter the systemic metabolism leading to glucose intolerance and

mitochondrial dysfunction in the skeletal muscle in mice (153).

Maltodextrin, an alimentary thickener widely used in infant

formula, induces reticular stress, inflammation, and mucin deficit

on the intestinal epithelium (154). In addition to food additives,

other diet components can also alter the epithelial barrier status.

For example, gliadin can alter the interactions between occludins

and ZO-1 on humans (155), or hot spices components (such as

capsianosides and terpene glycosides) alter TJ integrity and the

paracellular flux by affecting the actin cytoskeleton (156, 157).

Because of environmental contamination, and due to the high

recalcitrance of many synthetic plastics that result in their long

persistence in the environment, small plastic particles

(microplastics or MPs) have been incorporated to our diets. These

MPs accumulate in the marine ecosystem, being ingested by

invertebrates and fish, and can also leak into soil and accumulate

in plants, thus entering the trophic chain being an increasing

matter of concern in human health (158, 159). As an example,

polystyrene MP have been shown to affect directly epithelial

permeability and alter biliary acid metabolism in mice (160). Other

studies have related the ingestion of these MPs with mucus

secretion, glucose and lipid metabolism, and microbiota alterations

(161). Furthermore, polypropylene MPs have been associated with

immune system alterations (162), inducing an increase in the

secretion of pro-inflammatory cytokines (e.g., IL-6 and TNF-α)

and histamine in human and mice cells in vitro (163).

Interestingly, most of the damage caused by MPs on the intestinal

barrier seem to be more directly dependent on the particle size

and not so much on their composition (163, 164). Altogether,

these data point towards a potential contribution of MPs to allergic

diseases development due to the deleterious effect on the gut

epithelium and their pro-inflammatory potential (68, 165);

nevertheless, further research is required to clarify MP effects in

human health.
Gut microbiome as a key regulator of
the intestinal epithelial barrier status
and immune response

It is increasingly evident that dysbiosis of the human commensal

gut bacteria triggered by western lifestyle may contribute to food

allergy (166–169). In vitro/ex vivo studies showed that gut

microbiome is composed not only by bacteria, but also by other

microorganisms including fungi, archaea, virus and protozoans

(170). Among healthy individuals, the microbiota composition is
Frontiers in Allergy 07
quite similar, despite minor variations based on own individual

diet and lifestyle (Figure 3). The main bacterial phyla present in

the human healthy gut are Firmicutes (classes Clostridia and

Lactobacillus), Bacteroidetes (class Bacteroidales), Actinobacteria

(class Bifidobacteriaceae), and Pseudomonadota/Proteobacteria

(class Enterobacterales) (Figure 3) (171). However, important

differences in microbiome species have been described in diseases

such as inflammatory bowel disease (37, 170), celiac disease (172)

or food allergies (173, 174), among others.

The development and maintenance of a healthy gut microbiome

is key to human health status as it contributes to many physiological

functions: it impairs pathogen colonization, promotes gut epithelial

and mucosal integrity, produces necessary vitamins B12 and K,

and has a potent immunomodulatory role (175). Even though the

question of what a healthy microbiome is remains unsolved, some

species have been related to human microbial health, specifically

with allergic diseases. Bacteroides fragillis and Bacteroides stercosis

are specially relevant species, even though they are only moderately

abundant in the human gut, as they modulate the production of

key metabolites that influence the composition of the microbiota

(176). The biodiversity hypothesis states that microbiota species

enrichment promotes immune tolerance, whereas low microbiome

species diversity is associated with allergic diseases (177). However,

the increase in certain bacterial populations, such as Clostridium or

Firmicutes, are associated with an enhanced allergic sensitization

risk in young children according to various cohort studies (178–180).

Homeostatic and beneficial properties of commensal bacteria are

mediated by small metabolites that can cross epithelial barriers and

exert their effects locally or in distant epithelia as the lung or the

skin after entering the bloodstream, inducing cytokine release.

Short-chain fatty acids (SCFAs), particularly butyrate, propionate

and acetate, are among the main products of dietary fiber

fermentation, with a total concentration in the human intestinal

lumen decreasing from 70 to 140 mM in the proximal colon to

20–70 mM in the distant colon (181). These SCFAs are key players

in the microbiome-immune system crosstalk (Figure 3) (182).

They present beneficial effects regarding FAs; among them, they

modulate gut epithelial cell function and barrier integrity (31, 32).

Butyrate is used as a preferential carbon and energy source by

human IECs, being consumed by the β-oxidative pathway and

shifting energy metabolism (183). Butyrate metabolism decreases

available intracellular O2, leading to hypoxia induced factor (HIF)

activation, which enhances gut integrity and is necessary for

butyrate-mediated intestinal barrier restoration (184, 185). SCFAs

are recognized by specific G protein-coupled receptors (GPCRs),

such as GPR109 or GPR43, present on the surface of intestinal and

immune cells. This interaction generates anti-sensitization

responses on the epithelial barrier and induce Treg cell

differentiation in the colon (186–189). Depletion of these receptors

provoke a disruption of the gut epithelial barrier on mouse models,

increasing allergen permeability and inducing specific IgE reactions

(190). GPR43 is expressed on a higher rate on epithelial cells

rather than dendritic cells (DCs), whose main receptor is GPR109.

GPR43 activation in IECs induces antimicrobial peptide

production, which regulates microbiota composition by enhancing

Bacteroidetes population and decreasing Proteobacteria proportion

(191). GPR43−/− mice had this effect reversed when butyrate was
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FIGURE 3

Effect of microbiota derived SCFAs on the integrity of the intestinal epithelial barrier. The intestinal microbiota is mainly composed of bacteria from the phyla
Firmicutes/Bacillota, Actinobacteria, Bacteroidetes, and Proteobacteria/Pseudomonadota among other minor phyla. Diet fiber fermentation by gut microbiota
generates SCFAs that may enter the epithelial cells either through passive diffusion or via monocarboxylate transporters, or well interact with GPCRs (e.g.,
GPR43) present in the apical membrane. Butyrate is the main fuel and carbon source for colonocytes, but it can be exported through the basolateral
membranes and interact with immune cells altering T cells differentiation and cytokine release patterns, promoting the integrity of the epithelial barrier.
Biological effects of butyrate are mainly related to its activity as inhibitor of HDACs, effect that is enhanced via interaction with GPR43 that induces a
down-regulation of HDAC expression (Created with BioRender.com).

Parrón-Ballesteros et al. 10.3389/falgy.2023.1093800
added to drinking water, accompanied by an increase of Clostridium

and Proteobacteria (190, 191). GPR43 has a maximal effective

concentration threshold in human epithelial cells of around

0.5 mM, and its activation triggers downstream signaling that

provokes cAMP decrease and increases cytoplasmic calcium

concentration (192). This receptor induces also an alternative anti-

inflammatory signaling mediated by β-arrestin-2, by inhibition of

the NF-κB pathway, and down-regulation of pro-inflammatory

cytokines IL-6 and IL-1β (193).

In vivo experiments revealed that high fiber diets, that increase

butyrate production in the gut, enhance the expression of cellular

adhesion proteins such as occludin and ZO-1, and induce IL-22

expression, thus contributing to the integrity of the gut mucosal

barrier while reducing the concentration of pro-inflammatory IL-21

(189). SCFAs, mainly butyrate, induce the production of IL-18 in

IECs (194), an additional key cytokine for the maintenance of

barrier homeostasis (195). TSLP, that polarizes dendritic cells (DCs)

to adopt a CD103-(+) Th2 phenotype, is enhanced in GPR43−/−

mice, but paradoxically not altered when GPR109 is absent (190). In

addition, SCFAs restore Treg numbers in mice devoid of a gut

microbiota and regulate Treg function via GPR43 inducing a reduced

expression of histones deacetylases (HDACs) 6 and 9 (196).

Bacterial-derived SFCAs, mainly butyrate, also regulate the

epigenetic status of the human epithelium by inhibition of HDAC

activities, specifically zinc-dependent class Ia and IIa HDACs

(197). Butyrate enters epithelial and immune cells via passive
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MCT1 or a butyrate/bicarbonate antiporter (183). This leads to

HDAC inhibition (together with the above mentioned down-

regulation of the expression of some HDACs via GPR43), causing

an opening of the chromatin and facilitating the binding of

STAT3, NF-κB or Foxp3, important factors on the development

and regulation of immune cells (193). In vitro studies

demonstrated that this provokes a repressed production of pro-

inflammatory molecules TNFα, IL-12, IL-1β, and NO on immune

cells, while upregulating anti-inflammatory IL-10 production on

mononuclear cells and neutrophils (193). Once butyrate enters the

cell, it also has the capability of activating PPAR-γ (198),

promoting epithelial barrier integrity (199).

Other SCFAs such as acetate and propionate have also some

effects on immune responses, increasing the expression of IFN-β in

the lungs via GPR43 activation (200) or inducing CD69 expression

on basophils and IL-13 production (201), but their role in allergy

seems to be less relevant than that of butyrate.

The microbiome, either through its metabolites or through direct

interaction with cells, influences immune responses, with the

epithelial barrier as central element of transduction. SCFAs induce

different cytokine secretion by gut epithelia, as we have previously

reviewed, which modulate the immune system response. Human

IECs express on their surface TLR2/4/9, that can recognize

exogenous elements present on the lumen. Activation of TLR2

enhances ZO-1 expression in human IECs via activation of PKC,
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whereas TLR4 activation reduces this expression (202). IECs can also

produce and secrete several types of cytokines under different stimuli.

For example, butyrate induces in vivo IL-18 secretion by mice IECs

modulating Th17 and Treg cells, controlling their differentiation

(203). In response to allergen exposure, IECs can produce IL-25,

IL-33 and TSLP and signal to ILC2 cells, that respond secreting

Th2 cytokines (IL-4, IL5, IL-13), and IL-9 (204–206). These

cytokines have the ability of inducing differentiation of progenitor

cells to secretory cells, perpetuating allergic inflammation (207).

Together with IL-9, IECs can also secrete eotaxin-1 that recruit

eosinophils to the gut when an allergen is present (208).

Otherwise, IL-22 secreted from immune cells, such as Th1/17,

affects the state of the epithelial barrier, inducing cell survival via

secretion of antimicrobial peptides from the Reg family (RegIIIβ

and RegIIIγ) in colonic epithelial cells (209).

The immune system has also mechanisms to directly sense the

microbiome and antigens which are present in the lumen.

CX3CR1+ DCs generate protrusions that reach the lumen, crossing

epithelial cell contacts, and capture antigens directly without

epithelial processing preserving the integrity of the epithelial

barrier (210, 211). These DCs express CD11c and CD103, via

TGF-β and retinoic acid produced by IECs, promote Treg

differentiation (212), and induce integrin α4β7 expression which is

involved in gut homing of Treg cells (213, 214).
Microbial and dietary regulation of the
pulmonary epithelium: the gut-lung axis

Despite their manifest anatomical distance, alteration of the

human microbiome resident in the gut has been linked to

inflammatory conditions on the airways mainly via SCFAs (acetate,

propionate and butyrate) derived from bacterial fermentation of

diet fiber (215), contributing to the definition of a novel player in

allergic diseases: the gut-lung axis (216). SCFAs and small bacterial

metabolites have a positive effect as well in different epithelia along

the body, contributing significantly to the skin barrier function

(defining the gut-skin axis) by modulating keratinocyte metabolism

in fiber-fed mice models (217) and even to the esophageal barrier

function in vitro (218).

There is increasing evidence of the influence of intestinalmicrobiota

metabolites in the maintenance of lung epithelium homeostasis and

integrity. Cohort studies have shown a systematic decrease in SCFA-

producing Bifidobacteria in long-term asthmatic patients, spotlighting

the relevance of Bifidobacterium adolescentis and Bifidobacterium

breve as inflammation suppressors (219, 220). In a similar way, a

decrease of Akkermnansia and Faecalibacteria species in the human

gut lumen has been related in vivo to the development of asthma and

atopy in parallel with an alteration on the fiber fermentation and

SCFAs production (221). These results are also supported by the

European PASTURE/EFRAIM study group, that has reported that

high concentrations of fecal butyrate and propionate in children at the

age of one year had significantly less atopic sensitization and were less

susceptible to develop asthma between 3 and 6 years, together with a

reduced risk of food allergy and allergic rhinitis (222). SCFAs have a

protective role against allergic sensitization in the lungs, as they are

able to downregulate hematopoiesis during Th2 allergic airway
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inflammation (30), enhancing macrophage and DC progenitors, that

later infiltrate in the lungs and mature to CD11b+ DCs which are

unable to present allergens (223, 224). In vivo studies with butyrate

oral administration demonstrated an attenuation of OVA-induced

asthma and lung infiltration of eosinophils into lungs on mice (222).

Similar results were observed with high fiber fed mice challenged with

house-dust mite (29).

On the contrary, some bacterial species from the genus

Clostridium have been typically associated with pro-inflammatory

roles (e.g., pathogenic Clostridia or Clostridium neonatale) and they

are increased in stool samples from asthmatic children related to

controls (225). However, Clostridium butyricum has been recently

associated with tolerance development (226).

Even though SCFAs play a key role in tolerance to aeroallergens

and pulmonary inflammatory status, lung microbiome cannot

produce them, being specifically secreted by some populations of

the gut microbiome establishing a unique relationship between

diet, gut microbiome, and respiratory allergy. Microbiome-

produced or diet-derived butyrate enters the bloodstream crossing

the intestinal epithelial barrier via apical surface MCT1 or SMCT1

transporter proteins in the epithelial cells (227); although butyrate

is used by colonocytes as main energy and carbon source, it can

still be exported through the basolateral membranes via MCT3–5

(228) reaching the bloodstream (Figure 4). Propionate and

butyrate are metabolized in the liver, but they can still reach

peripheral organs, such as the lungs or the bone marrow, where

concentration of these SCFAs is directly correlated with fiber

consumption (229). High-fiber diet is known to cause a 20-fold

increase in butyrate concentration in portal blood and a 6-fold

increase in arterial blood in porcine models (230), and 100-fold in

venous blood in murine models (231). Butyrate and propionate

concentration in human plasma is around 1–10 μM (229);

however, there are no clear studies on the effect of diet or

microbiota in SCFA concentrations in human peripheral blood due

to limited accessibility of blood samples and the requirement of

complex quantification techniques, such as mass spectrometry or

heavy isotope labeling. In any case, new and simpler methods for

determining SCFAs in human blood are currently under

development with potential application in this field (232).

Among SCFAs, butyrate is the most efficient suppressor of the

allergic immune reaction in the lung. This fatty acid inhibits Th2

and Th9 cell activation (233, 234) and induces Treg cell

differentiation (235). It also impedes IgE class switching in B cells

(236), mast cell degranulation after FcεRI activation (237), IL3 and

IL-5 secretion by ILC2 cells (238), eosinophilic migration to

airways and its chemotaxis, and induces eosinophils apoptosis

(239) (Figure 4).

Recent studies using asthmatic murine models have spotlighted

the effects of the diet on allergic sensitization and asthma

exacerbations. Mice fed with high-fiber diet showed similar effects

on allergic inflammation suppression compared to those who were

fed with propionate in drinking water (231). Butyrate, but not

acetate and propionate, was able to impair infiltration of white

cells, particularly eosinophils, and increased FOXP3+ cell percentage

in the lung, whereas the three SCFAs reduced the reaction after

methacholine challenge in an OVA-sensitized mice asthma model

(222). High-fiber diet and orally administered acetate suppressed
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FIGURE 4

Regulatory influence of the gastrointestinal microbiota on the immunology of the lung: the gut-lung axis. Butyrate, propionate, and acetate produced by gut
microbiota cross the intestinal epithelial barrier through monocarboxylate transporters and reach distant organs through the bloodstream and the lymphatic
circulatory system. In the lung, SCFAs affect the bronchial-associated lymphoid tissue acting as efficient suppressors of the allergic immune reaction. Among
other effects, they induce an inhibition of Th2 cell activation and induce Treg cell differentiation, inhibit IL-3 and IL-5 secretion by ILC2 cells and the migration
of eosinophils (EO) to airways, induces eosinophils apoptosis, and inhibits mast cell degranulation. In addition, SCFAs can also reduce allergic
bronchoconstriction and pulmonary fibrosis by inducing a down-regulation of collagen synthesis by lung fibroblasts (Created with BioRender.com).
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airway inflammation in house dust mite-sensitized mice, inducing

tolerance-related M2 macrophage polarization (which produced less

IL-4, IL-5 and IL-13 after intranasal challenge) by inhibiting HDAC9,

promoting acetylation on Foxp3 promoter (240). Butyrate has also a

direct effect on the lung epithelium, reducing the airway remodeling-

related collagen deposition on bronchioles in OVA-sensitized mice by

impairing expression of matrix metalloproteases 2 and 9, and reduces

allergic bronchoconstriction and pulmonary fibrosis by reducing

collagen synthesis by lung fibroblasts (241, 242). Butyrate and

propionate can repair human lung epithelial damage after protease

damage, IL-4, or IL-13 stimulation, but only butyrate reduces IL-6

production by epithelial cells (243).

Even though there is a great number of reports on the effects of

gut microbiota-produced and diet SCFAs on the lung epithelium, the

effective concentration that reaches the lungs, the inflammation

suppression mechanisms, and the effects of novel players in the

gut-lung axis are still a matter of study with a therapeutical and

preventive perspective, defining gut microbiota as a potential target

for new and complementary treatments for asthma and allergic

rhinitis.
Concluding statements

Allergic diseases are exacerbated immunological processes that

affect more and more people worldwide, making the development
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of adequate therapeutic strategies increasingly necessary. Its

symptoms are very varied and depend on the characteristics of the

individual and include chronic processes such as asthma, atopic

dermatitis, rhinitis, and food allergy.

Despite being widely described as an exacerbated Th2 process,

several authors coincide on the relevant role played by the

epithelial barrier in the allergic process. Epithelial cells form a

defensive barrier that, in response to different environmental

stimuli, are capable to orchestrate the underlying immune response

through secretion of cytokines and chemokines. The epithelial

barrier, either from the airways or intestinal compartments,

constitutes the first line of cellular defense exposed not only to

allergens, but also to various harmful environmental substances.

These substances include pollutants and airborne proteases (such

as those present in the dust) or, in the case of diet, detergents,

emulsifiers and other food additives, conditioning the integrity and

correct function of the epithelial barrier. Several in vitro/in vivo

studies have already related the loss of the integrity of the

epithelial barrier to the chronic development of allergic diseases,

either due to the action of these agents or due to genetic defects in

the junctional proteins keeping the integrity of the barrier. On the

contrary, various components of the diet, such as PUFAs,

liposoluble vitamins, as well as flavonoids, seem to compensate the

deleterious effect of food additives, promoting a correct epithelial

function and contributing to reduce the characteristic inflammation

of food allergic reactions.
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The integrity of the lung and intestinal epithelial barriers is

strongly dependent on their respective microbial populations.

Alterations in the composition of microbiomes may strongly affect

the correct function of these barriers contributing to the

appearance of allergic diseases. In this context, we have highlighted

the role of a high fiber diet as precursor of intestinal microbiome

generation of SCFAs and their importance not only in the

intestinal homeostasis but also in anatomically distant

environments, with special reference to the gut-lung axis.
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